3D Reconnection of Random Magnetic Fields

Yurii V. Dumin ${ }^{1,2,3}$ \& Boris V. Somov

Sternberg Institute,

dumin@pks.mpg.de, somov@sai.msu.ru

ABSTRACT

The problem of three-dimensional magnetic reconnection in random fields is of importance both in astrophysics and fusion science. As is known, a crucial ingredient of reconnection are the null points of the magnetic field, where the condition of the magnetic-flux freezing becomes broken. In the 2 D approximation, the null points have a universal topology of X-type, while much more diverse configurations are possible in the 3D situation. The case that was most studied before is the axially-symmetric fan-like structure (which is called also the "proper radial null"), i.e. "collision" of two oppositely-directed magnetic fluxes with subsequent outflow in the equatorial plane. On the other hand, the configurations with a finite number of the fan "vanes" (or the "improper radial nulls") were usually assumed to be the specific particular cases. However, the probability of occurrence of the various configurations was never calculated in a systematic way.
The aim of this report is to present a self-consistent evaluation of the above-mentioned probabilities in the potential field approximation. The basic results can be formulated as follows:
(i) The most likely case of the 3D reconnection (i.e., occurring with the dominant probability) is the six-tail structure, in which the magnetic field lines come out of the null point in 6 asymptotic mutually-orthogonal directions.
(ii) The axially-symmetric fan-type structure (with infinite number of vanes) is admissible but emerges with a very small probability.
(iii) The generic six-tail configuration possesses 4 "dominant" and 2 "recessive" asymptotic directions and, thereby, is approximately reduced at the sufficiently large scales to the well-known 2D structure of X-type. So, the specific 3D effects should manifest themselves, first of all, in the small-scale reconnection events.

$$
\begin{aligned}
& \text { Method of analysis } \\
& \text { (in the potential field approximation) } \\
& \text { B }=-\operatorname{grad} \psi
\end{aligned}
$$

$\psi(r, \theta, \varphi)=\sum_{j=0}^{\infty} \sum_{m=0}^{j} r^{j} p_{j}^{m}(\cos \theta)\left[g_{m} \cos (m \varphi)+b_{j m} \sin (m q)\right]$
\qquad If $a_{\text {in }}$
For the sake of simplicity, we shall restrict our consideration by the first N terms of the expansion. Therefore, the random fieitd will be realized in the N-dimensional parametric space.

$$
B_{r}=-\frac{\partial \psi}{\partial r}, \quad B_{\theta}=-\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad B_{\phi}=-\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi}
$$

The coefficient a_{00} is, of course, arbitrary


```
- In the 1st order with respect to }r\mathrm{ , we get:
    B _ { r } ^ { ( 1 ) } = - \{ a _ { 1 0 } \operatorname { c o s } \theta - ( 1 - \operatorname { c o s } ^ { 2 } \theta ) ^ { 1 / 2 } [ a _ { 1 1 } \operatorname { c o s } \varphi + b _ { 1 1 } \operatorname { s i n } \varphi ] \}
or a null point of the magnetic fied to take place at r=0, it is necessary tha
a}\mp@subsup{a}{10}{=}=\mp@subsup{a}{11}{}=\mp@subsup{b}{11}{}=0
-Therefore, any null point can be realized only in the subset of coefficients with
dimensionality not greater than N-3.
In the 2nd order with respect to r, we get:
B
```



```
B0
B _ { \varphi } ^ { ( 2 ) } = - 3 r \{ 2 \operatorname { s i n } \theta [ - a _ { 2 } \operatorname { s i n } ( 2 \varphi ) + b _ { 2 } \operatorname { c o s } ( 2 \varphi ) ] + \operatorname { c o s } \theta [ a _ { 1 } \operatorname { s i n } \varphi - b _ { 1 } \operatorname { c o s } \varphi ] \}
Forconciseness, we introcuced the following designations
a}=\mp@subsup{a}{21}{}/\mp@subsup{a}{20}{},\quad\mp@subsup{b}{1}{}=\mp@subsup{b}{21}{}/\mp@subsup{a}{20}{},\quad\mp@subsup{a}{2}{}=\mp@subsup{a}{22}{}/\mp@subsup{a}{20}{},\quad\mp@subsup{b}{3}{}=\mp@subsup{b}{22}{}/\mp@subsup{a}{20}{
```


Pictorial illustration

why probability of occurrence of the six-tail structure should be much greater than for the fan-type structure (contiguration of the magnetic field lines in the vertical planes remain always of the same saddle type)

$\left\{\begin{array}{l}\sin \left(2 \theta^{*}\left[-\frac{1}{2}+a_{2} \cos \left(2 \varphi^{*}\right)+b_{2} \sin \left(2 \varphi^{*}\right)\right]-\cos \left(2 \theta^{*}\right)\left[a_{1} \cos \varphi^{*}+b_{1} \sin \varphi^{*}\right]\right. \\ 2 \sin \theta^{*}\left[-a_{2} \sin \left(2 \varphi^{*}\right)+b_{2} \cos \left(2 \varphi^{*}\right)\right]+\cos \theta^{*}\left[a_{1} \sin \varphi^{*}-b_{1} \cos \varphi^{*}\right]=0\end{array}\right.$ - Yet another imp

$$
\left\{\begin{array}{l}
\theta^{*} \rightarrow \pi-\theta^{*} \\
\varphi^{*} \rightarrow \varphi^{*}+\pi
\end{array}\right.
$$

The magnetic field lines enter the null point or leave it) as oppositely directed pairs.
Therefore, the structures with an odd number of tails are propibitied.
herore, he stralues wh an oda nambero tais are prombed. In the most general case, the system of two equations with two unknown variables should
have a finite number of solutions $i(i . e$, a discrete set of magnetic field lines should rough the null point in the real physical space) As tom magnetic field lines should pass this number is equal to 6 .
Consequently, the most general type of topology of the 3 D null point (in the probabilistic ense) is a six-tail structure. It is realized in the subspace of coeeficients with dimension $\mathrm{N}-3$

