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Abstract—Steady-state temperature distributions in f lat conductors of different configurations with direct
electric current f lowing inside them are investigated. It is shown that the temperature distributions are deter-
mined not only by the properties of a material, but also by the characteristic dimensions of a conductor and
do not necessarily correlate with the current distributions. Criteria for the similarity between temperature dis-
tributions in geometrically identical f lat conductors are established.
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INTRODUCTION

Studying the distribution of current in a f lat con-
ductor with thickness τ much smaller than its linear
size often yields a solution that contains a singularity
in one or several points of the conductor [1–4]. This
singularity can be eliminated by correcting model
errors [5], but it is obvious that a conductor of com-
plex configuration can contain regions where the
current density will be much higher than in the rest of
the conductor.

According to the Joule–Lenz law, the maximum
amount of heat is obviously released in these regions,
so it is natural to assume that the conductor is heated
most in them. To qualitatively understand features of
the temperature distribution in such a situation, we
analytically investigated the case of a singularity in the
current distribution in a problem with cylindrical sym-
metry [6]. It was found that, although bulk heat con-
duction greatly smooths the nonuniformity of heat
release, thus making the temperature distribution dif-
ferent from the distribution of the released heat power,
the temperature maximum coincides with that of the
current density.

To study the temperature distributions when there
is no symmetry, we investigated several conductors
bent at different angles, and a conductor with a rectan-
gular cut. Figure 1 presents the current density distri-
butions in these conductors [4, 5], which show that the
current density grows sharply near their corners.
Unfortunately, the heat-conduction equation cannot
be solved analytically for such conductors, and
requires the use of numerical methods.

HEAT-CONDUCTION EQUATION 
IN DIMENSIONLESS VARIABLES

In solving the temperature distribution problem,
we considered that a heat distribution is affected by
both the bulk thermal conductivity and the heat
release from a conductor’s surface. The latter was
described using the Newton–Richmann law with the
effective heat-transfer coefficient in [7–9], which was
considered constant.

It was noted that in most metals, the temperature
dependence of the resistivity is described by a linear
function in a wide range of temperatures [10, 11]:

where α is the temperature resistance coefficient; θ is
the environmental temperature, which was assumed to
be constant; ρθ is the resistivity of a conductor material
at this temperature; and T is the desired conductor
temperature.

In light of these assumptions, the heat-conduction
equation can be written as [6]

, (1)

where ; β is the thermal conduc-
tivity coefficient; hT is the effective heat-transfer coef-
ficient; and τ is the conductor’s thickness.

Since the current distributions in geometrically
identical conductors are also the same, the distribu-
tions of the released heat energy will be similar when
the current densities of the investigated conductors
coincide. However, the redistribution of this energy
over a conductor is governed by the bulk thermal con-

( )θρ = ρ + α − θ1 ( ) ,T
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ductivity, which is described by the Fourier law. In
other words, it depends on the temperature gradient
and thus the characteristic sizes of the conductor.

To investigate the similarity between temperature
distributions, Eq. (1) was written in dimensionless
variables. According to the Buckingham Π theorem
[12], the number of these can be reduced to three:

(2)( )Π αΔ − Π − Π Π = −Π� �1 2 2,u u

where

(3)

Here, L and T are the characteristic length and tem-
perature, respectively; ΔΠ is the Laplacian in dimen-
sionless coordinates; ; ; and 

As expected, it follows from expressions (3) that the
shape of temperature distributions is affected by the

θ
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ρΠ = Π = Π = α
βτ β

22
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T
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Fig. 1. Normalized current density distributions j(x, y)/j∞ and current lines in the investigated conductors [4, 5]; j∞ is the current
density in the region infinitely remote from the inhomogeneity.
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characteristic sizes of the conductors. It can be seen
that parameter П1 is proportional to the squared char-
acteristic size of a conductor, but does not depend on
the current f lowing through it. This indicates that a
change in characteristic sizes of a conductor alters the
form of Eq. (2) and thus its solution.

In solving Eq. (2), we assumed the conductors to be
surrounded by a fully heat-insulating material from
their side walls and the outflow of heat through the
side walls to be zero. To use numerical methods, we
considered finite regions of a conductor and set their
boundaries in places where the current lines can be
considered uniform. Since the current and thus the
heat sources were uniformity distributed, we assumed
the temperature gradient to be negligible, i.e., New-
man conditions

(4)

to be specified over the entire boundary of the investi-
gated region of the conductor. Here, Ω is the investi-
gated region of the conductor in dimensionless coor-
dinates. According to [13], this was equivalent to the
functional minimization problem

(5)

which allowed us to solve it using the finite-element
method.

To use the latter, we considered all the investigated
regions to be obtained from the upper complex semi-
plane using conformal mapping [4, 5]. This allowed us
to choose triangulation points not inside the Ω region,
but in the corresponding semi-ring of the upper com-
plex semi-plane. This in turn enabled us to avoid diffi-
culties in selecting points at the boundary and to use
the same algorithm for all investigated regions.

A Delaunay triangulation was built using the
TRIANGLE program [14] and the resulting system of
linear equations was solved using the UMFPACK
library [15].

The solutions for aluminum conductors with thick-
ness τ = 10 μm and a current f lowing with a density of
j∞ = 50 A mm−2 are presented in Fig. 2. The ambient tem-
perature was θ = 26.6°C, and the parameters of the mate-
rial were ρ = 0.0292 Ω mm2 m−1; β = 226 W K−1 m−1;
hT = 49.6 W  K−1 m−2; and α = 0.0042 K−1. It can be
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seen that upon variation in characteristic size L, the
temperature distributions change strongly and the
temperature at the point with the maximum current
density can be either higher or lower than that of parts
of the conductor far from an inhomogeneity. In addi-
tion, the temperature spread in conductors with
smaller characteristic sizes is much smaller, so con-
ductors can appear to be uniformly heated when there
is insufficient accuracy of measurement.

EXPERIMENTAL
Temperature distributions were studied experi-

mentally using a SAT-S160 infrared thermograph that
provided both temperature distribution patterns and
temperatures at separate conductor points. The
achievable temperature measurement error was 2°С,
and the spatial resolution was 2.2 mrad.

The measured samples were a 1-cm-wide conduc-
tor bent at an angle of 90° and a conductor of the same
width with a rectangular gash where the extent of nar-
rowing was 2 mm. The conductors were made of
10-μm-thick aluminum foil with surfaces containing
traces of technological processing. According to the
calculations made at different radii of curvature, the
temperature of the interior angle in such conductors is
equal to or slightly exceeds the ones far from the bend.
In addition, we measured the temperatures of two
conductors in the form of strips 1.1 and 2 mm wide.

To bring the spectral characteristics of the conduc-
tors’ heat radiation closer to those of a black body, the
conductors were coated with paint based on carbon
black.

The conductors were heated by a direct electric
current induced by a standard Mastech DC HY3030E
power source that generated currents of up to 30 A.
The integral current f lowing through each conductor
was detected by a built-in digital device with an error
of up to 0.1 A. The maximum current through the
sample was limited by a constantan rheostat.

The heat-transfer coefficient was obtained empiri-
cally by assuming that in the stationary mode, the
temperature of a straight conductor without bends is
determined as

(6)

Knowing the conductor temperature, we can find the
heat-transfer coefficient:

(7)

This coefficient calculated for a 1.1-cm-wide strip was
found to be 49 ± 5.5 W K−1 m−2, which is qualitatively

θ

θ

ρ τ=
− αρ τ
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consistent with the heat-transfer coefficient for a con-
ductor with natural convection from above and below
[1]. This value, which is somewhat higher than the one
calculated, is explained by the investigated conductor

not being an absolutely black body. The measured
temperature can appear lower than the real tempera-
ture, resulting in high heat-transfer coefficients in the
calculations.

Fig. 2. Temperature distributions in geometrically similar conductors of different configurations.
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Figure 3 shows examples of heat patterns obtained
using an IR thermograph and the corresponding
numerical calculation data. For the conductor with a
gash, the current is 5 А; for the conductor bent at the
right angle, it is 7.1 А. Figure 4 shows experimental
and theoretical f lowing current dependences of the
temperature near the interior angle of the conductor
bent at a right angle and at the bypass center. The rel-
atively wide temperature spread in the interior angle is
related to the difficulty of focusing the device on the
interior angle of the conductor, so the temperature was
actually measured at some distance (about a millime-
ter) from it. This problem did not arise upon varying
the bypass temperature, since the device had the
option of searching for the maximum temperature
corresponding to the bypass center.

Experimental verification was performed mainly
because of a contradiction between the obtained theo-
retical data. It was aimed at qualitative testing of the
temperature distributions, rather than achieving
metrological accuracy. At the same time, we observed
both qualitative and quantitative (within 30%) coinci-
dence between the theory and experiment.

Measurements of the temperature of a 2-mm-thick
defect-free strip showed that it was heated to a tem-

perature of around 100°С by currents of 2.9–3 A.
Transferring heat to the wide part of a conductor
allowed us to transmit twice the current through a
bypass of the same width without breaking the bypass.

CONCLUSIONS

Our investigations showed that the steady-state
temperature distributions in f lat conductors are deter-
mined not only by the characteristics of a conductor’s
material, but by a conductor’s characteristic sizes as
well. It was established that the role of bulk thermal
conductivity grows considerably upon a reduction in
the characteristic conductor sizes, resulting in strong
redistribution of the temperature over a conductor. As
a result, the temperatures of the regions of the maxi-
mum heat power release can be even lower than those
of the regions where virtually no heat power is
released. This leads in particular to a situation where,
despite the presence of local defects that cause a sharp
rise in current density in a conductor (e.g., in a con-
ductor with a bypass), the conductors will not explode
if their characteristic sizes are small.

The obtained similarity criteria allow us to choose
the materials and conditions for cooling conductors to

Fig. 3. Heat patterns and numerical calculation.
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achieve physical similarity with a geometrical one. In
our opinion, this can be done mainly by changing the

heat-transfer coefficient; however, the engineering of
this variant is beyond the scope of our study.
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Translated by E. Bondareva

Fig. 4. Experimental and theoretical f lowing current
dependences of the temperature (a) at the bypass center
and (b) near the interior angle of the conductor bent at a
right angle.
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