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Many-circuit canard trajectories and their applications

S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov

Abstract. We study the case when two distinct curves of slow motion
in a two-dimensional relaxation system with cylindrical phase space inter-
sect each other in a generic way. We establish that the so-called canard
trajectories can arise in this situation. They differ from ordinary canard tra-
jectories in the following respect. The passage from the stable curve of
slow motion to the unstable one is performed via finitely many asymptot-
ically quick rotations of the phase point around the axis of the cylinder.
The results obtained are used in the asymptotic analysis of eigenvalues of
a boundary-value problem of Sturm–Liouville type for a singularly per-
turbed linear Schrödinger equation.

Keywords: singularly perturbed equation, many-circuit canard trajecto-
ries, asymptotics, boundary-value problems of Sturm–Liouville type.

§ 1. Statement of the problem and main result

The foundations of the asymptotic theory of relaxation oscillations in singularly
perturbed systems were laid down by Pontryagin and Mishchenko (see, for exam-
ple, [1]–[5] and the monograph [6]). It was shown in [7] that, under certain rather
general assumptions, every system of ordinary differential equations with a small
parameter in some derivatives is a C1-perturbation of the corresponding relay sys-
tem. Violation of these assumptions usually results in the appearance of canard
trajectories: stable-unstable one-dimensional manifolds of slow motions.

Canard trajectories were first discovered in 1978 by the French mathemati-
cians Francine Diener and Marc Diener using non-standard analysis. Then many
authors studied canard trajectories using this method (see [8] and the references
therein). This gave the impression that non-standard analysis is the most suitable
tool for studying such trajectories. However, it was shown in [7] and elsewhere
(see, for example, [9]–[11]) that canard trajectories in all possible situations admit
a standard description using the techniques of classical asymptotic analysis.

In this paper we consider situations when a two-dimensional autonomous system
of ordinary differential equations with a small parameter in one derivative has two
distinct curves of slow motion which intersect each other generically. The existence
of canard trajectories in such systems was first proved in [12], [13] using techniques
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of non-standard analysis. A standard version of these results is contained in [14].
Among the more recent papers on this theme, we mention [15]–[17].

We shall study the case of intersecting curves of slow motion in a two-dimensional
system with cylindrical phase space and establish the existence of many-circuit
canard trajectories in such systems.

The required relaxation system on the plane is assumed to be written as one
scalar equation

ε
dθ

dx
= f(x, θ, ε, µ), (1.1)

where ε and µ are small parameters: 0 < ε� 1 and |µ| � 1. Suppose that

f(x, θ, ε, µ) ∈ C∞([a, b]×R× [0, ε0]× [−µ0, µ0]), f(x, θ+T, ε, µ) ≡ f(x, θ, ε, µ)

for some a < b, ε0, µ0 > 0, T > 0 and make the following assumptions.

Condition 1.1. The equation f(x, θ, 0, 0) = 0 has exactly two solutions in the
rectangle Π0 = {(x, θ) : a 6 x 6 b, 0 < θ < T}:

θ = ϕj(x) ∈ C∞([a, b]), j = 1, 2. (1.2)

These curves are naturally referred to as curves of slow motion for the equa-
tion (1.1) at ε = 0, µ = 0.

Condition 1.2. There is a point x0 ∈ (a, b) such that

ϕ1(x0) = ϕ2(x0), ϕ1(x)− ϕ2(x) < 0 (> 0) for x− x0 < 0 (> 0).

Moreover, the following inequalities hold on the half-open interval a 6 x < x0:

(−1)jf ′θ(x, ϕj(x), 0, 0) > 0, j = 1, 2,

f(x, θ, 0, 0) < 0 for ϕ1(x) < θ < ϕ2(x),

f(x, θ, 0, 0) > 0 for 0 6 θ < ϕ1(x) and for ϕ2(x) < θ 6 T,

and the following inequalities hold on the half-open interval x0 < x 6 b:

(−1)jf ′θ(x, ϕj(x), 0, 0) < 0, j = 1, 2,

f(x, θ, 0, 0) < 0 for ϕ2(x) < θ < ϕ1(x),

f(x, θ, 0, 0) > 0 for 0 6 θ < ϕ2(x) and for ϕ1(x) < θ 6 T.

This condition means that the curves (1.2) when ε = µ = 0 are located as
in Fig. 1. We notice that since f is periodic with respect to θ, there is actually
a countable family of curves of slow motion. The pair of curves shown in Fig. 1 is
repeated periodically in the rectangles

Πn = {(x, θ) : a 6 x 6 b, nT < θ < (n+ 1)T}, n ∈ Z.

We further notice that the stable parts of these curves (the points where f ′θ < 0) are
shown by solid lines, and the unstable parts (where f ′θ > 0) by broken lines. Clearly,
at the point (x0, θ0), where θ0 = ϕ1(x0) = ϕ2(x0), we have f ′θ(x0, θ0, 0, 0) = 0.
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Figure 1

Figure 2. µ > 0 Figure 3. µ < 0

Condition 1.3. We assume that

ϕ′1(x0)− ϕ′2(x0) > 0, f ′µ(x0, θ0, 0, 0) > 0, f ′′θθ(x0, θ0, 0, 0) > 0. (1.3)

Conditions 1.1 and 1.2 along with the first inequality in (1.3) guarantee that
the intersection of the slow-motion curves (1.2) at the point (x0, θ0) is transversal.
The auxiliary parameter µ characterizes the ‘deviation’ from this singularity, which
occurs in a generic way because of the second inequality in (1.3). The third inequal-
ity in (1.3) is also a genericity condition. Finally, Conditions 1.1–1.3 together guar-
antee that the slow-motion curves, which are given by the equation f(x, θ, 0, µ) = 0,
evolve with respect to µ as shown in Figs. 2, 3.

We stress that all these conditions can be verified by local methods. Indeed,
suppose that the following relations hold at some point (x0, θ0), where a < x0 < b,
0 < θ0 < T :

f(x0, θ0, 0, 0) = f ′x(x0, θ0, 0, 0) = f ′θ(x0, θ0, 0, 0) = 0, f ′µ(x0, θ0, 0, 0) 6= 0. (1.4)

Consider the polynomial

P (λ) = p1λ
2 + p2λ+ p3,

p1 = f ′′θθ(x0, θ0, 0, 0), p2 = 2f ′′xθ(x0, θ0, 0, 0), p3 = f ′′xx(x0, θ0, 0, 0)
(1.5)
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and assume that it has two real roots λ1 > λ2. Then the standard theory of
branching [18] guarantees that the equation

f(x, θ, 0, 0) = 0

in a sufficiently small neighbourhood of x = x0 has two solutions θ = ϕj(x), j = 1, 2,
such that ϕ1(x0) = ϕ2(x0) = θ0, ϕ′1(x0) = λ1, ϕ′2(x0) = λ2. Therefore, choosing
the numbers a, b sufficiently close to x0 and replacing θ by −θ and µ by −µ in (1.1)
if necessary, we see that Conditions 1.1–1.3 hold. Conversely, Conditions 1.1–1.3
automatically guarantee that (1.4) holds and the polynomial (1.5) has two distinct
roots λ1 = ϕ′1(x0), λ2 = ϕ′2(x0).

Figure 4

It follows from Condition 1.2 that the curve

S0 = {(x, θ) : a 6 x 6 b, θ = ϕ1(x)} (1.6)

splits into a stable part (for x < x0) and an unstable part (for x > x0). Therefore
it is a canard trajectory of the degenerate equation f(x, θ, 0, 0) = 0. We call (1.6)
a zero-circuit canard trajectory. In general, n-circuit canard trajectories are defined
by the equalities

Sn = {(x, θ) : a 6 x 6 x0, θ = ϕ1(x)} ∪ {(x, θ) : x = x0, θ0 6 θ 6 θ0 + nT}
∪ {(x, θ) : x0 6 x 6 b, θ = ϕ1(x) + nT}, n ∈ N. (1.7)

These trajectories are characterized by the presence of a vertical interval

{(x, θ) : x = x0, θ0 6 θ 6 θ0 + nT}

which is passed instantaneously as x varies. Geometrically, this interval corresponds
to n full circuits of the point (x, θ) around the axis of the cylinder

C = {(x, θ) : a 6 x 6 b, 0 6 θ 6 T (mod T )}. (1.8)
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Figure 5

A visual impression of the trajectories (1.7) is given by Figs. 4 and 5 in the case
when n = 1.

By a canard trajectory of the original equation (1.1) we mean any solution whose
zero approximation as ε → 0 is the part of the curve (1.6) or (1.7) with x1 6
x 6 x2, where x1 ∈ [a, x0) and x2 ∈ (x0, b]. In particular, a canard trajectory
whose zero approximation includes the curve (1.7), is a solution (if it exists) of the
boundary-value problem for (1.1) with boundary conditions

θ
∣∣
x=a

= θ1, θ
∣∣
x=b

= θ2 + nT, (1.9)

where
0 6 θ1 < ϕ2(a), ϕ2(b) < θ2 6 T. (1.10)

The boundary-value problem (1.1), (1.9) is a convenient object of study because it
enables us to distinguish a unique n-circuit canard trajectory, thus giving a certain
strategy for ‘duck hunting’.

Before stating our main result, we enhance somewhat the curve (1.7). Namely,
consider the curve Γn = Sn ∪ Σ1 ∪ Σ2, where Σ1 is the closed vertical interval
connecting the points (a, θ1) and (a, ϕ1(a)), and Σ2 is the analogous interval with
endpoints (b, θ2 + nT ) and (b, ϕ1(b) + nT ). We also put

µn =
(2n+ 1)(ϕ′1(x0)− ϕ′2(x0)) + ϕ′1(x0) + ϕ′2(x0)− 2f ′ε(x0, θ0, 0, 0)

2f ′µ(x0, θ0, 0, 0)
. (1.11)

Theorem 1.1. Suppose that Conditions 1.1–1.3 and inequalities (1.10) hold. Fix
an arbitrary integer n > 0. Then for all sufficiently small ε > 0 there is a unique
value µn(ε), µn(0) = 0, of the parameter µ such that the boundary-value prob-
lem (1.1), (1.9) has a solution θ = θn(x, ε). Moreover, the curves

Γn(ε) = {(x, θ) : a 6 x 6 b, θ = θn(x, ε)} (1.12)

and the functions µn(ε) satisfy the limiting relations

lim
ε→0

Γn(ε) = Γn, lim
ε→0

µn(ε)
ε

= µn. (1.13)

This theorem was proved for n = 0 in [14]. A proof for n > 1 will be given in
the next section.
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§ 2. Proof of Theorem 1.1

2.1. Auxiliary constructions. A value µ = µn(ε), µn(0) = 0, of the parameter µ
such that the boundary-value problem (1.1), (1.9) is soluble, must exist for general
qualitative reasons. To see this, we fix a sufficiently small µ 6= 0 and consider the
solutions

θ = θj(x, ε, µ), j = 1, 2; θ1(a, ε, µ) = θ1, θ2(b, ε, µ) = θ2 + nT (2.1)

of the equation (1.1) for 0 < ε� 1.

Figure 6. µ > 0 Figure 7. µ < 0

First suppose that µ > 0. Then we conclude from (1.10) in view of the location
of the slow-motion curves (see Fig. 2) that the solutions (2.1) are of the form shown
in Fig. 6 (where we have put n = 1). Indeed, by the results in [19], the first
solution behaves as follows. As x increases, the solution first ‘falls’ onto the stable
‘slow’ curve, that is, it moves asymptotically quickly in an asymptotically small
neighbourhood of the ray θ = θ1 from the point (a, θ1) up to its intersection with
the curve mentioned. Then the motion occurs in the ε-neighbourhood of the ‘slow’
curve, and then we observe an abrupt exit (as described in [6], [7]) followed by
a quick motion along some vertical ray up to asymptotically large values of θ. The
situation for the second solution (2.1) is symmetric (see Fig. 6).

When µ < 0, the solutions (2.1) take the form shown (for n = 1) in Fig. 7. This
also follows from (1.10) in view of the mutual position of the slow-motion curves
(see Fig. 3). Using these facts and a simple continuity argument, we conclude that
there is at least one value µ = µn(ε), µn(0) = 0, such that the solutions (2.1)
coincide and, moreover, the corresponding curve (1.12) satisfies the first limiting
equality in (1.13). Thus, we only need to prove that the value µn(ε) is unique and
the second limiting equality in (1.13) holds.

Our description of the qualitative behaviour of the solutions (2.1) shows that,
as x increases or decreases, they continue into any fixed sufficiently small fixed
neighbourhoods of the points (x0, θ0), (x0, θ0 + nT ) respectively. These points can
be regarded as coinciding since the equation (1.1) is periodic. Therefore our first
task is to study this equation near the singular point (x0, θ0).
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For convenience, we write the equation (1.1) in so-called normal form near
(x0, θ0). This is done by making the change of variables

θ − ϕ1(x) = κ(η − ξ), θ − ϕ2(x) = κ(η + ξ), κ =

√
ϕ′1(x0)− ϕ′2(x0)
f ′′θθ(x0, θ0, 0, 0)

, (2.2)

which transforms the curves (1.2) into the lines η = ±ξ. Thus we obtain the
singularly perturbed equation

ε
dη

dξ
= γ(ξ, η)(η2 − ξ2) + µ∆1(ξ, η, ε, µ) + ε∆2(ξ, η, ε, µ), (2.3)

where the functions γ and ∆j , j = 1, 2, are smooth in a sufficiently small neigh-
bourhood of the origin and satisfy

γ(0, 0) = 1, ∆1(0, 0, 0, 0) =
2f ′µ(x0, θ0, 0, 0)
ϕ′1(x0)− ϕ′2(x0)

,

∆2(0, 0, 0, 0) =
2f ′ε(x0, θ0, 0, 0)− ϕ′1(x0)− ϕ′2(x0)

ϕ′1(x0)− ϕ′2(x0)
.

(2.4)

The equation (2.3) is called the normal form of (1.1). We shall study it for |ξ| 6 q
and |η| 6 r, where q, r > 0 are sufficiently small.

Put
µ = εµn + ε3/2δ (2.5)

in (2.3), where δ ∈ R is a parameter of order 1 (varying over a fixed compact set Ω),
which will later be used to ‘match’ the solutions (2.1). Then the normal form can
be written as

ε
dη

dξ
= γ(ξ, η)(η2 − ξ2) + ε∆(ξ, η, ε,

√
ε δ), (2.6)

where the remainder term

∆(ξ, η, ε, ν) =
1
ε

(
µ∆1(ξ, η, ε, µ) + ε∆2(ξ, η, ε, µ)

)∣∣
µ=εµn+εν

(2.7)

possesses the following property because of (1.11), (2.4):

∆(0, 0, 0, 0) = 2n+ 1. (2.8)

2.2. Main lemmas. We write

η = Fj(ξ, ε, δ), j = 1, 2, (2.9)

for the solutions of (2.6) that correspond to the functions

θ1(x, ε, µ)
∣∣
µ=εµn+ε3/2δ

, (θ2(x, ε, µ)− nT )
∣∣
µ=εµn+ε3/2δ

.

By the results in [19], they are defined for−q 6 ξ 6 −q0 and q0 6 ξ 6 q respectively,
where q0 > 0 is an arbitrary fixed sufficiently small number. Moreover, the following
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asymptotic representations for the solutions (2.9) as ε → 0 hold uniformly with
respect to ξ in these intervals and with respect to δ ∈ Ω:

Fj(ξ, ε, δ) = ξ + εa1(ξ, δ) + ε3/2a2(ξ, δ) +O(ε2), j = 1, 2, (2.10)

where

a1(ξ, δ) =
1−∆(ξ, ξ, 0, 0)

2ξγ(ξ, ξ)
, a2(ξ, δ) = −δ∆1(ξ, ξ, 0, 0)

2ξγ(ξ, ξ)
. (2.11)

We also notice that these representations remain valid after differentiation with
respect to δ.

The formulae (2.10) certainly do not hold as ξ → 0 since in this case (see (2.4),
(2.7), (2.8), (2.11)) we have

a1(ξ, δ) = −n
ξ

+ κ1 +O(ξ), a2(ξ, δ) =
κ2

ξ
+O(1), (2.12)

where

κ1 = −1
2
(
∆′

ξ(0, 0, 0, 0) + ∆′
η(0, 0, 0, 0)

)
+ n

(
γ′ξ(0, 0) + γ′η(0, 0)

)
,

κ2 = −1
2
δ∆1(0, 0, 0, 0).

(2.13)

However, they can be ‘adjusted’ for −q 6 ξ 6 −ελ1 and ελ1 6 ξ 6 q, where
λ1 = const ∈ (0, 1/2).

Lemma 2.1. As ε → 0, the following asymptotic formulae hold uniformly for
−q 6 ξ 6 −ελ1 (resp. ελ1 6 ξ 6 q) and δ ∈ Ω:

Fj(ξ, ε, δ) = ξ + εa1(ξ, δ) + ε3/2a2(ξ, δ) +O(ε2−3λ1), j = 1, 2. (2.14)

Proof. We shall establish the asymptotic formula (2.14) for j = 1 (the case j = 2
is treated similarly). To do this, we substitute the expression η = ξ + εa1(ξ, δ) +
ε3/2a2(ξ, δ) + z into (2.6). This yields the following equation for z:

ε
dz

dξ
= h(ξ, ε, δ)z + Φ(z, ξ, ε, δ) + ε2Ψ(ξ, ε, δ), (2.15)

where the functions h, Φ, Ψ satisfy the conditions

h(ξ, ε, δ) = h0(ξ) +O(ε/ξ), ε→ 0; h0(ξ) = 2ξ +O(ξ2), ξ → 0, (2.16)

Φ(0, ξ, ε, δ) ≡ ∂Φ
∂z

(0, ξ, ε, δ) ≡ 0,
∣∣∣∣∂Φ
∂z

(z, ξ, ε, δ)
∣∣∣∣ 6 M |z| for |z| 6 1, (2.17)

|Ψ(ξ, ε, δ)| 6 M

ξ2
. (2.18)

Here and in what follows we write M for various universal positive constants (inde-
pendent of ξ, ε and so on) whose exact values are irrelevant.
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We pass from the equation (2.15) to the integral equation

z(ξ, ε, δ) = z(−q, ε, δ) exp
[
1
ε

∫ ξ

−q

h(σ, ε, δ) dσ
]

+
1
ε

∫ ξ

−q

exp
[
1
ε

∫ ξ

σ

h(σ′, ε, δ) dσ′
][

Φ(z, σ, ε, δ) + ε2Ψ(σ, ε, δ)
]
dσ,

(2.19)
where (see (2.10))

z(−q, ε, δ) = F1(−q, ε, δ) + q − εa1(−q, δ)− ε3/2a2(−q, δ) = O(ε2). (2.20)

Using the properties (2.16)–(2.18) and (2.20), the requirement λ1 < 1/2 and the
inequality

1
ε

∫ ξ

−q

exp
[
1
ε

∫ ξ

σ

h(σ′, ε, δ) dσ′
]
dσ 6

M

|ξ|
,

which follows from (2.16), we easily see that the operator generated by the right-
hand side of (2.19) maps some ball with centre zero and radius of order ε2−3λ1 in
the space C([−q,−ελ1 ]) to itself and this map is a contraction (with constant of
contraction of order ε2−4λ1). Hence there is a unique function z(ξ, ε, δ) which is
smooth with respect to all variables, belongs to the ball mentioned, and is a solution
of the desired equation. �

In addition to the lemma just proved, we notice that the formulae (2.14) can be
differentiated with respect to δ. This is verified by an analysis of the linear integral
equation for ∂z/∂δ, which is similar to (2.19). The calculations are easy and we
omit them.

At the next step we perform the changes η =
√
ε v, ξ =

√
ε τ in the equa-

tion (2.6), bringing it into the form

dv

dτ
= γ(

√
ε τ,

√
ε v)(v2 − τ2) + ∆(

√
ε τ,

√
ε v, ε,

√
ε δ). (2.21)

Putting ε = 0 in (2.21) and using (2.4), (2.8), we arrive at the model equation

dv

dτ
= v2 − τ2 + 2n+ 1. (2.22)

We discuss separately how to choose the particular solutions of (2.22) that corre-
spond to the canard trajectories. To do this, we consider the more general equation

dv

dτ
= v2 − τ2 + α (2.23)

with a parameter α ∈ R. By [14], it has two special solutions v = v−(τ, α) and
v = v+(τ, α) defined on the intervals −∞ < τ 6 −τ and τ 6 τ < +∞ respectively,
where τ > 0 is sufficiently large, and possess the following properties:

v−(τ, α) = τ +
∞∑

k=1

β2k−1

τ2k−1
as τ → −∞, β1 = −α− 1

2
,

v+(τ, α) = −v−(−τ, α)

(2.24)
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(we do not give explicit formulae for β2k−1 with k > 2 since they are not used in
what follows). The relations (2.24) show that these solutions are analogous to the
stable manifold η = ξ, ξ < 0, and the unstable manifold η = ξ, ξ > 0, of slow
motions for the equation (2.6).

We say that the solutions v = v±(τ, α) of (2.23) are conjugate for some α if there
is a solution u(τ, α) 6≡ 0 of the auxiliary linear equation

d2u

dτ2
+ (α− τ2)u = 0 (2.25)

such that
v−(τ, α) = v+(τ, α) = v0(τ, α) def= − 1

u(τ, α)
d

dτ
u(τ, α). (2.26)

The equalities (2.26) mean that the solution v−(τ, α) extends to the semi-axis
τ > −τ in such a way that this extension has finitely many singularities of pole type
(they correspond to the zeros of the solution u(τ, α) of (2.25)) on this semi-axis and,
most importantly, coincides with the solution v+(τ, α) for τ > τ . Hence we can
assert that the function v0(τ, α) in (2.26) is an analogue of a many-circuit canard
trajectory (the circuits correspond to the poles of this function).

Thus, it becomes clear that we are interested in those values of α where conjugacy
occurs. It follows from (2.24), (2.26) and the formula v = −u−1du/dτ , which relates
any pair of solutions of the equations (2.23) and (2.25), that these values coincide
with the spectrum of the boundary-value problem

d2u

dτ2
+ (α− τ2)u = 0, u→ 0 as τ → ±∞.

It is known [20] that this problem has eigenvalues αn = 2n + 1, n = 0, 1 . . . , and
the corresponding eigenfunctions are

un = exp
(
−τ

2

2

)
Hn(τ), Hn(τ) = (−1)n exp(τ2)

dn

dτn

(
exp(−τ2)

)
. (2.27)

We also notice that the Hn(τ) are the well-known Chebyshev–Hermite polynomials
having exactly n zeros τ1 < τ2 < · · · < τn on the whole axis τ ∈ R.

We now reconsider the equation (2.22) and, in accordance with the discussion
above, choose the particular solution

v0(τ) = − 1
un(τ)

d

dτ
un(τ), v0(−τ) = −v0(τ) (2.28)

of this equation, where un is the function in (2.27). This solution has exactly n poles
at the points τ1 < τ2 < · · · < τn. The graph of the function (2.28) for n = 2 is
sketched in Fig. 8.

Let vj = vj(τ, ε, δ), j = 1, 2, be the solutions of (2.21) with initial conditions

v1
∣∣
τ=−ελ1−1/2 = ε−1/2F1(−ελ1 , ε, δ), v2

∣∣
τ=ελ1−1/2 = ε−1/2F2(ελ1 , ε, δ), (2.29)

which are borrowed from the previous step. We arbitrarily fix some values τ∗ ∈
(−∞, τ1), τ∗∗ ∈ (τn,+∞) and seek the asymptotic behaviour of the solutions
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Figure 8

vj(τ, ε, δ), j = 1, 2, on the intervals −ελ1−1/2 6 τ 6 τ∗ and τ∗∗ 6 τ 6 ελ1−1/2

respectively in the form

vj = v0(τ) +
√
ε v1,j(τ, δ) + · · · , j = 1, 2. (2.30)

Substituting (2.30) into (2.21) and equating the coefficients of
√
ε, we arrive at

the following linear inhomogeneous equations for the functions v1,j :

dv1,j

dτ
= 2v0(τ)v1,j + g(τ), (2.31)

where

g(τ) =
(
v2
0(τ)− τ2

)(
τγ′ξ(0, 0) + v0(τ)γ′η(0, 0)

)
+ τ∆′

ξ(0, 0, 0, 0)

+ v0(τ)∆′
η(0, 0, 0, 0) + δ∆1(0, 0, 0, 0). (2.32)

When j = 1, we choose v1,1 to be the only solution of (2.31) which is bounded
as τ → −∞. This solution is determined by the equality

v1,1(τ, δ) =
∫ τ

−∞
exp

[∫ τ

σ

2v0(σ′) dσ′
]
g(σ) dσ. (2.33)

Indeed, using the asymptotic representation for v0(τ) (see (2.24) with α = 2n+ 1),
we see from (2.32), (2.33) that

v1,1(τ, δ) = κ1 +O

(
1
τ

)
, τ → −∞, (2.34)

where κ1 is the constant in (2.13). When j = 2, we similarly have

v1,2(τ, δ) = −
∫ +∞

τ

exp
[∫ τ

σ

2v0(σ′) dσ′
]
g(σ) dσ,

v1,2(τ, δ) = κ1 +O

(
1
τ

)
, τ → +∞.

(2.35)

The following lemma gives a rigorous meaning to these constructions.
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Lemma 2.2. Suppose that the parameter λ1 belongs to the interval (1/3, 1/2).
Then the following asymptotic representations as ε→ 0 hold on the closed intervals
τ ∈ [−ελ1−1/2, τ∗] and τ ∈ [τ∗∗, ελ1−1/2] respectively :

vj(τ, ε, δ) = v0(τ) +
√
ε v1,j(τ, δ) + ε3/2−3λ1Rj(τ, ε, δ),

|Rj |+
∣∣∣∣∂Rj

∂δ

∣∣∣∣ 6 M

(
un((−1)jελ1−1/2)

un(τ)

)2

+ ε3λ1−1/2M(|τ |+ 1), j = 1, 2.

(2.36)

Proof. As in the proof of Lemma 2.1, we consider only the case j = 1. Substituting
the expression v = v0 +

√
εv1,1 + z into (2.21), we obtain the following equation

for z (an analogue of (2.15)):

dz

dτ
= h(τ, ε, δ)z + Φ(z, τ, ε, δ) + εΨ(τ, ε, δ), (2.37)

where the functions h, Φ, Ψ satisfy the conditions

h(τ, ε, δ) = 2v0(τ) +O
(√
ε(τ2 + 1)

)
, Φ(0, τ, ε, δ) ≡ ∂Φ

∂z
(0, τ, ε, δ) ≡ 0,∣∣∣∣∂Φ

∂z
(z, τ, ε, δ)

∣∣∣∣ 6 M |z| for |z| 6 1, |Ψ(τ, ε, δ)| 6 M(|τ |+ 1)2
(2.38)

uniformly with respect to τ ∈ [−ελ1−1/2, τ∗] and δ ∈ Ω. By (2.29), the equa-
tion (2.37) must be endowed with the initial condition

z(−ελ1−1/2, ε, δ) = ε−1/2
[
F1(−ελ1 , ε, δ)−

√
ε v0(−ελ1−1/2)− εv1,1(−ελ1−1/2, δ)

]
.

(2.39)
Using the representations (2.12), (2.14), (2.24), (2.34) and the requirement λ1 ∈
(1/3, 1/2), we see from (2.39) that

z(−ελ1−1/2, ε, δ) = O(ε3/2−3λ1),
∂z

∂δ
(−ελ1−1/2, ε, δ) = O(ε3/2−3λ1). (2.40)

Our further analysis proceeds by passing from the Cauchy problem (2.37), (2.39)
to the corresponding integral equation

z(τ, ε, δ) = z(−ελ1−1/2, ε, δ) exp
[∫ τ

−ελ1−1/2
h(σ, ε, δ) dσ

]
+

∫ τ

−ελ1−1/2
exp

[∫ τ

σ

h(σ′, ε, δ) dσ′
][

Φ(z, σ, ε, δ) + εΨ(σ, ε, δ)
]
dσ.

(2.41)

Using (2.38), (2.40) and the bounds∫ τ

−ελ1−1/2
exp

[∫ τ

σ

h(σ′, ε, δ) dσ′
]
(|σ|+ 1)k dσ 6 M(|τ |+ 1)k−1, k = 0, 1, 2,

exp
[∫ τ

σ

h(σ′, ε, δ) dσ′
]

6 M

(
un(σ)
un(τ)

)2

, σ 6 τ,
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which follow from the first equality (2.38), we see that the operator generated by
the right-hand side of (2.41) maps a certain set K ⊂ C([−ελ1−1/2, τ∗]) of the form

K =
{
z(τ) : |z(τ)| 6 Mε3/2−3λ1

(
un

(
−ελ1−1/2

)
un(τ)

)2

+ εM(|τ |+ 1)
}

to itself and this map is a contraction (with constant of contraction of order ε2−4λ1).
Thus the equation (2.41) has a unique solution z(τ, ε, δ) ∈ K. It is also easy to
prove that ∂z/∂δ ∈ K. �

Here is a plan of what follows. Take the solution v1(τ, ε, δ) and extend it (in
several steps) with respect to τ beyond the point τ = τn. More precisely, the
function v1(τ, ε, δ) will be defined only on intervals of the form

[τ∗, τ1 − ελ2 ], [τk + ελ2 , τk+1 − ελ2 ], k = 1, . . . , n− 1, [τn + ελ2 , τ∗∗],

where τk are the zeros of the polynomial Hn(τ) and λ2 > 0 is a constant. When
we pass from τ = τk − ελ2 to τ = τk + ελ2 , the argument becomes non-local:
the phase point (x, θ1(x, ε, µ))

∣∣
µ=εµn+ε3/2δ

leaves the neighbourhood of (x0, θ0),
makes a full circuit around the axis of the cylinder (1.8) (see the explanation in the
previous section) and, after reducing θ modulo T , returns to the neighbourhood of
the singular point (x0, θ0) where the change of variables (2.2) acts.

At the final step, that is, after extending the function v1(τ, ε, δ) up to the value
τ = τ∗∗, we uniquely determine the reserved parameter δ from the equation

v1(τ∗∗, ε, δ) = v2(τ∗∗, ε, δ). (2.42)

We now begin the process of extension of v1(τ, ε, δ). Consider the interval
[τ∗, τ1 − ελ2 ], where λ2 = const ∈ (0, 1/3). We stress that the properties (2.36)
of the remainder R1 certainly do not hold on this interval because v0(τ) → +∞
as τ → τ1 − 0. More precisely, by (2.27), (2.28) and the equalities un(τ1) =
u′′n(τ1) = 0, we have an asymptotic expansion of the form

v0(τ) =
1

τ1 − τ
+

∞∑
k=1

sk(τ1 − τ)k, τ → τ1 − 0. (2.43)

For the function v1,1(τ, δ) we obtain from (2.32), (2.33), (2.43) that

v1,1(τ, δ) = −γ′η(0, 0)
ln(τ1 − τ)
(τ1 − τ)2

+
ω0(δ)

(τ1 − τ)2
+O

(
1

τ1 − τ

)
, τ → τ1− 0, (2.44)

where ω0(δ) is a smooth function of δ, whose explicit expression is irrelevant at this
stage (its dependence on δ will be clarified below).

Thus we arrive at the following assertion.

Lemma 2.3. On the interval τ∗ 6 τ 6 τ1 − ελ2 we have an asymptotic represen-
tation

v1(τ, ε, δ) = v0(τ) +
√
ε v1,1(τ, δ) + ε1−λ2 ln2 1

ε
R1(τ, ε, δ), ε→ 0, (2.45)

where

|R1(τ, ε, δ)|+
∣∣∣∣∂R1

∂δ
(τ, ε, δ)

∣∣∣∣ 6
M

(τ1 − τ)2
. (2.46)
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Proof. We again consider the equation (2.37), where the function Φ has the old
properties but h, Ψ are now such that

h(τ, ε, δ) = 2v0(τ) +O

(√
ε

ln(τ1 − τ)
(τ1 − τ)2

)
, |Ψ| 6 M

ln2(τ1 − τ)
(τ1 − τ)4

(2.47)

uniformly in τ ∈ [τ∗, τ1 − ελ2 ] and δ ∈ Ω. We pass from (2.37) to an integral
equation (an analogue of (2.41)) written for the initial moment τ = τ∗ with initial
condition

z(τ∗, ε, δ) = ε3/2−3λ1R1(τ∗, ε, δ) = O(ε)

(see (2.36)). The properties (2.47) along with the condition λ2 < 1/3 and the
inequality

exp
[∫ τ

σ

h(σ′, ε, δ) dσ′
]

6 M

(
τ1 − σ

τ1 − τ

)2

, σ 6 τ,

which follows from the asymptotic formula for h (see (2.47)), guarantee that the
contracting mapping principle is applicable to this integral equation on some subset
K in C([τ∗, τ1 − ελ2 ]) of the form

K =
{
z(τ) : |z(τ)| 6 M

ε1−λ2 ln2(1/ε)
(τ1 − τ)2

}
. �

At the next step we pass from τ = τ1 − ελ2 to τ = τ1 + ελ2 . This is the most
difficult step and, as already mentioned, the argument becomes non-local. The
phase point (x, θ1(x, ε, µ))

∣∣
µ=εµn+ε3/2δ

first ‘comes off’ the singular point (x0, θ0) at
a distance of order 1 (the rigorous meaning of this will be explained in Lemma 2.4).
Then it moves quickly to some location at a close (but still of order 1) distance
from (x0, θ0 + T ) and, finally, arrives at an asymptotically small neighbourhood of
the point (x0, θ0 + T ) (this process is described in Lemma 2.5).

We now realize the programme outlined above. The extension of the function
v1(τ, ε, δ) beyond the point τ = τ1 − ελ2 is done by the change of variable

ξ =
√
ε τ1 −

1
2
γ′η(0, 0)ε ln

1
ε

+ εs. (2.48)

Performing it in the normal form (2.6), we arrive at the equation

dη

ds
=

[
γ(ξ, η)(η2 − ξ2) + ε∆(ξ, η, ε,

√
ε δ)

]∣∣
ξ=
√

ε τ1−(1/2)γ′η(0,0)ε ln(1/ε)+εs
. (2.49)

By our constructions above, it must be endowed with the initial condition

η
∣∣
s=s0(ε)

= η(ε, δ), (2.50)

where

s0(ε) = −ελ2−1/2 +
1
2
γ′η(0, 0) ln

1
ε
, η(ε, δ) =

√
ε v1(τ1 − ελ2 , ε, δ). (2.51)

We begin the asymptotic study of the solution η(s, ε, δ) of the Cauchy prob-
lem (2.49), (2.50) by finding the asymptotic behaviour of the initial condition η(ε, δ)
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in (2.50) as ε→ 0. Therefore in what follows we always assume that the parameter
λ2 satisfies

1
4
< λ2 <

1
3
. (2.52)

In view of (2.52), we substitute the expression (2.45) into the second equal-
ity (2.51) and use the properties (2.43), (2.44), (2.46). After some calculation we
obtain that the following formulae hold uniformly in δ ∈ Ω as ε→ 0:

η(ε, δ) = ε1/2−λ2 +
(
λ2γ

′
η(0, 0) ln

1
ε

+ ω0(δ)
)
ε1−2λ2 +O

(
ε3/2−3λ2 ln2 1

ε

)
,

∂η

∂δ
(ε, δ) = ω′0(δ)ε

1−2λ2 +O

(
ε3/2−3λ2 ln2 1

ε

)
.

(2.53)

We first consider the equation

dη

ds
= γ(0, η)η2, (2.54)

which results from (2.49) with ε = 0, and its special solution η0(s) > 0 that is
determined for all negative s of sufficiently large modulus by the equation

Y (η) def= −1
η
− γ′η(0, 0) ln |η|+

∫ η

0

[
1

γ(0, σ)σ2
−

1− γ′η(0, 0)σ
σ2

]
dσ = s (2.55)

and admits the following asymptotic expansion:

η0(s) = −1
s
− γ′η(0, 0)

ln(−s)
s2

+O

(
ln2(−s)
s3

)
, s→ −∞. (2.56)

Then the solution of the Cauchy problem (2.54), (2.50) is given by the formulae

η = η0(s+ s(ε, δ)), s(ε, δ) = Y (η(ε, δ))− s0(ε). (2.57)

We also notice that in accordance with (2.51), (2.53) and the explicit expression
for Y (η) (see (2.55)), the following asymptotic formulae for the function s(ε, δ)
as ε→ 0 hold uniformly with respect to δ ∈ Ω:

s(ε, δ) = ω0(δ) +O

(
ε1/2−λ2 ln2 1

ε

)
,

∂ s

∂δ
(ε, δ) = ω′0(δ) +O

(
ε1/2−λ2 ln2 1

ε

)
.

(2.58)

Before stating rigorous results on the asymptotic behaviour of the solution
η(s, ε, δ) of the problem (2.49), (2.50), we introduce another piece of notation.
Recall that the function γ(0, η) is defined only locally (on the closed interval |η| 6 r)
and γ(0, η) > 0 (since γ(0, 0) = 1). Fix an arbitrary value r∗ ∈ (0, r) and write
s∗(δ) for the root of the equation η0(s+ ω0(δ)) = r∗. The equalities (2.54), (2.56)
and the properties of γ(0, η) listed above show that this root is unique and the
solution η0(s + ω0(δ)) is itself defined and monotone increasing from 0 to r∗ on
the semi-axis −∞ < s 6 s∗(δ).
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Lemma 2.4. Suppose that λ2 satisfies the requirements (2.52). Then the following
asymptotic representation as ε→ 0 holds on the closed interval s0(ε) 6 s 6 s∗(δ):

η(s, ε, δ) = η0(s+ ω0(δ)) + ε1/2−λ2 ln2 1
ε
R(s, ε, δ), (2.59)

where

|R(s, ε, δ)|+
∣∣∣∣∂R∂δ (s, ε, δ)

∣∣∣∣ 6
M

s2 + 1
. (2.60)

Proof. As usual, putting η = η0(s+ s(ε, δ))+ z in (2.49), we arrive at the following
equation for z:

dz

ds
= h(s, ε, δ)z + Φ(z, s, ε, δ) +

√
εΨ(s, ε, δ). (2.61)

By (2.56)–(2.58), the functions h, Φ, Ψ in (2.61) are such that

h(s, ε, δ) = h0(s, δ) +O

(
ε1/2−λ2 ln2 1

ε
(s2 + 1)−1

)
,

Φ(0, s, ε, δ) ≡ ∂Φ
∂z

(0, s, ε, δ) ≡ 0,
∣∣∣∣∂Φ
∂z

(z, s, ε, δ)
∣∣∣∣ 6 M |z| for |z| 6 1,

|Ψ(s, ε, δ)| 6 M

s2 + 1
,

(2.62)

where

h0(s, δ) =
d

dη

(
γ(0, η)η2

)∣∣
η=η0(s+ω0(δ))

=
d2η/ds2

dη/ds

∣∣∣∣
η=η0(s+ω0(δ))

. (2.63)

We endow the equation (2.61) with the initial condition z|s=s0(ε) = 0 and pass
from the resulting Cauchy problem to the integral equation

z(s, ε, δ) =
∫ s

s0(ε)

exp
[∫ s

σ

h(σ′, ε, δ) dσ′
][

Φ(z, σ, ε, δ) +
√
εΨ(σ, ε, δ)

]
dσ. (2.64)

Using (2.62), (2.63) and the bound

exp
[∫ s

σ

h(σ′, ε, δ) dσ′
]

6 M

(
dη0(s+ ω0(δ))/ds
dη0(σ + ω0(δ))/dσ

)
,

which follows from (2.63), we see that the right-hand side of (2.64) generates an
operator that maps to itself some set K ⊂ C([s0(ε), s∗(δ)]) of the form

K =
{
z(s) : |z(s)| 6 Mελ2

s2 + 1

}
(2.65)

and this map is a contraction (with constant of contraction of order ε2λ2−1/2). Thus
the solution of the Cauchy problem (2.49), (2.50) satisfies

η(s, ε, δ) = η0(s+ s(ε, δ)) + z(s, ε, δ), (2.66)

where z(s, ε, δ) ∈ K and ∂z/∂δ ∈ K. The relations (2.59), (2.60) are obtained
from (2.66) by expanding the first term η0(s+ s(ε, δ)) with respect to ε. �
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We mention that the formulae (2.59), (2.60) hold on a larger interval of values
of s. Namely, they hold for those s > s0(ε) which satisfy the a priori condition
|η(s, ε, δ)| 6 r. Taking this into account, we consider the equation

η(s, ε, δ) = r∗. (2.67)

Lemma 2.4 guarantees that it has a unique root s = s∗(ε, δ) with asymptotic
behaviour (uniformly with respect to δ ∈ Ω)

s∗(ε, δ) = s∗(δ) +O

(
ε1/2−λ2 ln2 1

ε

)
,

∂s∗
∂δ

(ε, δ) = s′∗(δ) +O

(
ε1/2−λ2 ln2 1

ε

)
, ε→ 0.

(2.68)

We further consider the point (ξ, η) = (ξ∗, r∗), where

ξ∗(ε, δ) =
√
ε τ1 −

1
2
γ′η(0, 0)ε ln

1
ε

+ εs∗(ε, δ), (2.69)

and pass from it to the point (x∗, θ∗) by reversing the change of variables (2.2).
Namely, x∗(ε, δ) is determined (as an implicit function) from the equation

ϕ1(x)− ϕ2(x) = 2κ ξ∗(ε, δ). (2.70)

Once x∗(ε, δ) is found, the component θ∗(ε, δ) is obtained from the formula

θ∗(ε, δ) =
ϕ1(x) + ϕ2(x)

2

∣∣∣∣
x=x∗(ε,δ)

+ κ r∗. (2.71)

Substituting the expansions (2.68), (2.69) into (2.70), (2.71) and making appro-
priate calculations, we obtain the following asymptotic representations (uniformly
with respect to δ ∈ Ω) as ε→ 0:

x∗(ε, δ) = x0 + x1,∗
√
ε+ x2,∗ε ln

1
ε

+ x3,∗(δ)ε+O

(
ε3/2−λ2 ln2 1

ε

)
,

∂x∗
∂δ

(ε, δ) = x′3,∗(δ)ε+O

(
ε3/2−λ2 ln2 1

ε

)
;

(2.72)

θ∗(ε, δ) = θ0 + κ r∗ +O(
√
ε ),

∂θ∗
∂δ

(ε, δ) = O(ε), (2.73)

where

x1,∗ =
2κ τ1

ϕ′1(x0)− ϕ′2(x0)
, x2,∗ = −

κ γ′η(0, 0)
ϕ′1(x0)− ϕ′2(x0)

,

x3,∗ =
2κ s∗(δ)

ϕ′1(x0)− ϕ′2(x0)
− 2(ϕ′′1(x0)− ϕ′′2(x0))κ2 τ2

1

(ϕ′1(x0)− ϕ′2(x0))3
.

These constructions give rise to the Cauchy problem with initial condition
θ|x=x∗ = θ∗ for the equation (1.1), (2.5). However, for technical reasons, it is
more convenient to study the equivalent Cauchy problem

dx

dθ
=

ε

f(x, θ, ε, εµn + ε3/2δ)
, x

∣∣
θ=θ∗(ε,δ)

= x∗(ε, δ). (2.74)
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We consider the resulting problem on the closed interval θ∗(ε, δ) 6 θ 6 T . It
follows from Conditions 1.2, 1.3 that f(x0, θ, 0, 0) > 0 for 0 6 θ 6 T , θ 6= θ0.
Combining this inequality with the expansions (2.72) and (2.73), we see that the
Cauchy problem depends regularly on the parameters ε and δ. Hence the solution
x(θ, ε, δ) of this problem satisfies the following asymptotic equalities (uniformly
with respect to δ ∈ Ω and θ ∈ [θ∗(ε, δ), T ]) as ε→ 0:

x(θ, ε, δ) = x∗(ε, δ) + ε

∫ θ

θ0+κ r∗

dσ

f(x0, σ, 0, 0)
+O(ε3/2),

∂x

∂δ
(θ, ε, δ) =

∂x∗
∂δ

(ε, δ) +O(ε3/2).

(2.75)

For θ > T we make the change of variable θ − T → θ in (2.74) and use the
periodicity of f with respect to θ. This yields the analogous Cauchy problem

dx

dθ
=

ε

f(x, θ, ε, εµn + ε3/2δ)
, x

∣∣
θ=0

= x(T, ε, δ), (2.76)

whose solution will also be denoted by x(θ, ε, δ). Since the problem (2.76) is regular,
we see from the already-known expansions (2.75) that the following equalities hold
(uniformly with respect to δ ∈ Ω and θ ∈ [0, θ], where θ = const ∈ (0, θ0)) as ε→ 0:

x(θ, ε, δ) = x∗(ε, δ) + ε

∫ T

θ0+κ r∗

dσ

f(x0, σ, 0, 0)

+ ε

∫ θ

0

dσ

f(x0, σ, 0, 0)
+O(ε3/2),

∂x

∂δ
(θ, ε, δ) =

∂x∗
∂δ

(ε, δ) +O(ε3/2).

(2.77)

At the next step we again pass from the variables (x, θ) to (ξ, η). Therefore,
assuming that the parameter θ belongs to the interval (θ0 − κ r∗, θ0), we consider
the equation

θ =
ϕ1(x) + ϕ2(x)

2

∣∣∣∣
x=x∗(θ,ε,δ)

− κ r∗ (2.78)

and write θ = θ∗∗(ε, δ) for its root in the interval 0 6 θ 6 θ. Then we put

x∗∗(ε, δ) = x(θ, ε, δ)
∣∣
θ=θ∗∗(ε,δ)

, ξ∗∗(ε, δ) =
1

2κ
(ϕ1(x)− ϕ2(x))

∣∣
x=x∗∗(ε,δ)

.

(2.79)
In this case we easily see that the point (ξ∗∗,−r∗), which corresponds to the point
(x∗∗, θ∗∗) in the coordinates (ξ, η), will be asymptotically close to (0,−r∗).

We discuss separately the asymptotic calculation of ξ∗∗(ε, δ). Substituting the
expansion (2.77) into (2.78), we see that, uniformly with respect to δ ∈ Ω,

θ∗∗(ε, δ) = θ0 − κ r∗ +O(
√
ε ),

∂θ∗∗
∂δ

(ε, δ) = O(ε)
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as ε→ 0. Combining this with (2.77) and (2.79), we obtain the following asymptotic
representations (uniformly with respect to δ ∈ Ω):

ξ∗∗(ε, δ) =
√
ε τ1 −

1
2
γ′η(0, 0)ε ln

1
ε

+ εs∗∗(ε, δ),

s∗∗(ε, δ) = s∗(δ) +
ϕ′1(x0)− ϕ′2(x0)

2κ

(∫ T

θ0+κ r∗

dσ

f(x0, σ, 0, 0)

+
∫ θ0−κ r∗

0

dσ

f(x0, σ, 0, 0)

)
+O

(
ε1/2−λ2 ln2 1

ε

)
,

∂s∗∗
∂δ

(ε, δ) = s′∗(δ) +O

(
ε1/2−λ2 ln2 1

ε

)
, ε→ 0.

(2.80)

When ξ > ξ∗∗(ε, δ) we must consider the Cauchy problem with initial condition
η|ξ=ξ∗∗ = −r∗ for the equation (2.6). Performing the change of variables (2.48),
we arrive at the Cauchy problem with initial condition

η
∣∣
s=s∗∗(ε,δ)

= −r∗ (2.81)

for the equation (2.49), where s∗∗(ε, δ) is the function in (2.80).
As above, to analyze the Cauchy problem (2.49), (2.81), we need a special solu-

tion η = η0(s) of (2.54). Consider the negative solution which is determined by the
equation (2.55) for all sufficiently large s > 0 and admits the following asymptotic
representation (an analogue of (2.56)):

η0(s) = −1
s
− γ′η(0, 0)

ln s
s2

+O

(
ln2 s

s3

)
, s→ +∞. (2.82)

Using the function (2.82), we now construct a solution of the Cauchy problem (2.54),
(2.81). It satisfies the following equalities (analogues of (2.57)):

η = η0(s+ s(ε, δ)), s(ε, δ) = Y (−r∗)− s∗∗(ε, δ). (2.83)

We easily see that the solution (2.83) is defined on the semi-axis [s∗∗(ε, δ),+∞)
and increases monotonically from −r∗ to 0 as s grows.

Before stating the next lemma, we consider the value

s1(ε) = ελ2−1/2 +
1
2
γ′η(0, 0) ln

1
ε

(2.84)

of the variable s. It is analogous to the value s = s0(ε) in (2.51).

Lemma 2.5. As above, assume that the parameter λ2 satisfies the requirements
(2.52). Then the solution η(s, ε, δ) of the Cauchy problem (2.49), (2.81) on the closed
interval s∗∗(ε, δ) 6 s 6 s1(ε) has the following asymptotic representation as ε→ 0:

η(s, ε, δ) = η0(s+ ψ0(δ)) + ε1/2−λ2 ln2 1
ε
R(s, ε, δ), (2.85)
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where

ψ0(δ) = Y (−r∗)− s∗(δ)

− ϕ′1(x0)− ϕ′2(x0)
2κ

(∫ T

θ0+κ r∗

dσ

f(x0, σ, 0, 0)
+

∫ θ0−κ r∗

0

dσ

f(x0, σ, 0, 0)

)
,

(2.86)

|R(s, ε, δ)|+
∣∣∣∣∂R∂δ (s, ε, δ)

∣∣∣∣ 6
M

s2 + 1
. (2.87)

Proof. As in the proof of Lemma 2.4, we substitute the expression η = η0(s +
s(ε, δ)) + z into (2.49) and obtain an equation of the form (2.61) for z, where
the functions h, Φ, Ψ still possess the properties (2.62), (2.63) (the solution η =
η0(s + ω0(δ)) must be replaced in (2.63) by η = η0(s + ψ0(δ)), where η0(s) and
ψ0(δ) are determined by the equations (2.82), (2.86)). We now pass from (2.61)
to an integral equation analogous to (2.64), where the initial moment s = s0(ε) is
replaced by s = s∗∗(ε, δ).

The analysis of the resulting equation repeats the corresponding fragment of the
proof of Lemma 2.4 almost verbatim. Namely, we easily see that the right-hand
side of the equation generates an operator which maps a certain set of functions
K ⊂ C([s∗∗(ε, δ), s1(ε)]) of the form (2.65) to itself and this map is a contraction.
Hence this operator has a unique fixed point z(s, ε, δ) such that

|z(s, ε, δ)|+
∣∣∣∣∂z∂δ (s, ε, δ)

∣∣∣∣ 6
Mελ2

s2 + 1
, s∗∗(ε, δ) 6 s 6 s1(ε). (2.88)

The final formula (2.85) and the bound (2.87) are obtained from the equality

η(s, ε, δ) = η0(s+ s(ε, δ)) + z(s, ε, δ)

using the bounds (2.88) and the representation

η0(s+ s(ε, δ)) = η0(s+ ψ0(δ)) +O

(
ε1/2−λ2 ln2 1

ε
(s2 + 1)−1

)
,

which follows from (2.80), (2.82), (2.83). �

At the next step we consider the equation (2.21) and endow it with the following
initial condition (borrowed from the previous step):

v
∣∣
τ=τ1+ελ2

= v(ε, δ) def= ε−1/2η(s, ε, δ)
∣∣
s=s1(ε)

. (2.89)

As above, we denote the solution of the resulting Cauchy problem by v1(τ, ε, δ).
We begin the study of this problem with an asymptotic analysis of the initial

condition (2.89). Using (2.82) and (2.84)–(2.87), we obtain the following asymptotic
equalities (uniformly with respect to δ ∈ Ω) as ε→ 0:

v(ε, δ) = −ε−λ2 +
(
λ2γ

′
η(0, 0) ln

1
ε

+ ψ0(δ)
)
ε1/2−2λ2 +O

(
ε1−3λ2 ln2 1

ε

)
,

∂ v

∂δ
(ε, δ) = ψ′0(δ)ε

1/2−2λ2 +O

(
ε1−3λ2 ln2 1

ε

)
.

(2.90)
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We seek the asymptotic behaviour of v1(τ, ε, δ) in the following form, which is
analogous to (2.30):

v1 = v0(τ) +
√
ε v1,1(τ, δ) + · · · . (2.91)

Here, as above, v0(τ) is the function (2.28) and v1,1 is a solution (analogous
to (2.31)) of the linear inhomogeneous equation

dv1,1

dτ
= 2v0(τ)v1,1 + g(τ) (2.92)

with inhomogeneous term (2.32).
We discuss separately the choice of a particular solution of (2.92). Notice from

(2.28) that the general solution of the corresponding homogeneous equation is of
the form

v1,1 =
c

u2
n(τ)

, c = const ∈ R, (2.93)

where un is the function in (2.27) and we have

v1,1 =
c

(u′n(τ1))2(τ − τ1)2
+O

(
1

τ − τ1

)
(2.94)

as τ → τ1 + 0. Furthermore, every solution v1,1(τ) of the equation (2.92) satisfies
the following asymptotic representation (analogous to (2.44)) in accordance with
(2.93), (2.94) and the explicit formula (2.32) for the inhomogeneous term g(τ):

v1,1 = −γ′η(0, 0)
ln(τ − τ1)
(τ − τ1)2

+
c

(τ − τ1)2
+O

(
1

τ − τ1

)
, τ → τ1 + 0, (2.95)

where the constant c may be arbitrary. Thus the choice of a concrete solution
of (2.92) is completely determined by the choice of this constant.

In what follows we assume that the constant c in (2.95) is equal to ψ0(δ) and
denote the corresponding solution of (2.92) by v1,1(τ, δ). Using (2.93), (2.94),
(2.32), we obtain the following equality for this solution:

v1,1(τ, δ) =
1

u2
n(τ)

{
(H)

∫ τ

τ1

u2
n(σ)v3

0(σ) dσ · γ′η(0, 0)

+
∫ τ

τ1

u2
n(σ)

[
(v2

0(σ)− σ2)σγ′ξ(0, 0)− σ2v0(σ)γ′η(0, 0) + σ∆′
ξ(0, 0, 0, 0)

+ v0(σ)∆′
η(0, 0, 0, 0) + δ∆1(0, 0, 0, 0)

]
dσ

}
+
ψ0(δ)(u′n(τ1))2

u2
n(τ)

,

(2.96)

where (H)
∫ τ

τ1
is the Hadamard regularization (see [6]) at the point τ = τ1.

The following assertion gives a rigorous meaning to the expansion (2.91).

Lemma 2.6. As ε → 0, we have an asymptotic representation of the form (2.45)
whose remainder term R1(τ, ε, δ) satisfies (2.46) on the closed interval τ1 + ελ2 6
τ 6 τ1, where τ1 = const in the interval (τ1, τ2).
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Proof. Putting v = v0 +
√
ε v1,1 + z in (2.21), where v1,1 is now given by the

formula (2.96), we obtain an equation of the form (2.37). Here the function Φ
possesses the same properties as in (2.38) and h, Ψ satisfy (2.47) with τ1 − τ
replaced by τ − τ1. As usual, we pass from (2.37) to the corresponding integral
equation, which now takes the form

z(τ, ε, δ) = z(τ1 + ελ2 , ε, δ) exp
{∫ τ

τ1+ελ2

h(σ, ε, δ) dσ
}

+
∫ τ

τ1+ελ2

exp
{∫ τ

σ

h(σ′, ε, δ) dσ′
}[

Φ(z, σ, ε, δ) + εΨ(σ, ε, δ)
]
dσ,

(2.97)

where the following asymptotic formula as ε → 0 holds uniformly with respect
to δ ∈ Ω because of (2.43), (2.90), (2.95), (2.96):

z(τ1 + ελ2 , ε, δ) def= v(ε, δ)− [v0(τ) +
√
ε v1,1(τ, δ)]

∣∣
τ=τ1+ελ2

= O

(
ε1−3λ2 ln2 1

ε

)
,

∂z

∂δ
(τ1 + ελ2 , ε, δ) = O

(
ε1−3λ2 ln2 1

ε

)
.

(2.98)

The analysis of the equation (2.97) uses the bounds

exp
[∫ τ

τ1+ελ2

h(σ′, ε, δ) dσ′
]

6
Mε2λ2

(τ − τ1)2
,

exp
[∫ τ

σ

h(σ′, ε, δ) dσ′
]

6 M

(
σ − τ1
τ − τ1

)2

, σ 6 τ,

which follow from the properties of the function h listed above, and the asymptotic
representations (2.98). Combining these facts and applying the contraction map-
ping principle in the usual manner, we conclude that the equation has a unique
solution

z = z(τ, ε, δ) : |z(τ, ε, δ)|+
∣∣∣∣∂z∂δ (τ, ε, δ)

∣∣∣∣ 6 M
ε1−λ2 ln2(1/ε)

(τ − τ1)2
. �

2.3. Conclusion of the justification of Theorem 1.1. Thus we have overcome
the main difficulty in the proof of Theorem 1.1. Namely, the solution v1(τ, ε, δ)
of (2.21) is extended beyond the singular point τ = τ1, that is, to the interval
τ1 + ελ2 6 τ 6 τ1. As a by-product, we obtained a series of basic Lemmas 2.1–2.6,
which enable us to extend v1(τ, ε, δ) further by induction.

Indeed, suppose that the solution v1(τ, ε, δ) has already been extended to the
interval τk + ελ2 6 τ 6 τk for some k, 1 6 k 6 n− 1, where τk = const ∈ (τk, τk+1)
and the extension can be written in the form (2.45), (2.46) with τ1 replaced by τk
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and with the function v1,1(τ, δ) given the following equality (an analogue of (2.96)):

v1,1(τ, δ) =
1

u2
n(τ)

{
(H)

∫ τ

τk

u2
n(σ)v3

0(σ) dσ · γ′η(0, 0)

+
∫ τ

τk

u2
n(σ)

[
(v2

0(σ)− σ2)σγ′ξ(0, 0)− σ2v0(σ)γ′η(0, 0) + σ∆′
ξ(0, 0, 0, 0)

+ v0(σ)∆′
η(0, 0, 0, 0) + δ∆1(0, 0, 0, 0)

]
dσ

}
+
ψk−1(δ)(u′n(τk))2

u2
n(τ)

.

(2.99)

Here ψk−1(δ) is a certain smooth function of δ, which is known from the previous
constructions. We stress that all these facts have already been established for k = 1.

To make the inductive step, we first consider the values of τ in the interval τk 6
τ 6 τk+1 − ελ2 . Notice that the function (2.99) satisfies the following asymptotic
formula as τ → τk+1 − 0:

v1,1(τ, δ) = −γ′η(0, 0)
ln(τk+1 − τ)
(τk+1 − τ)2

+
ωk(δ)

(τk+1 − τ)2
+O

(
1

τk+1 − τ

)
, (2.100)

where the quantity ωk(δ) is completely determined by the choice (2.99) of a par-
ticular solution of (2.92). Hence Lemma 2.3 can be applied. The only difference is
that the initial condition for the function

z = v1(τ, ε, δ)− v0(τ)−
√
ε v1,1(τ, δ)

at τ = τk is now a quantity of order ε1−λ2 ln2(1/ε) instead of ε, as at τ = τ∗.
But this difference does not affect the justification of the analogue of Lemma 2.3.
Hence, for τk 6 τ 6 τk+1 − ελ2 , we have

v1(τ, ε, δ) = v0(τ) +
√
ε v1,1(τ, δ) + ε1−λ2 ln2 1

ε
R1(τ, ε, δ),

|R1(τ, ε, δ)|+
∣∣∣∣∂R1

∂δ
(τ, ε, δ)

∣∣∣∣ 6
M

(τk+1 − τ)2
.

(2.101)

Further extension of v1(τ, ε, δ) is related to the change of variables (2.48). Per-
forming it in the normal form (2.6), we arrive at the Cauchy problem (2.49), (2.50)
with initial condition η(ε, δ) =

√
ε v1(τk+1 − ελ2 , ε, δ), which admits an asymptotic

representation of the form (2.53) (with ω0(δ) replaced by ωk(δ)) because of (2.100),
(2.101). We write s∗(δ) for the root of the equation η0(s+ωk(δ)) = r∗, where η0(s)
is the function in (2.56). Notice that this root is related to ωk(δ) by the equality

s∗(δ) = s̃− ωk(δ), (2.102)

where s̃ is the root of the equation η0(s) = r∗.
These facts guarantee that the hypotheses of Lemma 2.4 hold. Thus we obtain

the following asymptotic representation (an analogue of (2.59), (2.60)) for the solu-
tion η(s, ε, δ) of the Cauchy problem (2.49), (2.50) on the interval s0(ε) 6 s 6 s∗(δ),
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where s∗(δ) is the function (2.102):

η(s, ε, δ) = η0(s+ ωk(δ)) + ε1/2−λ2 ln2 1
ε
R(s, ε, δ),

|R(s, ε, δ)|+
∣∣∣∣∂R∂δ (s, ε, δ)

∣∣∣∣ 6
M

s2 + 1
.

(2.103)

Clearly, it follows from (2.103) that the equation (2.67) also admits a unique
root s = s∗(ε, δ) with asymptotic behaviour (2.68). Thus we can repeat verbatim
all the constructions described above, from the introduction of the point (ξ∗, r∗)
(see (2.69)) to the construction of (ξ∗∗,−r∗) (see (2.80)). This in turn means that
Lemma 2.5 still holds for the Cauchy problem (2.49), (2.81). By this lemma, the
solution η(s, ε, δ) of this problem has the following asymptotic representation (an
analogue of (2.85)–(2.87)):

η(s, ε, δ) = η0(s+ ψk(δ)) + ε1/2−λ2 ln2 1
ε
R(s, ε, δ),

|R(s, ε, δ)|+
∣∣∣∣∂R∂δ (s, ε, δ)

∣∣∣∣ 6
M

s2 + 1
, s∗∗(ε, δ) 6 s 6 s1(ε),

(2.104)

where η0(s) is the function (2.82) and ψk(δ) is given by the following formula in
view of (2.86) and (2.102):

ψk(δ) = Y (−r∗) + ωk(δ)− s̃

− ϕ′1(x0)− ϕ′2(x0)
2κ

(∫ T

θ0+κ r∗

dσ

f(x0, σ, 0, 0)
+

∫ θ0−κ r∗

0

dσ

f(x0, σ, 0, 0)

)
.

(2.105)

To complete the inductive step, we consider the interval τk+1 + ελ2 6 τ 6 τk+1,
where τk+1 = const ∈ (τk+1, τk+2) (when k = n − 1, we assume that τn = τ∗∗,
τn+1 = +∞). On this interval we must consider the Cauchy problem for (2.21)
with the following initial condition (analogous to (2.89)):

v
∣∣
τ=τk+1+ελ2

= v(ε, δ) def= ε−1/2η(s, ε, δ)
∣∣
s=s1(ε)

. (2.106)

It follows from the relations (2.104), (2.105) that the function v(ε, δ) in (2.106)
satisfies the asymptotic formulae (2.90) (with ψ0(δ) replaced by ψk(δ)). Hence the
problem (2.21), (2.106) can be analyzed using Lemma 2.6. By this lemma, the solu-
tion v1(τ, ε, δ) of this problem on the interval τk+1 + ελ2 6 τ 6 τk+1 admits a rep-
resentation (2.45) with remainder term (2.46) (where τ1 is replaced by τk+1) and
the function v1,1(τ, δ) is given by an equality analogous to (2.99) (with k replaced
by k + 1).

The inductive process described above enables us to extend the solution v1(τ, ε, δ)
to the interval τn + ελ2 6 τ 6 τ∗∗. We now make use of the reserved parameter δ,
namely, we determine it from the equation (2.42). For convenience of our subsequent
analysis, we write the required equation in the following form motivated by the
known asymptotic properties of the functions vj(τ, ε, δ), j = 1, 2, near the value
τ = τ∗∗ (see (2.36), (2.45), (2.46)):

v1,1(τ∗∗, δ)− v1,2(τ∗∗, δ) =
√
εR2(τ∗∗, ε, δ)− ε1/2−λ2 ln2 1

ε
R1(τ∗∗, ε, δ), (2.107)
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where

|Rj(τ∗∗, ε, δ)|+
∣∣∣∣∂Rj

∂δ
(τ∗∗, ε, δ)

∣∣∣∣ 6 M, j = 1, 2. (2.108)

We first study the equation

v1,1(τ∗∗, δ)− v1,2(τ∗∗, δ) = 0, (2.109)

which is obtained from (2.107) with ε = 0. More precisely, we shall prove that it is
linear in δ. To do this, we rewrite it in the following form using the formulae (2.28),
(2.35), (2.99) (with k = n):

δ∆1(0, 0, 0, 0)
u2

n(τ∗∗)

∫ +∞

τn

u2
n(σ) dσ +

ψn−1(δ)(u′n(τn))2

u2
n(τ∗∗)

+ const = 0. (2.110)

Here and in what follows we write const for quantities independent of δ.
By (2.110), we only need to study the dependence of ψk(δ), k = 0, 1, . . . , n− 1,

on δ. Notice that since (2.32) is a linear function of δ, so is the coefficient ω0(δ)
in (2.44). More precisely, it follows from (2.27), (2.28), (2.32), (2.33) that

ω0(δ) =
δ∆1(0, 0, 0, 0)

(u′n(τ1))2

∫ τ1

−∞
u2

n(σ) dσ + const. (2.111)

Combining this with (2.105), we conclude that

ψ0(δ) =
δ∆1(0, 0, 0, 0)

(u′n(τ1))2

∫ τ1

−∞
u2

n(σ) dσ + const. (2.112)

Now suppose that k > 1. Then we see from (2.99), (2.105) that the coefficient
ωk(δ) in the expansion (2.100) has the following structure:

ωk(δ) =
δ∆1(0, 0, 0, 0)
(u′n(τk+1))2

∫ τk+1

τk

u2
n(σ) dσ +

(u′n(τk))2

(u′n(τk+1))2
ωk−1(δ) + const.

Combining this with (2.105), (2.111), (2.112), we easily deduce that

ψn−1(δ) =
δ∆1(0, 0, 0, 0)

(u′n(τn))2

∫ τn

−∞
u2

n(σ) dσ + const. (2.113)

Substituting (2.113) into (2.110), we see that the equation (2.109) takes the form

δ∆1(0, 0, 0, 0)
∫ +∞

−∞
u2

n(σ) dσ + const = 0. (2.114)

Since ∆1(0, 0, 0, 0) 6= 0 (see (1.3), (2.4)), this equation has a unique solution δ = δ∗.
To complete the justification of Theorem 1.1, we shall assume that the compact

set Ω of all possible values of δ is chosen in such a way that the value δ = δ∗ is
an interior point of Ω. Then it follows in an obvious way from (2.108) that the
equation (2.107) has a unique solution in Ω:

δ = δ∗(ε), δ∗(ε) = δ∗ +O

(
ε1/2−λ2 ln2 1

ε

)
, ε→ 0.
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Substituting this solution into (2.5), we obtain the required value µ = µn(ε) such
that the boundary-value problem (1.1), (1.9) is soluble. Theorem 1.1 is proved.

In conclusion we consider the situation when at least one of the conditions (1.10)
does not hold. Since the equation (1.1) is T -periodic with respect to θ, there
is no loss of generality in assuming that the quantities θ1, θ2 in the boundary
conditions (1.9) belong to the intervals 0 6 θ < T and 0 < θ 6 T respectively.
Furthermore, we assume, for example, that

ϕ2(a) < θ1 < T, ϕ2(b) < θ2 6 T. (2.115)

Then for n = 0, the boundary-value problem (1.1), (1.9) has no solutions for all
values of µ whose modulus is sufficiently small.

Figure 9 Figure 10

Indeed, in this case the solutions (2.1) of (1.1) behave as shown at Fig 9 when x
increases or decreases respectively. The first solution asymptotically quickly reaches
the half-plane θ > T (the phase point ‘falls’ onto the corresponding stable curve
of slow motion) and stays there as x increases. The second solution lies in the
half-plane θ < T for all x (it cannot intersect the line θ = T by Condition 1.2).

Our proof of Theorem 1.1 shows that the following analogue of this theorem holds
for n > 1 and under the conditions (2.115). There is a unique value µ = µn(ε),
µn(0) = 0, such that the boundary-value problem (1.1), (1.9) is soluble. However,
the limit of the ratio µn(ε)/ε as ε → 0 is now equal to µn−1 instead of µn. The
form of the limiting curve Γn also changes (the number of circuits decreases by 1).
More precisely, in this case Γn consists of an (n− 1)-circuit canard trajectory

{(x, θ) : a 6 x 6 x0, θ = ϕ1(x) + T} ∪ {(x, θ) : x = x0, θ0 + T 6 θ 6 θ0 + nT}
∪ {(x, θ) : x0 6 x 6 b, θ = ϕ1(x) + nT},

a vertical interval {(x, θ) : x = a, θ1 6 θ 6 ϕ1(a) + T} and another interval with
endpoints (b, θ2 + nT ) and (b, ϕ1(b) + nT ).
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The same situation occurs in the case

0 6 θ1 < ϕ2(a), 0 < θ2 < ϕ2(b), (2.116)

when only the second condition in (1.10) does not hold. Namely, if n = 0 and
the inequalities (2.116) hold, then the boundary-value problem (1.1), (1.9) has no
solutions for all values of µ with sufficiently small modulus. But if n > 1, then an
analogue of Theorem 1.1 holds with the following changes. The limiting value µn

in (1.13) is replaced by µn−1 and the curve Γn is modified in an appropriate way
(as above, the number of its circuits is decreased by 1).

We now suppose that

ϕ2(a) < θ1 < T, 0 < θ2 < ϕ2(b). (2.117)

Then the boundary-value problems (1.1), (1.9) with n = 0 and n = 1 have no
solutions for all sufficiently small |µ|. The case n = 0 has already been discussed
and the behaviour of the solutions (2.1) in the case n = 1, as x increases or decreases,
is shown in Fig. 10. The first solution asymptotically quickly reaches the half-plane
θ > T (the phase point ‘falls’ onto the closest stable curve of slow motion) and
never leaves it. The second solution asymptotically quickly reaches the half-plane
θ < T and stays there as x decreases further.

Recalling the proof of Theorem 1.1 above, we conclude that an analogue of this
theorem holds for n > 2 under the conditions (2.117). We must now replace the
limiting value µn in (1.13) by µn−2. The curve Γn also changes its form. It now
consists of an (n−2)-circuit canard trajectory connecting the curves of slow motion
{(x, θ) : θ = ϕ1(x) + T, a 6 x 6 x0}, {(x, θ) : θ = ϕ1(x) + (n − 1)T, x0 6 x 6 b},
and of two vertical intervals

{(x, θ) : x = a, θ1 6 θ 6 ϕ1(a) + T},
{(x, θ) : x = b, ϕ1(b) + (n− 1)T 6 θ 6 θ2 + nT}.

§ 3. Other types of solutions

3.1. Description of results. In this section we study the behaviour of solutions
of (1.1) for those values of µ that have order ε but are different from µn(ε), n > 0.
Therefore we put

µ = µ∗(α),

µ∗(α) def=
α(ϕ′1(x0)− ϕ′2(x0)) + ϕ′1(x0) + ϕ′2(x0)− 2f ′ε(x0, θ0, 0, 0)

2f ′µ(x0, θ0, 0, 0)
,

(3.1)

in (1.1), where α = const ∈ R. Let θ(x, ε, α) be a solution of the resulting equation
with initial condition

θ
∣∣
x=a

= θ1, 0 6 θ1 < ϕ2(a). (3.2)

We first assume that α < 1. Then it was shown in [14] that the curve

Γ(ε, α) = {(x, θ) : a 6 x 6 b, θ = θ(x, ε, α)} (3.3)
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tends as ε→ 0 to the curve

Γ = {(x, θ) : a 6 x 6 x0, θ = ϕ1(x)} ∪ {(x, θ) : x0 6 x 6 b, θ = ϕ2(x)} ∪ Σ, (3.4)

where Σ is the closed vertical interval with endpoints (a, θ1), (a, ϕ1(a)). We stress
that this curve, whose form is shown in Fig. 11, is not a canard trajectory since it
contains no unstable parts of slow-motion curves.

Figure 11

We now assume that
2n− 1 < α < 2n+ 1 (3.5)

for some positive integer n. Then the following theorem holds.

Theorem 3.1. Under the conditions (3.5) and for all sufficiently small ε > 0, the
solution θ(x, ε, α) of the Cauchy problem (1.1), (3.1), (3.2) is defined on the closed
interval a 6 x 6 b. The limit of the curve (3.3) as ε→ 0 is the curve

Γ = {(x, θ) : a 6 x 6 x0, θ = ϕ1(x)} ∪ {(x, θ) : x = x0, θ0 6 θ 6 θ0 + nT}
∪ {(x, θ) : x0 6 x 6 b, θ = ϕ2(x) + nT} ∪ Σ, (3.6)

where Σ is the interval in (3.4).

The curve (3.6) is an n-circuit version of the curve (3.4). It is shown for n = 1
in Fig. 12. As in the case n = 0, it is not a canard trajectory.

In what follows we need an analogue of Theorem 3.1 for the Cauchy problem for
the equation (1.1), (3.1) with initial condition

θ
∣∣
x=b

= θ2 + nT, ϕ2(b) < θ2 6 T. (3.7)

Theorem 3.2. Suppose that the inequalities (3.5) hold. Then, for all sufficiently
small ε > 0, the solution θ = θ(x, ε, α) of the Cauchy problem (1.1), (3.1), (3.7)
is defined on the closed interval a 6 x 6 b and, as ε → 0, the corresponding
curve (3.3) tends to the curve

Γ = {(x, θ) : x0 6 x 6 b, θ = ϕ1(x) + nT}
∪ {(x, θ) : x = x0, θ0 6 θ 6 θ0 + nT}
∪ {(x, θ) : a 6 x 6 x0, θ = ϕ2(x)} ∪ Σ. (3.8)

Here Σ is the closed interval connecting the points (b, θ2 +nT ) and (b, ϕ1(b)+nT ).
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Figure 12 Figure 13

The limiting curve (3.8) for n = 1 is shown in Fig. 13. Unlike the two previous
cases, it contains no stable fragments of slow-motion curves and, therefore, it is not
a canard trajectory.

3.2. Proofs of Theorems 3.1 and 3.2. A principal role in the justification of
Theorem 3.1 is played by the choice of a particular solution of the model equa-
tion (2.23). We have already mentioned the result in [14] that, for all negative τ
of sufficiently large modulus, this equation has a unique solution v = v−(τ, α) with
asymptotic behaviour (2.24). This is the solution to be studied in what follows.

It turns out that the function v−(τ, α) can be extended to the whole axis τ ∈ R
except for finitely many singularities of pole type. To see this, we fix the solution

u(τ, α) = |τ |(α−1)/2 exp
{
−τ

2

2
−

∫ τ

−∞

[
v−(σ, α)− σ +

α− 1
2σ

]
dσ

}
(3.9)

of the linear equation (2.25). This solution is defined for all negative τ of sufficiently
large modulus. By (2.24), we have

u(τ, α) = |τ |(α−1)/2 exp
(
−τ

2

2

)[
1 +O

(
1
τ2

)]
, τ → −∞. (3.10)

We now extend the solution (3.9) to the whole axis τ ∈ R and denote the extension
again by u(τ, α). Then the solution v−(τ, α) of (2.23) also extends to the whole
axis (except for the zeros of u(τ, α)) by the formula

v−(τ, α) = − 1
u(τ, α)

d

dτ
u(τ, α). (3.11)

To establish additional properties of the function (3.11), we need some informa-
tion about the solution u(τ, α). Therefore we shall use the following assertion.

Lemma 3.1. Suppose that the inequalities (3.5) hold. Then the solution u(τ, α)
has exactly n zeros τ1(α) < τ2(α) < · · · < τn(α) on the whole axis τ ∈ R and
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satisfies the following asymptotic formula (which can be differentiated with respect
to τ ) as τ → +∞:

u(τ, α) =
2−α/2

√
2π

Γ(−α/2 + 1/2)
τ−(α+1)/2 exp

(
τ2

2

)[
1 +O

(
1
τ2

)]
, (3.12)

where Γ(z) is the gamma function.

Proof. By making the changes of variables

τ =
s√
2
, β = −α

2
(3.13)

in the equation (2.25), we bring it into the canonical form

d2u

ds2
−

(
β +

s2

4

)
u = 0. (3.14)

We shall use special solutions (see [20]) U(β, s) and V (β, s) of the resulting equation.
The first solution satisfies the following asymptotic formula as s→ +∞:

U(β, s) = s−β−1/2 exp
(
−s

2

4

)[
1− (β + 1/2)(β + 3/2)

2s2

+
(β + 1/2)(β + 3/2)(β + 5/2)(β + 7/2)

2 · 4s4
− · · ·

]
(3.15)

and is uniquely determined by this requirement. The second solution is given by
the equality

V (β, s) =
1
π

Γ
(
β +

1
2

)[
U(β, s) sin(πβ) + U(β,−s)

]
. (3.16)

It has the following asymptotic representation as s→ +∞:

V (β, s) =

√
2
π
sβ−1/2 exp

(
s2

4

)[
1 +

(β − 1/2)(β − 3/2)
2s2

+
(β − 1/2)(β − 3/2)(β − 5/2)(β − 7/2)

2 · 4s4
+ · · ·

]
. (3.17)

To establish the asymptotic behaviour of U(β, s) as s → −∞, we let s tend
to +∞ in (3.16) and use (3.15), (3.17). This yields that

U(β, s) = − sin(πβ)|s|−β−1/2 exp
(
−s

2

4

)[
1 +O

(
1
s2

)]
+

√
2π

Γ(β + 1/2)
|s|β−1/2 exp

(
s2

4

)[
1 +O

(
1
s2

)]
, s→ −∞. (3.18)

For V (β, s) we similarly deduce from the equality (see [20])

V (β,−s) = V (β, s) sin(πβ) +
1
π

Γ
(
β +

1
2

)
cos2(πβ)U(β, s)
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that

V (β, s) = sin(πβ)

√
2
π
|s|β−1/2 exp

(
s2

4

)[
1 +O

(
1
s2

)]
+

1
π

Γ
(
β +

1
2

)
cos2(πβ)|s|−β−1/2 exp

(
−s

2

4

)[
1 +O

(
1
s2

)]
, s→ −∞.

(3.19)
Recall that in view of (3.10), (3.13), we are interested in the solution u = u(β, s)

of (3.14) with prescribed asymptotic behaviour

u(β, s) = 2β/2+1/4|s|−β−1/2 exp
(
−s

2

4

)[
1 +O

(
1
s2

)]
, s→ −∞. (3.20)

Using (3.18) and (3.19), we easily see that this solution can be expressed in terms
of U(β, s) and V (β, s) by the formulae

u(β, s) = 2β/2+1/4

[
π

Γ(β + 1/2)
V (β, s)− U(β, s) sin(πβ)

]
= 2β/2+1/4U(β,−s).

(3.21)
By the conditions (3.5) and the formulae (3.13), the parameter β lies in the

interval
− 1

2
− n < β <

1
2
− n. (3.22)

We shall now prove that, for these values of β, the function (3.21) has exactly n
zeros on the whole axis s ∈ R.

First, we note that, as β changes, new zeros of u(β, s) can arise only from +∞
(their bifurcation from −∞ is impossible because (3.20) implies that u(β, s) > 0
for all negative s of sufficiently large modulus). Furthermore, using the formula

u(β, s)
∣∣
β=1/2−n

= 2−(n−1)(−1)n−1 exp
(
−s

2

4

)
Hn−1

(
s√
2

)
, (3.23)

which follows from (3.21), we see that u(β, s) has exactly n− 1 zeros on the whole
axis when β = 1/2− n.

A bifurcation of the next zero of u(β, s) from +∞ occurs at

β =
1
2
− n− ν, 0 < ν � 1. (3.24)

Indeed, it follows from (3.15), (3.17) and (3.21) that

u(β, s) = 2β/2+1/4

{ √
2π

Γ(β + 1/2)
sβ−1/2 exp

(
s2

4

)[
1 +O

(
1
s2

)]
− sin(πβ)s−β−1/2 exp

(
−s

2

4

)[
1 +O

(
1
s2

)]}
, s→ +∞. (3.25)

Then we substitute (3.24) into (3.25) and use the well-known property

Γ(−(n− 1)− ν) ∼ (−1)n

ν(n− 1)!
, ν → 0,
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along with the fact that the asymptotic representations (3.15), (3.17) can be dif-
ferentiated with respect to s. This yields that for all ν, 0 < ν � 1, the equation
u(1/2 − n − ν, s) = 0 has a unique root s = sn(ν) on the semi-axis s > s, where
s > 0 is a sufficiently large constant, and we have sn(ν) → +∞ as ν → +0. In
the first approximation, this root coincides with the second positive root of the
equation s2n−1 exp(−s2/2) =

√
2π ν(n− 1)! .

To summarize, it follows from the analysis above that the total number of roots
of the equation (3.21) in the case (3.24) is equal to n. Indeed, by (3.23) this equation
has n − 1 zeros asymptotically close to the roots of the polynomial Hn−1(s/

√
2),

and there is another root tending to +∞ as ν → +0.
For every fixed value of β in the interval (3.22), no new zeros of u(β, s) arise and

no old zeros disappear. To see this, we consider the asymptotic representation

u(β, s) = 2β/2+1/4

√
2π

Γ(β + 1/2)
sβ−1/2 exp

(
s2

4

)[
1+O

(
1
s2

)]
, s→ +∞, (3.26)

which follows from (3.25), and take into account that 1/Γ(β+1/2) 6= 0 in this case.
Therefore the sign of u(β, s) is preserved for all sufficiently large values of s. This
in turn implies that no bifurcations (creating zeros from +∞ or annihilating them
at +∞) can occur for these values of β.

We now return to the original equation (2.25) and note that its solutions u(τ, α)
are given by the equality

u(τ, α) = u(β, s)
∣∣
β=−α/2, s=

√
2 τ
. (3.27)

It follows from the analysis above that the function (3.27) has exactly n zeros on
the whole axis τ ∈ R. By (3.13) and (3.26), it also admits the required asymptotic
representation (3.12) as τ → +∞. �

We now proceed to prove Theorem 3.1. Note in this connection that the solution
θ(x, ε, α) of the problem (1.1), (3.1), (3.2) first behaves like the solution θ1(x, ε, µ)
in (2.1). Namely, as x grows, the phase point (x, θ(x, ε, α)) ‘falls’ asymptotically
quickly onto the stable curve θ = ϕ1(x) of slow motion and then moves in the
ε-neighbourhood of this curve until arriving at a sufficiently small neighbourhood
of the singular point (x0, θ0).

As above, we write the equation (1.1) in the normal form (2.3) near the point
(x0, θ0). Using the equation (3.1), we arrive at the following equation (an analogue
of (2.6)):

ε
dη

dξ
= γ(ξ, η)(η2 − ξ2) + ε∆(ξ, η, ε, α) (3.28)

with the remainder

∆(ξ, η, ε, α) =
1
ε

(
µ∆1(ξ, η, ε, µ) + ε∆2(ξ, η, ε, µ)

)∣∣
µ=µ∗(α)ε

,

∆(0, 0, 0, α) ≡ α.
(3.29)

The function θ(x, ε, α) induces a solution (an analogue of (2.9))

η = F(ξ, ε, α) (3.30)
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of the equation (3.28) on the interval −q 6 ξ 6 −q0, where q0 > 0 is sufficiently
small. Moreover, by the results in [19], the following asymptotic formula holds
uniformly with respect to ξ ∈ [−q,−q0] and α ∈ [2n− 1, 2n+ 1]:

F(ξ, ε, α) = ξ + εa1(ξ, α) +O(ε2), ε→ 0, (3.31)

where, by (3.29),

a1(ξ, α) =
1−∆(ξ, ξ, 0, α)

2ξγ(ξ, ξ)
, a1(ξ, α) =

1− α

2ξ
+ κ0 +O(ξ), ξ → −0,

κ0 = −1− α

2
(
γ′ξ(0, 0) + γ′η(0, 0)

)
− 1

2
(
∆′

ξ(0, 0, 0, α) + ∆′
η(0, 0, 0, α)

)
.

(3.32)

The relations (3.31), (3.32) guarantee that an analogue of Lemma 2.1 is applica-
ble to the solution (3.30). Therefore we fix λ1 ∈ (1/3, 1/2). By Lemma 2.1, the fol-
lowing asymptotic equality (an analogue of (2.14)) holds uniformly for−q6 ξ6−ελ1

and 2n− 1 6 α 6 2n+ 1 as ε→ 0:

F(ξ, ε, α) = ξ + εa1(ξ, α) +O(ε2−3λ1). (3.33)

Our further analysis is related to the changes η =
√
ε v, ξ =

√
ε τ , which trans-

form the equation (3.28) into the following analogue of (2.21):

dv

dτ
= γ(

√
ε τ,

√
ε v)(v2 − τ2) + ∆(

√
ε τ,

√
ε v, ε, α). (3.34)

We write v(τ, ε, α) for the solution of this equation with initial condition

v
∣∣
τ=−ελ1−1/2 = ε−1/2F(−ελ1 , ε, α) (3.35)

and seek its asymptotic representation in the form analogous to (2.30):

v = v−(τ, α) +
√
ε v1(τ, α) + · · · , (3.36)

where v−(τ, α) is the solution of (2.23) chosen above. The function v1(τ, α) in (3.36)
is defined by the following equality (an analogue of (2.33)):

v1(τ, α) =
∫ τ

−∞
exp

[∫ τ

σ

2v−(σ′, α) dσ′
]
g(σ, α) dσ, (3.37)

where

g(τ, α) =
(
v2
−(τ, α)− τ2

)(
τγ′ξ(0, 0

)
+ v−(τ, α)γ′η(0, 0)

)
+ τ∆′

ξ(0, 0, 0, α)

+ v−(τ, α)∆′
η(0, 0, 0, α). (3.38)

Using (3.37), (3.38) and the asymptotic representation (2.24), we easily see that

v1(τ, α) = κ0 +O

(
1
τ

)
, τ → −∞,

where κ0 is the constant in (3.32). This in turn implies that

ε−1/2F(−ελ1 , ε, α)−
(
v−(τ, α) +

√
ε v1(τ, α)

)∣∣
τ=−ελ1−1/2 = O(ε3/2−3λ1). (3.39)
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The resulting equality (3.39) guarantees that an analogue of Lemma 2.2 is appli-
cable to the solution of the Cauchy problem (3.34), (3.35). To use this lemma, we fix
an arbitrary τ∗ ∈ (−∞, τ1(α)), where τ1(α) is the first zero of u(τ, α). Thus we see
that the following asymptotic representation (as ε→ 0) of the solution v = v(τ, ε, α)
of the problem mentioned above holds uniformly with respect to τ ∈ [−ελ1−1/2, τ∗]
and α ∈ Ω, where Ω ⊂ (2n− 1, 2n+ 1) is an arbitrary compact set:

v(τ, ε, α) = v−(τ, α) +
√
ε v1(τ, α) + ε3/2−3λ1R(τ, ε, α),

|R| 6 M

(
u(−ελ1−1/2, α)

u(τ, α)

)2

+ ε3λ1−1/2M(|τ |+ 1)
(3.40)

(as above, we use the same letter M for various universal positive constants whose
exact values are irrelevant).

It is important to note that, by Lemma 3.1 and (3.11), the function v−(τ, α)
satisfies the following asymptotic equalities (analogues of (2.43)) at the points
τ1(α) < τ2(α) < · · · < τn(α):

v−(τ, α) =
1

τk(α)− τ
+O(τk(α)− τ), τ → τk(α), k = 1, . . . , n. (3.41)

The properties (3.41) enable us to use Lemmas 2.3–2.6 and extend the function
v(τ, ε, α) beyond the point τ = τn(α). As in the proof of Theorem 1.1, we suc-
cessively define this function on the closed intervals [τ∗, τ1(α) − ελ2 ], [τk(α) +
ελ2 , τk+1(α) − ελ2 ], k = 1, . . . , n − 1, [τn(α) + ελ2 , τ∗∗], where τ∗∗ is a constant
in the interval (τn(α),+∞) and the constant λ2 satisfies (2.52). When we pass
from the value τ = τk(α) − ελ2 to τ = τk(α) + ελ2 , the phase point (x, θ(x, ε, α))
makes one full circuit around the axis of the cylinder (1.8).

We omit the detailed analysis, which repeats the corresponding fragment of the
proof of Theorem 1.1 almost verbatim, and state the final result. In this case,
the following asymptotic equality (as ε → 0) holds uniformly with respect to τ ∈
[τn(α) + ελ2 , τ∗∗] and α ∈ Ω:

v(τ, ε, α) = v−(τ, α) +
√
ε v1(τ, α) + ε1−λ2 ln2 1

ε
R(τ, ε, α),

|R| 6 M

(τ − τn(α))2
.

(3.42)

Here, as in (3.40), v−(τ, α) is the function (3.11) and v1(τ, α) is a certain particular
solution of the equation

dv

dτ
= 2v−(τ, α)v + g(τ, α), (3.43)

where g(τ, α) is the function (3.38). This solution can be written in the form

v1(τ, α) =
1

u2(τ, α)

∫ τ

τ∗∗

u2(σ, α)g(σ, α) dσ +
ṽ(α)

u2(τ, α)
, (3.44)

where the coefficient ṽ(α) is known from the previous constructions and its explicit
expression is irrelevant (only its continuity with respect to α is important).
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When τ∗∗ 6 τ 6 ελ1−1/2, where λ1 ∈ (1/3, 1/2), we encounter the first new
aspects compared to the proof of Theorem 1.1. The solutions v±(τ, α) of (2.23) are
not conjugate in this case. Hence no equation of the form (2.24) holds for v−(τ, α)
as τ → +∞. By (3.11) and (3.12), we obtain instead that

v−(τ, α) = −τ +
α+ 1
2τ

+O

(
1
τ3

)
, τ → +∞. (3.45)

Combining (3.12) and (3.45) and using them in (3.38), (3.44), we conclude that the
solution (3.44) of the equation (3.43) satisfies the following asymptotic equality:

v1(τ, α) = κ0 +O

(
1
τ

)
, τ → +∞, (3.46)

where

κ0 = −1 + α

2
(
γ′ξ(0, 0)− γ′η(0, 0)

)
+

1
2
(
∆′

ξ(0, 0, 0, α)−∆′
η(0, 0, 0, α)

)
. (3.47)

The results (3.45)–(3.47) enable us to establish the following lemma.

Lemma 3.2. The solution (3.42) on the interval τ∗∗ 6 τ 6 ελ1−1/2 admits the
following asymptotic representation as ε→ 0:

v(τ, ε, α) = v−(τ, α) +
√
ε v1(τ, α) + ε1−λ2 ln2 1

ε
R(τ, ε, α), (3.48)

where the remainder R can be estimated as

|R(τ, ε, α)| 6 M

u2(τ, α)
+

ελ2

ln2(1/ε)
M(|τ |+ 1). (3.49)

Proof. Substituting the equality

v = v−(τ, α) +
√
ε v1(τ, α) + z

into (3.34), we arrive at the following equation (analogous to (2.37)) for finding z:

dz

dτ
= h(τ, ε, α)z + Φ(z, τ, ε, α) + εΨ(τ, ε, α), (3.50)

where, as in (2.38), the functions h, Φ, Ψ possess the properties

h(τ, ε, α) = 2v−(τ, α) +O
(√
ε(τ2 + 1)

)
,

Φ(0, τ, ε, α) ≡ ∂Φ
∂z

(0, τ, ε, α) ≡ 0,∣∣∣∣∂Φ
∂z

(z, τ, ε, α)
∣∣∣∣ 6 M |z| for |z| 6 1,

|Ψ(τ, ε, α)| 6 M(|τ |+ 1)2

(3.51)

uniformly with respect to τ ∈ [τ∗∗, ελ1−1/2] and α ∈ Ω. As usual, we endow the
equation (3.50) with initial conditions

z
∣∣
τ=τ∗∗

= ε1−λ2 ln2 1
ε
R(τ∗∗, ε, α),
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where R is the function in (3.42). As a result, we arrive at the integral equation

z(τ, ε, α) = ε1−λ2 ln2 1
ε
R(τ∗∗, ε, α) exp

[∫ τ

τ∗∗

h(σ, ε, α) dσ
]

+
∫ τ

τ∗∗

exp
[∫ τ

σ

h(σ′, ε, δ) dσ′
][

Φ(z, σ, ε, α) + εΨ(σ, ε, α)
]
dσ. (3.52)

The analysis of the equation (3.52) is based on the bounds∫ τ

τ∗∗

exp
[∫ τ

σ

h(σ′, ε, δ) dσ′
]
(|σ|+ 1)k dσ 6 M(|τ |+ 1)k−1, k = 0, 1, 2,

|R(τ∗∗, ε, α)| 6 M, exp
[∫ τ

σ

h(σ′, ε, δ) dσ′
]

6 M

(
u(σ, α)
u(τ, α)

)2

, σ 6 τ,

which follow from (3.42), (3.45)–(3.47), (3.51). The facts listed enable us to con-
clude that the operator generated by the right-hand side of (3.52) maps to itself
a certain subset K of C([τ∗∗, ελ1−1/2]) of the form

K =
{
z(τ) : |z(τ)| 6 M

u2(τ, α)
ε1−λ2 ln2 1

ε
+ εM(|τ |+ 1)

}
and this map is a contraction (with contraction constant of order ε1−λ2 ln2(1/ε)).
Hence the equation mentioned has a unique solution z(τ, ε, α) ∈ K. �

We further extend the solution θ(x, ε, α) with respect to x using the equa-
tion (3.28) along with the initial condition

η
∣∣
ξ=ελ1

=
√
ε v(τ, ε, α)

∣∣
τ=ελ1−1/2 . (3.53)

Let η = F(ξ, ε, α) be the solution of the resulting Cauchy problem. We first notice
that the function η = −ξ + εa1(ξ, α), where

a1(ξ, α) =
1 + ∆(ξ,−ξ, 0, α)

2ξγ(ξ,−ξ)
, (3.54)

satisfies (3.28) up to a discrepancy of order O(ε2/ξ2). Secondly, by (3.45)–(3.49)
and (3.54) we have

√
ε v(τ, ε, α)

∣∣
τ=ελ1−1/2 −

(
−ξ + εa1(ξ, α)

)∣∣
ξ=ελ1

= O(ε2−3λ1).

Using this and arguing as in the proof of Lemma 2.1, we easily deduce that the
following asymptotic representation (as ε→ 0) holds for the solution of the Cauchy
problem (3.28), (3.53) uniformly with respect to (ξ, α) such that ελ1 6 ξ 6 q and
α ∈ Ω:

F(ξ, ε, α) = −ξ + εa1(ξ, α) +O(ε2−3λ1). (3.55)

The equality (3.55) means that at ξ = q we arrive at an asymptotically small
neighbourhood of the slow-motion stable curve η = −ξ. When we pass from
(ξ, η) to the original coordinates (x, θ), the point (q,−q) is mapped to the point
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(x∗, ϕ2(x∗)+nT ), where x∗ > x0 is close to x0, and the curve η = −ξ is mapped to
the curve θ = ϕ2(x)+nT (we recall that n full circuits around the axis of the cylin-
der (1.8) were performed as x passed through the singular point x0). By the results
in [19], further motion of the phase point (x, θ(x, ε, α)) occurs in the asymptotically
small neighbourhood of the stable ‘slow’ curve {(x, θ) : x∗ 6 x 6 b, θ = ϕ2(x)+nT}
up to the final point x = b.

As a result of our asymptotic analysis, we conclude that the curve (3.3) tends to
the curve (3.6) as ε→ 0. Theorem 3.1 is proved.

We notice that Theorem 3.2 requires no separate proof since it reduces to Theo-
rem 3.1 by the changes x→ −x, θ → −θ. Then all the unstable manifolds of slow
motion become stable and vice versa. The function (3.1) remains the same because
the quantities ϕ′1(x0), ϕ′2(x0) are the roots of the polynomial in (1.5), which is
invariant under these changes.

To conclude, we note that analogues of Theorems 3.1, 3.2 hold in the cases
when the inequalities ϕ2(a) < θ1 < T and 0 < θ2 < ϕ2(b) hold in (3.2) and (3.7)
respectively. But then the number of circuits of the corresponding curves (3.6),
(3.8) decreases by one and the vertical closed intervals Σ in these curves are replaced
by Σ = {(x, θ) : x = a, θ1 6 θ 6 ϕ1(a)+T} in the first case and Σ = {(x, θ) : x = b,
ϕ1(b) + (n− 1)T 6 θ 6 θ2 + nT} in the second.

§ 4. Singularly perturbed spectral problems

4.1. The Schrödinger equation. It turns out that Theorems 1.1, 3.1, 3.2, which
were established above, can be applied in the asymptotic analysis of the spectrum of
boundary-value problems of Sturm–Liouville type for a singularly perturbed linear
Schrödinger equation. The corresponding result will be stated below.

Consider the following singularly perturbed spectral problem on a bounded inter-
val a 6 x 6 b:

−ε2 d
2u

dx2
+ q(x, ε)u = µu,

u
∣∣
x=a

cos θ1 − ε
du

dx

∣∣∣∣
x=a

sin θ1 = 0, u
∣∣
x=b

cos θ2 − ε
du

dx

∣∣∣∣
x=b

sin θ2 = 0.
(4.1)

Here ε > 0 is a small parameter, q(x, ε) ∈ C∞([a, b] × [0, ε0]), where ε0 > 0 is
sufficiently small, µ is the spectral parameter and the quantities θ1, θ2 satisfy the
conditions 0 6 θ1 < π, 0 < θ2 6 π.

The main restriction in our study of the problem (4.1) will be imposed on the
potential q0(x) = q(x, 0).

Condition 4.1. There are points x1 < x2 < · · · < xn in the interval (a, b) such
that

q0(xk) = q′0(xk) = 0, q′′0 (xk) > 0, k = 1, . . . , n;

q0(x) > 0 for x 6= xk, k = 1, . . . , n.
(4.2)

The relations (4.2) mean that the potential q(x, ε) for ε = 0 has n potential wells
at level zero and is positive at the other points of the interval a 6 x 6 b.
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To state the next restriction, we define the numbers

µk,i = q1(xk) + (2i+ 1)

√
1
2
q′′0 (xk), k = 1, . . . , n, i = 0, 1, . . . , (4.3)

where q1(x) = ∂q(x, ε)/∂ε
∣∣
ε=0

.

Condition 4.2. The numbers (4.3) are pairwise distinct.

It is known [21] that the eigenvalues of the boundary-value problem (4.1) form
a monotone increasing sequence

µ0(ε) < µ1(ε) < · · · < µj(ε) < · · · , (4.4)

which tends to +∞ as j →∞. Moreover, every eigenfunction uj(x, ε) corresponding
to the jth eigenvalue, has exactly j zeros on the interval (a, b). Let µj , j > 0, be
the sequence of numbers (4.3) arranged in increasing order.

Theorem 4.1. Suppose that Conditions 4.1, 4.2 hold and the constants θ1, θ2
in (4.1) are such that

0 6 θ1 <
π

2
+ arctan

√
q0(a),

π

2
− arctan

√
q0(b) < θ2 6 π. (4.5)

Then for every fixed j > 0 we have the following limit equality for the j th eigen-
value (4.4):

lim
ε→0

µj(ε)
ε

= µj . (4.6)

Proof. We pass to the polar coordinates (ρ, θ) in (4.1) by making the following
standard change of variables (see [21]):

ε
du

dx
= ρ cos θ, u = ρ sin θ. (4.7)

Then the equation for θ takes a form analogous to (1.1):

ε
dθ

dx
= cos2 θ − q(x, ε) sin2 θ + µ sin2 θ. (4.8)

We now discuss some properties of the equation (4.8) that follow from Condi-
tion 4.1 and will be used below. First, when ε = µ = 0 it has two slow-motion curves
θ = fk(x), k = 1, 2, of class C∞([a, b]) in the rectangle Π0 = {(x, θ) : a 6 x 6 b,
0 < θ < π}. They are given by the formulae

f1(x) =
π

2
− (−1)j arctan

√
q0(x), f2(x) =

π

2
− (−1)j+1 arctan

√
q0(x)

for xj 6 x 6 xj+1, j = 0, 1, . . . , n, where x0 = a, xn+1 = b.
(4.9)

The mutual position of these curves when n = 2 is shown in Fig. 14 (the stable
parts are shown by the solid lines and the unstable parts by the broken line).
Second, the curves (4.9) intersect each other in a generic way at the points (xk, π/2),
k = 1, . . . , n, and analogues of Conditions 1.1–1.3 hold in a neighbourhood of each
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Figure 14

intersection point. Third, the numbers (4.3) coincide with the quantities (1.11)
evaluated at n = i for every singular point x = xk.

We fix an arbitrary integer j > 0 and consider the jth eigenvalue (4.4). By the
results in [21] and (4.7), the boundary-value problem for the equation (4.8) with
boundary conditions

θ
∣∣
x=a

= θ1, θ
∣∣
x=b

= θ2 + πj, (4.10)

where θ1, θ2 are borrowed from (4.1), is soluble for µ = µj(ε). Hence the task of
justifying the limit relation (4.6) reduces to an asymptotic analysis of this boundary-
value problem.

Here is a plan of what follows. Consider integers k0, i0 such that

µj = µk0,i0 (4.11)

(the uniqueness of this pair of numbers is guaranteed by Condition 4.2). Then put

µ = εµk0,i0 + ε3/2δ (4.12)

in (4.8), where the parameter δ varies over an arbitrary fixed compact set Ω. Let
θ = θr(x, ε, δ), r = 1, 2, be the solutions of the resulting equation with initial
conditions

θ1(x, ε, δ)
∣∣
x=a

= θ1, θ2(x, ε, δ)
∣∣
x=b

= θ2 + πj.

The parameter δ in (4.12) will be chosen to ‘match’ these solutions near the point
x = xk0 .

We first consider the solution θ1(x, ε, δ). It follows from the first condition in (4.5)
and the location of the slow-motion curves (4.9) (see Fig. 14) that, as x grows, the
phase point (x, θ1(x, ε, δ)) ‘falls’ asymptotically quickly onto the stable curve of
slow motion

θ =
π

2
− arctan

√
q0(x), a 6 x < x1, (4.13)

and then moves in a neighbourhood of this curve to a point asymptotically close
to (x1, π/2).
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For every k, 1 6 k 6 n, k 6= k0, let jk be the cardinality of the set of those
numbers (4.3) that are smaller than (4.11). Then µk,i < µk0,i0 for i = 0, 1, . . . , jk−1
and µk,jk

> µk0,i0 . In particular, when k = 1 we have

µ1,j1−1 < µk0,i0 < µ1,j1 . (4.14)

Notice that the inequalities (4.14) are equivalent to relations of the form (3.1), (3.5)
(if we replace x0 by x1 and n by j1). Hence, under the condition (4.12), Theorem 3.1
is applicable in a neighbourhood of the point (x1, π/2).

By this theorem, the solution θ1(x, ε, δ) ‘comes off’ the manifold (4.13) near
x = x1. Then it moves asymptotically quickly in an asymptotically small neigh-
bourhood of the vertical interval {(x, θ) : x = x1, π/2 6 θ 6 π/2+πj1} and arrives
at the next stable curve of slow motion

θ =
π

2
− arctan

√
q0(x) + πj1, x1 < x < x2.

We argue further by induction. Suppose that for some k, k 6 k0 − 1, moving
in an asymptotically small neighbourhood of the curve

θ =
π

2
− arctan

√
q0(x) + π

k−1∑
s=1

js, xk−1 < x < xk, (4.15)

the phase point (x, θ1(x, ε, δ)) arrives at an asymptotically small neighbourhood
of the next singular point (

xk,
π

2
+ π

k−1∑
s=1

js

)
.

Then the following analogues of (4.14) hold by the definition of jk:

µk,jk−1 < µk0,i0 < µk,jk
.

Hence Theorem 3.1 is again applicable. By this theorem, the phase point ‘comes off’
the curve (4.15) at x=xk and then moves asymptotically quickly along the interval{

(x, θ) : x = xk,
π

2
+ π

k−1∑
s=1

js 6 θ 6
π

2
+ π

k∑
s=1

js

}
and arrives at the stable curve of slow motion

θ =
π

2
− arctan

√
q0(x) + π

k∑
s=1

js, xk < x < xk+1.

It follows from this recursive process that the curve (x, θ1(x, ε, δ)) can be extended
to any sufficiently small fixed neighbourhood of the point(

xk0 ,
π

2
+ π

k0−1∑
s=1

js

)
.
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A symmetric situation occurs in case of the solution θ2(x, ε, δ), but we now use
Theorem 3.2 instead of Theorem 3.1. Indeed, by the second condition in (4.5),
as x decreases, the phase point (x, θ2(x, ε, δ)) ‘falls’ onto the curve

θ =
π

2
+ arctan

√
q0(x) + πj, xn < x 6 b,

and, moving in an asymptotically small neighbourhood of this curve, arrives at
a neighbourhood of the singular point (xn, π/2 + πj). Then, by Theorem 3.2,
it moves quickly along the interval{

(x, θ) : x = xn,
π

2
+ πj − πjn 6 θ 6

π

2
+ πj

}
and continues a slow motion in an asymptotically small neighbourhood of the curve

θ =
π

2
+ arctan

√
q0(x) + πj − πjn, xn−1 < x < xn.

As in the previous case, we establish by induction that the curve (x, θ2(x, ε, δ))
can finally be extended to any fixed sufficiently small neighbourhood of the point(

xk0 ,
π

2
+ πj − π

n−k0−1∑
s=0

jn−s

)
.

These constructions reduce the problem of the solubility of the boundary-value
problem (4.8), (4.10) to analyzing the boundary-value problem for the equation
(4.8), (4.12) with boundary conditions

θ
∣∣
x=xk0−σ0

= θ1(xk0 − σ0, ε, δ), θ
∣∣
x=xk0+σ0

= θ2(xk0 + σ0, ε, δ). (4.16)

Here σ0 > 0 is a fixed sufficiently small constant and, by the constructions above
and the results in [19], the functions θ1(xk0−σ0, ε, δ) and θ2(xk0+σ0, ε, δ) satisfy the
following asymptotic representations (as ε → 0) uniformly with respect to δ ∈ Ω:

θ1(xk0 − σ0, ε, δ) =
π

2
− arctan

√
q0(xk0 − σ0) + π

k0−1∑
s=1

js +O(ε),

θ2(xk0 + σ0, ε, δ) =
π

2
+ arctan

√
q0(xk0 + σ0) + πj − π

n−k0−1∑
s=0

jn−s +O(ε).

(4.17)
These formulae can be differentiated with respect to δ. Furthermore, since the
equation (4.8) is π-periodic with respect to θ and we have

n∑
s=1
s 6=k0

js = j − i0,

the boundary conditions (4.16) admit a factorization modulo π. As a result, they
take the form

θ
∣∣
x=xk0−σ0

= θ1(ε, δ), θ
∣∣
x=xk0+σ0

= θ2(ε, δ) + πi0, (4.18)
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where, by (4.17),

θ1(ε, δ)
def= θ1(xk0 − σ0, ε, δ)− π

k0−1∑
s=1

js

=
π

2
− arctan

√
q0(xk0 − σ0) +O(ε),

θ2(ε, δ)
def= θ2(xk0 + σ0, ε, δ)− πj + π

n−k0−1∑
s=0

jn−s

=
π

2
+ arctan

√
q0(xk0 + σ0) +O(ε).

(4.19)

At the final step, we apply Theorem 1.1 to the boundary-value problem (4.8),
(4.12), (4.18). We stress that all the hypotheses of this theorem hold. In particular,
analogues of the inequalities (1.10) hold by (4.19). Thus there is a unique value
δ = δ(ε) ∼ 1, ε→ 0, such that the boundary-value problem is soluble. �

We now clarify the geometric meaning of our constructions. Let θj(x, ε) be
a solution of the boundary-value problem (4.8), (4.10). It follows from the justifi-
cation of Theorem 4.1 given above that the curve {(x, θ) : a 6 x 6 b, θ = θj(x, ε)}
contains a canard trajectory as a fragment. More precisely, the fragment corre-
sponding to the values x ∈ [xk0 − σ0, xk0 + σ0] for a sufficiently small σ0 > 0 is
a canard trajectory that connects the slow-motion curves

θ =
π

2
− arctan

√
q0(x)+π

k0−1∑
s=1

js, θ =
π

2
+arctan

√
q0(x)+πj−π

n−k0−1∑
s=0

jn−s

and makes i0 circuits, where k0, i0 are the numbers in (4.11). The neighbourhoods
of the other singular points x = xk, k = 1, . . . , n, k 6= k0, contain no canard
trajectories. The graph of a typical function θ = θj(x, ε) is shown in Fig. 15. It
corresponds to the case when j = 2, n = 3, k0 = 3, i0 = 1, µ1,0 < µ3,1 < µ1,1,
µ3,1 < µ2,0.

We discuss separately what happens when at least one of the conditions (4.5)
does not hold. For example, suppose that

π

2
+ arctan

√
q0(a) < θ1 < π,

π

2
− arctan

√
q0(b) < θ2 6 π. (4.20)

Then we can apply analogues of Theorems 1.1, 3.1 to the variant (2.115). These
results and the constructions performed in the proof of Theorem 4.1 yield the
following assertion.

Theorem 4.2. If Conditions 4.1, 4.2 and the inequalities (4.20) hold, then we have
the following limit relations (analogues of (4.6)):

lim
ε→0

µj(ε)
ε

= µj−1, j > 1. (4.21)

The question of the asymptotic behaviour of the eigenvalue µ0(ε) is not covered
by (4.21) and is a separate problem related to the analysis of the boundary-value
problem (4.8), (4.10) with j = 0. We assume that the parameter µ in this problem



Many-circuit canard trajectories 813
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is a negative quantity of order 1. Then, when ε = 0, the equation (4.8) has an
unstable manifold of slow motion

θ =
π

2
+ arctan

√
q0(x)− µ, a 6 x 6 b, (4.22)

which passes through the point (x, θ) = (a, θ1) at

µ = µ
def= q0(a)− cot2 θ1 < 0. (4.23)

Let θ = θ(x, ε, µ) be a solution of (4.8) with initial condition θ
∣∣
x=b

= θ2. By the
second condition in (4.20), as x decreases, this solution ‘falls’ onto the slow-motion
curve (4.22) and stays asymptotically close to it for a 6 x < b (see Fig. 16). Clearly,
an appropriate ‘perturbation’ of the parameter µ in a neighbourhood of the value
(4.23) enables us to assume that θ(a, ε, µ) = θ1. This means that

lim
ε→0

µ0(ε) = µ. (4.24)

The remaining two cases

0 6 θ1 <
π

2
+ arctan

√
q0(a), 0 < θ2 <

π

2
− arctan

√
q0(b) (4.25)

and
π

2
+ arctan

√
q0(a) < θ1 < π, 0 < θ2 <

π

2
− arctan

√
q0(b) (4.26)

are similar to the case discussed above. Therefore we only state the final results.
Under the conditions (4.25), the relation (4.21) still holds and (4.24) is replaced
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Figure 16

by the equation

lim
ε→0

µ0(ε) = µ, µ
def= q0(b)− cot2 θ2 < 0. (4.27)

In the case (4.26) we have

lim
ε→0

µj(ε)
ε

= µj−2, j > 2;

lim
ε→0

µ0(ε) = min(µ, µ), lim
ε→0

µ1(ε) = max(µ, µ),
(4.28)

where µ, µ are the constants in (4.23), (4.27).

4.2. Conclusion. It is interesting to mention that the results obtained above for
the spectral problem (4.1) can also be used to analyze boundary-value problems
of the form

ε
d2y

dx2
+ p(x)

dy

dx
+ (q(x) + λ)y = 0,(

cos θ1 −
p(a)
2

sin θ1

)
y|x=a − ε sin θ1

dy

dx

∣∣∣∣
x=a

= 0,(
cos θ2 −

p(b)
2

sin θ2

)
y|x=b − ε sin θ2

dy

dx

∣∣∣∣
x=b

= 0.

(4.29)

Here 0 < ε � 1, 0 6 θ1 < π, 0 < θ2 6 π, p(x), q(x) ∈ C∞([a, b]) and, most
importantly, the coefficient p(x) has finitely many simple roots x1 < x2 < · · · < xn

on the interval (a, b) and is non-zero at the other points of [a, b]. These zeros are
commonly referred to as turning points.

By making the changes of variables

y = u exp
[
− 1

2ε

∫ x

a

p(s) ds
]
, µ = ελ

in (4.29), we obtain the spectral problem (4.1) with potential

q(x, ε) =
p2(x)

4
− ε

(
q(x)− p′(x)

2

)
, (4.30)
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which satisfies Condition 4.1. Notice that the numbers (4.3) take the following form
in the case (4.30):

µk,i = i|p′(xk)|+ 1
2
(
p′(xk) + |p′(xk)|

)
− q(xk), k = 1, . . . , n, i > 0. (4.31)

As above, we assume that they are pairwise distinct.
We denote the eigenvalues of the spectral problem (4.29) by

λ0(ε) < λ1(ε) < · · · < λj(ε) < · · · (4.32)

and let λj , j > 0, be the numbers (4.31) arranged in increasing order. Theorem 4.1
yields the following assertion.

Theorem 4.3. Suppose that the constants θ1, θ2 in (4.29) satisfy the following
restrictions (analogues of (4.5)):

0 6 θ1 <
π

2
+ arctan

(
|p(a)|

2

)
,

π

2
− arctan

(
|p(b)|

2

)
< θ2 6 π. (4.33)

Then, for every fixed j > 0, we have the following limiting equality for the j th
eigenvalue (4.32):

lim
ε→0

λj(ε) = λj . (4.34)

In the case when at least one of the conditions (4.33) does not hold, we can
also use the corresponding results in § 4.1. For example, suppose that the following
analogues of (4.20) hold:

π

2
+ arctan

(
|p(a)|

2

)
< θ1 < π,

π

2
− arctan

(
|p(b)|

2

)
< θ2 6 π.

Then Theorem 4.2 and (4.23), (4.24) yield that

lim
ε→0

λj(ε) = λj−1, j > 1; lim
ε→0

λ0(ε) = −∞. (4.35)

Clearly, the equalities (4.35) also hold under the following conditions (analogues
of (4.25)):

0 6 θ1 <
π

2
+ arctan

(
|p(a)|

2

)
, 0 < θ2 <

π

2
− arctan

(
|p(b)|

2

)
.

But if

π

2
+ arctan

(
|p(a)|

2

)
< θ1 < π, 0 < θ2 <

π

2
− arctan

(
|p(b)|

2

)
,

then we obtain from (4.28) that

lim
ε→0

λj(ε) = λj−2, j > 2; lim
ε→0

λ0(ε) = lim
ε→0

λ1(ε) = −∞.

To conclude, we mention that the equalities (4.34) are well known in the case
when θ1 = 0 and θ2 = π, that is, for the boundary conditions y

∣∣
x=a

= y
∣∣
x=b

= 0.
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The corresponding fact was established in [22] for j = 0 and in a series of publi-
cations [23]–[26] for an arbitrary j > 0. These equalities were obtained there by
studying the oscillation properties of solutions of the equation in (4.29). The anal-
ysis performed above provides another way to prove them and enables us to include
this result in the context of the general theory of relaxation oscillations.
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