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1. INTRODUCTION

In recent years, there has been intense develop�
ment in both the scientific research and industrial
implementation of microwave devices based on
InAlAs/InGaAs nanoheterostructures grown on InP
substrates. This is related to a number of advantages
associated with the use of these structures in micro�
wave equipment of which improved high�frequency
characteristics and low noise are required [1, 2]. The
possibility of increasing the InAs content in InGaAs
layers to 70% and even higher enables not only the
mobility and concentration of the electron gas in the
channel to be enhanced, but the electron drift velocity
to be significantly increased as well. This makes
devices based on nanoheterostructures on InP sub�
strates the most high�speed from those available today.

The current�gain cutoff frequency and noise factor
of a high�electron�mobility transistor (HEMT)
depend both on the geometrical parameters of the
device (the gate width and gate–channel spacing) and
the characteristics of the two�dimensional electron gas
(the charge�carrier mobility and concentration).
A high cutoff frequency and a low noise factor are
attained mainly in HEMTs based on InAlAs/InGaAs
heterostructures, in which electrons possess a smaller
effective mass, the conduction�band discontinuity is
larger, and the separation between the Γ and L valleys
is also larger than in other heterostructures.
InAlAs/InGaAs HEMTs can be fabricated both on

GaAs substrates (pseudomorphic HEMTs (PHEMTs)
and metamorphic HEMTs (MHEMTs)) and InP sub�
strates (isomorphic (i.e., lattice�matched) and pseudo�
morphic). Using InP substrates, structures in which
both the InyAl1 – yAs and InxGa1 – xAs layers are lattice�
matched to the substrate can be grown. This is
achieved for layer compositions with y = 0.52 and
x = 0.53. The lack of strain in the layers relaxes restric�
tions on the layer thicknesses in these HEMT struc�
tures [3].

Measurements of the concentration and mobility μ
of two�dimensional electrons and the device charac�
teristics of lattice�matched InAlAs/InGaAs/InAlAs
nanoheterostructures grown on InP substrates were
carried out in [4]. A set of nanoheterostructures whose
spacer thickness dsp and quantum�well width L vary
broadly (2 to 10 nm and 20 to 80 nm, respectively) was
investigated. In [5], nanoheterostructures with an iso�
morphic In0.52Ga0.48As channel (L = 20 nm, dsp =
2 nm) grown on InP were used for improving the fab�
rication technology of microwave transistors.

The further development of nanoheterostructures
grown on InP substrates has been related to the use of
a pseudomorphic channel. Thus, PHEMT nanohet�
erostructures with an In0.75Ga0.25As channel were
studied in [6]. The channel, whose thickness varied
from 20 to 35 nm, was enclosed by barrier and
In0.52Al0.48As buffer layers lattice�matched to the sub�
strate. It was found that the electron mobility remains
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independent of the well width and equal to μ ≈
11120 cm2/V s until L = 20 nm and decreases upon a
further increase in L.

An increase in the electron mobility and, thus, in
the frequency range of microwave transistors fabri�
cated on InP substrates, can be attained using a
pseudomorphic InGaAs channel with an In molar
fraction x exceeding 0.52. Thus, structures with x =
0.53–0.80 were studied in [7] and structures with x =
0.53–0.74, in [8]. The channel width was 10–12 nm.

Increasing the frequency of a microwave transistor
requires that the gate length be decreased and, in order
to minimize the resulting short�channel effects, the
quantum�well width be reduced and the well be
located closer to the surface of the structure. In turn, a
reduction in the well width leads to an increase in the
energy gap between the dimensionally quantized sub�
bands and, thus, to changes in the electron�scattering
conditions. Thus, the problem of fabricating a transis�
tor structure on the basis of an InP�compatible hetero�
system involves such parameters as the quantum�well
width, doping level, and electron concentration.

However, in our opinion, there has not been suffi�
cient effort devoted to the comprehensive investigation of
the electrical parameters of HEMT structures grown on
InP substrates. In particular, there have been little studies

in which Shubnikov–de Haas effect measurements were
used to investigate in more detail the electron transport
properties of In0.52Al0.48As/InyGa1 – yAs/In0.52Al0.48As
HEMT structures with an isomorphic InyGa1 – yAs
quantum well on an InP substrate.

Here, we study in detail, in particular, with the use
of Shubnikov–de Haas effect measurements at liquid�
helium temperatures, isomorphic HEMT structures
grown on InP substrates, and investigate changes in
the band structure and the conditions of electron scat�
tering taking place upon varying the width of the
InGaAs quantum well and the doping level, and also
under illumination.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The samples under study were grown by molecular�
beam epitaxy on (100)�oriented InP substrates. They rep�
resented In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As/InP
nanoheterostructures single�side δ doped with Si and
having different widths L of the quantum well. The
In0.53Ga0.47As quantum�well layer, as well as all of the
other InyAl1 – yAs and InxGa1 – xAs layers of the grown
HEMT structures, was lattice�matched to InP. Figure
1 shows a schematic cross�sectional layout of the sam�
ples under study, and some of the sample parameters
are listed in Table 1.

Different samples had different quantum�well
widths L, spacer thicknesses dsp, and barrier thick�
nesses db; the buffer thickness was the same in all sam�
ples and equal to 0.24 μm. The Si doping level in the
δ layer also differed in different samples. Changes in
the doping level were introduced because, upon a
decrease in the well width, the energy of the upper
dimensionally quantized subband increases and the
electron wave function penetrates deeper into the
InAlAs barrier, which leads to an increase in the scat�
tering of electrons in the upper subband at ionized Si
atoms in the barrier. For the same reason, the spacer
thickness was somewhat increased in the samples with
the narrowest quantum wells (samples 786 and 802).

The Hall effect was investigated at a temperature of
4.2 K in magnetic fields up to 6 T and at temperatures
of 77 and 300 K in magnetic fields up to 0.6 T. The
Shubnikov–de Haas effect was investigated at a tem�
perature of 4.2 K in magnetic fields up to 6 T. The
magnetic field was produced by a superconductive
solenoid, as it was in the Hall�effect measurements at
4.2 K. In all cases, measurements were carried out for
two opposite directions of the magnetic field in order
to exclude the influence of sample resistance.

To examine the effect of illumination on the elec�
trical parameters of the samples, a light�emitting
diode with a wavelength of 668 nm was placed directly
above the sample in the measurements of the temper�
ature dependences of the resistivity and Shubnikov–

i�In0.53Ga0.47As (cap, dcap)

i�In0.52Ga0.48As (barrier, db)

δ�Si

i�In0.52Ga0.48As (spacer, dsp)

i�In0.53Ga0.47As (QW, L)

i�In0.52Ga0.48As (buffer, d = 0.24 μm)

(100) InP (substrate)

Fig. 1. Schematic layout of the structure.

Table 1. Technological parameters of the samples

Sample 
no. L, nm dsp, nm N(Si),

1012 cm–2 db, nm

773 26 4.3 6.3 13.5

783 18.5 4.3 4.9 13.5

786 16 6.0 2.1 29

802 14.5 6.0 1.6 29

Note: Here, L is the width of the In0.53Ga0.47As quantum well,
dsp is the spacer thickness, N(Si) is the concentration of
the Si impurity in the δ�doped layer, and db is the barrier�
layer thickness.
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de Haas effect. Photoconductivity relaxation was
investigated at 4.2 K.

3. MEASUREMENT RESULTS 
AND DISCUSSION

3.1. Temperature Dependences of the Resistivity

The temperature dependences of the sheet resistiv�
ity for T = 4.2–300 K are shown in Fig. 2. For all sam�
ples, dependences typical of a degenerate electron gas
were obtained.

At liquid�helium temperature, positive persistent
photoconductivity was observed for all samples; it
gradually disappeared at temperatures T > 170 K. Fig�
ure 3 shows the temperature dependences of the sheet
resistivity for samples 783 and 802 in the dark and after
illumination at 4.2 K, which was performed until the
resistivity became saturated. After illumination, the
sample was slowly warmed to room temperature.

3.2. Shubnikov–de Haas Effect

At liquid�helium temperature, the Shubnikov–
de Haas effect was observed in all samples. For all of

them apart from sample 802, the oscillations featured
two frequencies, corresponding to the two occupied
dimensionally quantized subbands. As an example,
Fig. 4 shows magnetoresistance oscillations and their
Fourier spectra for two samples. Table 2 lists the con�
centrations NHall and mobilities μHall of electrons
obtained from the Hall�effect measurements, as well
as the electron concentrations NSdH in the two sub�
bands determined from the Shubnikov–de Haas effect
(the values in parentheses pertain to the second sub�
band). One can see that the Hall concentration agrees
well with the sum of the concentrations in the two sub�
bands determined from the Shubnikov–de Haas
effect. This fact indicates that no parallel conduction
along the δ layer takes place. The procedure by which
the electron concentrations in the quantum�confine�
ment subbands are determined was described in [9, 10].
It should be noted that, for all samples except sam�
ple 802, two dimensionally quantized subbands are
occupied and two frequencies are manifested in the

50
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Fig. 2. Temperature dependences of the sheet resistivity.
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Fig. 3. Temperature dependences of the sheet resistivity for
samples 783 and 802 in the dark (solid lines) and under illu�
mination by light with a wavelength of 668 nm (dashed lines).

Table 2. Concentrations NHall and mobilities μHall obtained from the Hall�effect measurements and concentrations NSdH
obtained from the Shubnikov–de Haas effect measurements for the two subbands (except sample 802)

Sample
no.

NSdH,
1012 cm–2

NHall, 1012 cm–2

(in the dark)
μHall, cm2 V–1 s–1

(in the dark)
μHall, cm2 V–1 s–1

(under illumination)

300 K 77 K 4.2 K 300 K 77 K 4.2 K 4.2 K

773 2.5 (0.71) 3.13 3.12 3.25 11900 36100 40600 41000

783 2.0 (0.59) 2.51 2.50 2.60 11800 38900 45800 46900

786 1.67 (0.26) 2.10 2.07 1.95 12100 41900 53500 60000

802 1.55 1.57 1.55 1.56 10400 37000 45200 52400

Note: Values of NSdH outside parentheses correspond to the first subband and the values in parentheses, to the second.
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oscillations (see Fig. 4). The highest Hall mobility of
electrons was observed in sample 786.

Illuminating the samples at liquid�helium temper�
ature leads to an increase in the electron concentra�
tion in the quantum�confinement subbands. As an
example, Fig. 5 shows the Shubnikov–de Haas oscil�
lations in sample 786 in the dark and upon illumina�
tion. Note that, according to Table 2, apart from an
increase in the concentration of electrons, illumina�
tion at T = 4.2 K leads to an increase in their Hall
mobility.

Analysis of the temperature and magnetic�field
dependences of the oscillation amplitude makes it
possible to determine the quantum mobility μq and
transport mobility μn of two�dimensional electrons in
each of the subbands. Varying the values of μq and μn

for each subband, one can fit the experimentally
obtained magnetic�field dependences of the resistivity

and, thus, their Fourier transforms, according to the
following formulas:

(1)

(2)

(3)

Here, e is the elementary charge, μn = eτn/m is the
transport mobility of electrons for B = 0, μq = eτq/m is
the quantum mobility, τn and τq are the transport and
quantum relaxation times, Δg(εF) is the oscillating part
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Fig. 4. (a) Magnetoresistance oscillations and (b) their
Fourier transforms for samples 773 (solid line) and 786
(dashed lines). Two frequencies corresponding to the two
occupied quantum�confinement subbands can be seen.
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of the density of states at the Fermi level, g0 is the den�
sity of states in the absence of magnetic field, and Ei is
the energy of the bottom of the ith subband.

The results of the fit are shown in Fig. 5b by a solid
line. The fitting procedure was based on the search
optimization method described in [11], which mini�
mizes the functions of many variables (up to 20) and
features rapid convergence. Furthermore, the proce�
dure yielding values for the mobilities converges stably,
because μn and μq are responsible for different charac�
teristics of the oscillations: μq mainly determines their
decay as a function of the reciprocal magnetic field
and μn, their amplitude. Table 3 summarizes the
results on the quantum and transport mobilities of the
charge carriers in each of the subbands in the dark and
under illumination. Illumination leads to an increase
in the electron concentration. The electron mobilities
also increase since the screening of scattering centers
is enhanced. The values thus obtained agree well with
the experimental ones. The value of μn is somewhat
lower than the experimental Hall mobility of elec�
trons; this is caused by the limited accuracy of the
method by which the mobilities are determined.

3.3. Calculation of the Band Diagram of the Structures

By solving self�consistently the Schrödinger and
Poisson equations in a single�band effective�mass
approximation for a temperature of 4.2 K, we deter�
mined the profile of the conduction�band bottom, the
energy levels, and the electron wave functions [9, 10].

The wave functions ψn(z) and energies En of the
charge carriers were determined from the one�dimen�
sional Schrödinger equation in the effective�mass
approximation. This equation was solved using the
transfer matrix technique [12]. The potential energy
U(z) is the sum of the discontinuity in the energy of the
conduction�band bottom Uc(z), the electrostatic
potential (the Hartree potential) UH(z), and the
exchange–correlation potential Uxc(z). We have

Uc(z) = 490 meV in In0.52Al0.48As and Uc(z) = 0 in the
In0.53Ga0.47As quantum well [13–16]. The electron
effective mass was taken to be 0.075m0 and 0.041m0

(where m0 is the free�electron mass) in In0.52Al0.48As
and In0.53Ga0.47As, respectively [14–16]. The electro�
static potential was determined from the Poisson
equation. The difference in the In0.53Ga0.47As and
In0.52Al0.48As permittivities leads to the appearance of
an image potential. However, this difference does not
exceed 10%, and, thus, we did not take into account
the contribution of this effect to the potential energy.

The calculation results are shown in Fig. 5 for sam�
ples 773 and 786 in the dark and sample 786 under illu�
mination.

3.4. Photoconductivity Relaxation

As was noted above, all samples exhibited positive
persistent photoconductivity at low temperatures (see
Fig. 3). After switching the light off, the conductivity
decreased relaxing to its original value. The kinetics of
the photoconductivity relaxation in the samples under
study was investigated at 4.2 K. As an example, Fig. 7
shows the time dependence of the photoconductivity
in sample 786. This dependence can be well approxi�

mated by the formula σ(0) – σ(t) = Aln(1 + ) [17–20].

Parameter τ amounts to tens of seconds and decreases
with increasing temperature. This behavior corre�
sponds to the spatial separation of photoexcited
charge carriers. In the case under study, photogener�
ated electrons accumulate in the quantum well, and
holes escape to the substrate and the surface. The latter
fact leads to a reduction in the surface potential under
illumination (see Fig. 6c). The fact that holes escape to
the substrate causes partial flattening of the conduc�
tion band between the quantum well and the substrate.

t
τ
��

Table 3. Electron concentrations ni in quantum�confinement subbands 1 and 2, quantum mobility μq, and transport mobil�
ity μn obtained from Shubnikov–de Haas effect measurements in the dark and under illumination at 4.2 K

Sample
no.

Subband
no.

ni, 1012 cm–2

in the dark

ni, 1012 cm–2

under
illumination

μq, cm2 V–1 s–1 μn, cm2 V–1 s–1

in the dark under
illumination in the dark under

illumination

773
2 0.70 0.74 8300 – 21000 –

1 2.49 2.50 4300 – 23000 –

783
2 0.59 0.7 4400 5000 25000 32000

1 2.00 2.20 2200 3500 28000 35000

786 2 0.26 0.53 3200 5200 30000 36000

1 1.67 1.87 3200 5100 35000 44000

802 1 1.55 2.08 2100 2700 22000 40000
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3.5. Calculation of Electron Mobility Caused 
by Ionized�Impurity Scattering in the Case of Several 

Occupied Subbands

The transport mobility μn and quantum mobility μq

can be determined by solving the kinetic equation and

accounting for impurity scattering in the Born approx�
imation. Scattering theory for the case where several
subbands are occupied was set out in [21]. In the fol�
lowing, we describe the procedure for calculating the
transport relaxation times τn (and, thus, μn) and the
quantum relaxation times τq (and, thus, μq) of elec�
trons in the subbands in the case of ionized�impurity
scattering, taking into account intersubband transitions.

When several quantum�confinement subbands are
occupied, τt is determined by the following set of linear
equations:

(4)

Here, coefficients Pn(E) are the probabilities of the
corresponding intersubband transitions:

(5)

(6)
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where

 

and θ(x) is the Heaviside unit�step function.
The expression for the effective scattering potential

takes into account the distribution of ionized impurities:

(7)

where N(zi) is the three�dimensional concentration of
impurities at the point zi.

Since ionized impurities are screened by free elec�
trons from all occupied subbands, the matrix element
of the unscreened Coulomb potential

is related to the screening potential  via the
dielectric function as follows:

here, ε0 is the permittivity of free space, ε is the dielec�
tric function of the medium, and ψl(z) are the wave
functions of the subbands calculated simultaneously
with the energy�band diagram. In the random�phase
approximation, the dielectric function can be written
as follows:

(8)

q 2k 1 ϕcos–( )
1
2
��

, q ' k2 2kk ' ϕcos– k '
2+( )

1
2
��

,= =

k
2m* E En–( )

�
2

��������������������������

1
2
��

, k '
2m* E En '–( )

�
2

��������������������������

1
2
��

,= =
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are polarization components for T = 0, where Eij =
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Fermi wave vector corresponding to the Fermi energy
of the ith subband [22].

The transport mobility of electrons in the nth sub�
band is given by the expression
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Table 4. Quantum mobility μq and transport mobility μn calculated for samples 783 and 786 at T = 4.2 K in the dark and
under illumination

Experimental
conditions

Subband
no.

NSdH, 1012 cm–2

μq, cm2 V–1 s–1 μn, cm2 V–1 s–1

Experimental value

Sample 783

In the dark 2 0.59 3300 62900

1 2.0 1100 43300

Under illumination 2 0.74 5500 119000

1 2.2 1600 75100

Sample 786

In the dark 2 0.26 3900 72000

1 1.67 2100 86900

Under illumination 2 0.53 6700 183000

1 1.87 2700 138000
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at the Fermi level. This quantity is the inverse of the
weighted sum of all scattering probabilities, i.e.,

(12)

As an example, Table 4 presents the results of direct
calculations of the quantum and transport mobilities
for samples 783 and 786 assuming ionized�impurity
scattering and taking into account intersubband tran�
sitions. Experimental values of the electron concen�
trations in the subbands were used. According to Table 4,
both the electron concentrations and mobilities
increase noticeably under illumination. Direct calcu�
lations agree well with the mobilities determined from
the Shubnikov–de Haas effect measurements (see
Table 3). The transport mobilities are considerably
higher than the quantum mobilities. This fact is indic�
ative of the dominant role of small�angle electron scat�
tering, which is a feature typical of ionized�impurity
scattering. Furthermore, the calculated values of the
mobility are comparable to those determined experi�
mentally (the difference does not exceed ~50%), and
one may conclude that the contribution of scattering
by remote ionized impurities is still quite significant in
the structures under study. An additional contribution
arises from alloy scattering in the InGaAs channel.

4. CONCLUSIONS

We have studied the mobilities of electrons in iso�
morphic In0.53Ga0.47As quantum wells grown on InP
substrates. The highest electron mobility is observed in
quantum wells with a thickness of d = 16 nm. Data
obtained from Shubnikov–de Haas effect measure�
ments have been used to determine the quantum and
transport mobilities of electrons in the quantum�con�
finement subbands. We have also calculated these
mobilities theoretically for the case of ionized�impu�
rity scattering taking into account intersubband tran�
sitions. The calculation results agree well with the
experimental data. It has been shown that ionized�
impurity scattering is the dominant scattering mecha�
nism in the structures under study. At low tempera�
tures, positive persistent photoconductivity has been
observed. The kinetics of the photoconductivity relax�
ation demonstrate that it is caused by the spatial sepa�
ration of charge carriers.
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