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Abstract. We in'estiga,te the coupling of classical and quantum antisymmetric tensor fields'

which d.escribe fermions, with the g*ogl grlvitationar fierd. we show that within the framework of

the classical Einstein-cartan theory tnJ new generarized nonlinear fermion theory can bo formulated,

which turns out to be the,correct microscopic d.escription of the Weyssenhoff spinning fluid' Tho one-

loop gravitational counterterms and the conformal stress tensor and the axial vector current ano-

malies are obtained. The differences between the antisymmotric tensor fermions and the usual Dirac

spinor fields are discussed'

Gravitative wechselwirkung yon Fermisehen antisymmetrischen Tensorfeldern

Inhaltsiibersicht. Wir untersuchen die Kopplung von kJassischen und quantisierten anti-

symmetrischori Tensorfeldern, die Fermionen beschreiben, mitt'els eines gravitativen Eichfeldes' wir

zeigon, da8 innerhalb der klassischen Einstein-cartan-Theorie dio neue allgemoine nichtrineare Ter-

mionentheorie formuliert werd.en kann. sie erweist sich als die korrekte mikroskopische Beschreibung

der weyssenhoffschen spinfliissigkeit. Man erhdlt die gravitativen 1-schleifen-Gegenterme, den kon-

formen spannungstensor und die achsiale vektorstromanomalie. Die unterschiede zwischen den anti-

symmetrischen Tensorfermionen und den tiblichen Diracschen spinorfoldern werden diskutiert'

1. Introiluetion

In 1928 Drnec [1] has established the relativistic wave equation which describes a

particle with spin-tiz'internrs ot.li"o*.. rn$epe.ndently rveNnlqro,and LeNoau [2] have

suggested 
"r 

,t|"rnative relativiiic equatioti fo" the wave function represented by a

system of antisymmetric tensor fields. Recently the mathematician E' K'inr'nR [3]

has red.iscovered. this equation and. studied its properties.in d"J3il; in the modern litera-

ture the mentioned 
"qultion 

is often refered' tb ai the Dirac-K:ihler eqqatigl' ,
During the last years much rltl.rtio.t is paid to the investigat'ion of field-theoretic

models with antisymmetric tensor fields tAffl. It turns out that ATf'play an important

role in the dual .iii"g model, irr rop"tgravity, in tle g?"g" theory of gravity' In quantum

chromodynamics they are realiz#a.?t-t*pjqtic fiids ior the boottd configurations and

are necessary for the explanation of the b1r; proulem in QCD (see e'g' [4' 5])' ATx'

represent a new type of the gulg; invarianc" tni and', what- is most' important' they can

be described, with the help of differential-geometril methods as exierior differential

forms on a space-time manifold'
rn all above mentioned" models ATF d.escribe boson fields, i.e. the particles with an

integer spin. This is natural fro- the point of view of the tensorial character of their

transformation law under the action of ihe Lorcntz group. At the same time there exists
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the fundarnental connection between the Clifford algebra and the exterior forrn algebra

[6], and one can suppose.the possibility of the description of half-integer spin fields by
means of ATX'. In the refs. [2, 3] this supposition is supported and the concept of the
fermions without spinors is introduced. This notion has proved to be very useful in
different fieldtheoretical models. We want to mention first, that already in the earlier works

[3, 8] it was shown that ATX'-fermions behave exactly as the usual Dirac spinor fields
when interacting with an electromagnetic field. Ilowever they have some advantages,
since unlike the Dirac fields, which one cannot unambigiously transfer on the lattice
(cf. [14]), ATX'-fermions can be naturally described on the lattice within the framework
of the homology theory on a space-time l9]. Secondly, it is very tempting to construct,
a supersyrnnetric generalization of this model, since then both fermions and bosons will
ne unified in a single geometrical object-differential form (for preliminary discussion of
this possibility see [11]). An important aspect is also the natural account of the topolo-
gical-propertils of space-time and their influence on physidal processes. X'inallY, it is
worth mentioning that one does not need the tetrad fields for the description of fermions
on a Riemannian background, since the exterior form formalism is by definition coordinate
invariant. As a consequence the spin-structure can be defined globally over an arbitrary
space-time contrary to the case of the l)irac fields.

In the present paper we study the differences of the gravitational interactions of
ATF-fermions as compared to the usual results of Dirac fields in a curved space-time.

2. ATF-Fermions in Flat Spaee-Time

In this section we brielfy review the description of fermions without Dirac fields

in the flat Minkowsky space-time.
Let @ be the complex inhomogeneous differential form on the four-dimensional differ-

entiable manifold,
' 4 'l

* : ZofiVr,...*r d,nP' n ... n i lrt"*. (1)

The fermion fvanenko-Landau-Ktihler equation is

{ i , (d , -  d )  -  * }@ -  0 ,  (2 )

where d, and d are respectively the exterior differential and co-differential: for the form

lt : 
h!)u,...t 1rd,ru' A ... n d,rqk,

i lrp : 
h ru,,,r rt...t,kr1) i lru'n ... n d,rqk rr,

1
6'P : - 

7:11 
(0"'Pou,"'*rr-r) ilr" n "' n d'rpt'*r'

I)espite the compact form of the ILK equation (2) in differential forms it will be more
convenient for us to write it down in components. We then describe t,he inhomogeneous
field @ by the set of ATf' of the rank 0, ..., 4,

.  ( D :  { g , " , . . . r t , k : 0 ,  1 r . . . , 4 } ,

for which the eq. (2) takes the following fonn

i , (k 0yr,gr" . . .ptc j  *  7ngou,. . . rk)  -  mgr, . . . , , r :0,

I c  :  0 ,  I ,  . . . ,  4 ' .

(3) ,

(4)
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The set of equations (4) can be derived from the action principle with the Lagrangian

L : 
irhltr""'pk 

(h tr,e,",..,s { rosnu,...pp)

d  , ,  n  '  ^ Y -- 
T \K 0p,9p,...r0 * 1a|ap...p.t) vtlt" 'ph - ff iFr,...rnv""ut\ ' 

(5)

As it was shown earlier [9] there exists a transformation, we call it the canonical one,
from antisymmetric tensors to the Dirac spinors. ft can be formulated as follows

Here ,rp is the Dirac second order spinor, i.e. it can be represented by a complex 4X4
matrix yai wit'h i, i : 1, ..., 4 as the spinor indices.

The Dirac-spin tensors

f ru.'oo : TlpX p,...T u1r1' lc : I '  ' ' |  '  4'

together with the-identity matrix form the basis of the fourdimensional Dirac algebra,
defined by the stand.ard relations

T p T , * T , T p : 2 r 1 r , I
Note that for the signature of the Minkowski metric and for the Dirac y-matrices we use
the Bogoliubov-Shirkov conventions. The cornplex conjugation of (6) defines the conju-
gated Dirac two-spinor via

F r,...r* : Tr(t\ l p,...rp) ,

where

Q : yorp*yo.

Substituting (6)-(7) into (5) we find for the Lagrangian

L: 4Tr 
{i6rr 

o*rt,- o*Qyurp) - *rrpl. (8)

This result is easily obtained with the help of the main Fierz identity

D i*oin: + * + e\ry (r u,...up)n* (1u,"'t'rcy...' o  4  E o k l '

Tn the following we also use the identities for the products of the Dirac matrices,

y,Tur..uh : lvpv..ph + kqatp'fu"-..u7s1

lu'... ultru _ | n...pt{ * kftp,...pk - rrlpkl', .

Let us briefly discuss the invariance properties -of the theory under consideration.
IJnder the Lorentz grottp transformations

frP > fr'lt : Afu' ,

Et\.. . t tk 
__>. pt ut . .FO - Aptrr. . .AFhrk?rr.. ,rk,

the two-spinors y6i transform as usual,

V --> 1P' : B?S-1

where the matrix B realizes the spinor representation of the Lorentz group and is con-
nected with .,1 via

,S-1?r/.9 : Al,y''

( 7 )

(6 )

(ea)
(eb)

(10)

( 1 1 )
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'Ihe invariance of (8) ,rrrd"r the Lorentz group yields the conservation of the spin, which

includes contributions of the stand.ard spin of the Dirac field (the left-spin in the termi-

nology of the ref. [?]) and the additional right-spin. The latter corresponds to the Lo-

renbz subgroup of the group of right transformations

'tP --> IP' : IPM, tP- 'P' : M-11P, (12)

which evidently leave the Lagrangian (8) invariant,. As one can easily see the matrix

M realtzes the representation-of the conformal group SO(2,4). This fact was noticed

earlier by , ,ro-6"" of authors [15] who have investigated various forms of the two-

spinor e{uation, derived from lai, andlor the equation (4). However all of them related

tire equaiion und.er consid"eration with bosons, and not with fermions, as it is supposed

in the Ivanenko-Landau-Kd,hler approach. One can show that quantisation of the theory

(8) according to the Bose-Einstein statistics, as proposed in [15],leads to inconsistencies

anrL the correct way out, is to adopt, the Fermi-Dirac quantisation rules [16], thus inter-

preting the field (3) as the set of four Dirac fields with the spin 1/2. These Dirac fields
^u,"e 

prlsicely those minimal left ideals, introduced in [3, 8] and in the flat space-time in

the lresencl of electromagnetic field they decouple from each other and behave as four

indelpendent fermion partlcles with identical masses. I{owever in a curved space-time

t,his ls not the 
"u." 

unh a separate study of the gravitational interactions of ATF-ferm-

ions is required.

3. Gravitational Interaetion of Classical ATF'Fermions

In the framework of the gauge theory of gravity [1?] the geometrical structure of

, space-time is determined by the garrge gravitational potentials, which in the case of the

Toincar6 group are the tetrad fields and the local Lorentz connection,

h?,, f"b * 
- -f'o r.

These define the Riemann-Cartan structure which consists of the metric g p, : h\,hl,qr,

and the global non-symmetric connection f6r : hfrhhfgt, + h70 rhfr, compatible with the

metric, 1 og r,: 0, but possessing the non-zero torsion Q!r,: lh,l. Hereinafter we denote
by r tilde fhe objects, constructed from the Riemann-Cartan connection with torsion,
reserving the usual notation without additional marks for the Riemannian objects'

constructed fron the Christoffel symbols, {Fr} : lU"'Qolr, * 0ugp, - O,gBt").
a

Let us now introduce the interaction of the classical ATF-fermion field with the

gauge gravitational field. As usual (see e.g. [18]) we assume the minimal coupling recipe

is valid according to which the Minkowsky metric is substituted by the R,iemannian one

and all the partial derivatives are replaced by the Riemann-Cartan covariant ones,

A L r,g r,..., r) 
- i t r,V r12... u p)t 0 "g * ru.. r k 

--> fr "V 
" 
p,... t, h.

Ilence in the two-spinor variables we find

where

fr tr,g r,...r,r,l : (- tlP rr(fi 1,,,v1u"...ufl)

:  (-  \o+ Tr(Ty*,. . .rr ,_ri  r1, lrp),

i urp : 0 ulp * If *, ,ttl

( 1 3 )
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is the spinor covariant, derivative, defined by the spinor connection

- 
+ ooofob *'

As usually the latter is defined so that the curved y-matrices are covariantly

fr ry,: o, and the sPin-curvature is

hr,: orf, - a,i, + lrrf,l: + oo6frobr,.

Analogously

k(k+r\
fr "g or,...ro: (- \ 7 Tr(V "yT *&...u76)

k(h-r)
: (- 1)-T Tr{l r,...ronV "tp},

and thus finally, making use of (9), we get

k(k  -  1 )

ki tr,g r,...up) * i "vor,...ro: 
1- 

1)-- Tr(T r,...r;y" V *yt) .

Thus the Lagrangian of the gravitationally interactbd ATX'-fermion
following,

L : 4TrliWv-fr rrp -fr *rpy'rp) - *rprpl-

The field equations are then

{ iyr( i  r  
-  Qr)  -  m} v :0.

It is important to note that the group of symmetries of the theory under considera-

tion is cha,inged in the curved space-time. fndeed, since_ in general the generators of

SO(2,4) do not commute with the Lorenbz generabors, the theory (18), (19) is not in-

variant'und.er the right transformations. The only exception is the case of the right 7u-
transformations, under which (18) is invariant both in massless and in massive cases as

well as in a curved space-time.
The theory (18) in the massless case (m - 0) is invariant also under the local con-

formal transfbrmutiott., gpr+ r'ogr, r1s--> e\olzr, where 6 : o(r). Ilowever the Weyl

transformations of the metric must, be interpreted in the sense of the tetrad scaling,

which defines the conformal transformations in the Riemann-Cartan space-time accord-

ing to the refs. [19]. As for the torsion-free case of the Riemannian theory, it_ was shown

in"[20] that the theory of ATl'-fermions is invariant only under the global conformal

transformations.
Let us now consider the self-consistent theory of the ATX'-fermions, interacting with

the gravitational field in the framework of the Einstein-Cartan theory (ECT). The total

Lagrangian is then

L {" a * rr lt r*, fi u,p - i u,pyu,p) - *r,pl

where we denoted as usual n :Y* T .

63

- 1
r-r  -  . .n, . .  TbI  u :  

- 7 ; T " T o t a p : (14)

constant,

(15)

( 1 6 )

( 1 7 )

theory is the

( 1 8 )

(1e)

(20)
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The gravitational field equations are derived from the variation of the action (20) by
-hfl and, fgr. fnu corresponding Einstein-Palatini equations are as follows

- 1 - i , t t
ni - *rye 

:.+ rr@,yo i *rp - i ,Fyo,p),

Q!r, * 6f,Q, - 6iQ, : t tf", : + Trl{({y", 6 r,} rt, - 2or,rty*rtl.

The Einstein equations (21) turn out to be the same as if the gravitational field inter-
acts with four fermion Dirac fields, and this at the first sight supports the earlier results
in a flat space-time. I{owever the Palatini equation (22) differs considerably from the
expected analogy with the four types of fermions in a Riemann-Cartan space; here we
obtain, that not only the usual (left one) spin, but also the right-spin produce the space-
time torsion via (22). X'rom this equation one easily gets

Q7,, : - 
T {-ei*B tE + Trflo r,, 6fr + 6(ro,tBl rpyurtl},

where -JE: i Tr(ytyuys?) is the standard axial current, connected with the left-spin,
and the rest is the right-spin contribution. Note that in this theory unlike the usual ECT
with Dirac fields the trace of torsion does not vanish.

i,x
Qo: Q'1,,: f 

Tr(ou,rPY''rP).

Substituting (23) back into (1"9) we obtain the non-linear spinor equation, which
generalizes the fundamental rpa-equation [21]. Interpreting the two-spin y:u as the set of
four spin 1/2 fermion fields-as proposed in [12] we can think of them as the four genera-
tions of quarks-we can now suggest the obtained non-Iinear spinor equation to underly
the generalized sub-quark theory with non-trivial selfinteraction between the different
types of fermion constituents. Having in mind that the geometrical arguments often
lead to the correct malhematical schemes of the physical theories (as is the case for ex-
ample for the standard non-linear spinor theory l22l), one can suppose that thus obtained
generalizednon-linear equation will be useful in the study of possible sub-quark models.

fnstead of writing down this equation explicitly it appears more interesting to give
the corresponding effective nonlinearity in the Lagrangian. Since the Riemann-Cartan
curvature scalar can be decomposed into the Riemannian and torsion-dependent parts,

E : R - A Q . Q * - K * x I ( L p ,

and the contorsion

K f t , : Q f * + Q * i * Q , r , n ,

is easily expressed in terms of spinor fields via (23), we get

* Tr{iWr-v r,t,-v,Qyorp) - *,p,pl

(21)

(22)

(23)

(24)

L -  _ l u
z,C

+ *$Q,Q' ! K,xK'^') + f;.K'^'s,,,^

: - 
{ n * rr{iWr,v,rp -v rF,yr,p) - *r,pl * Le*,

Letr.: 
,ft {s',"'s }.p,, * 2st'1''51,,,, - 2,sp,Sr,).

(25)
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Let us point out the interesting possibilities, offered by the gerieralized non-linear
theory. Let us suppose the following structure of the two-spinor yii, which can occur

in the concrete problem,

Vt i :  9t1h,
where g and X are the usual Dirac spinors. Then, denoting their bilinear combinat'ions

S ,, : i(To *L), B : IX,,
Iu : fu *g ,  Jp :gy ryup ,

we get

Sl,, : z(Seftu,,Jp * I"S p,).

I{ence the effective non-linear Lagrangian reduces to

Letr.: (SowBor,+ z,s,p,sr4e" - 2spsp) 
#r: S{Sr.o*JF + SrJ*)2. (28)

This result has two far-going consequences. X'irst, as we see from (27) the ATX'-ferm-
ions turn out to be the corr-ect microscopic description of the spinning classical matter,

which in the fluid like limit is represented by the well-known WnvssnNnorr'-Rlenn [23]
fluid. Recently it has been recognized that the usual Dirac matter yields a different quasi-

classical desciiption (cf. e.g. [?al) and hence the problem has arisen, what matter can

underly the Weysenhoff's approximation. Now we can suggest a possible answer: the

Weysenhoff-Raabe spinning fluid is naturally obtained from the ATX'-fermion matter,

u,nd th" corresponding spin density is determined by the "internal" right-spin fermions,

Sr,: Su,(X,), *nite the current Iu vector, proportional to the fluid four-velocity uw is

defined by the usual spinor field g.
The second consequence is related to the above observation and consists in the pre-

diction of the possibility to avert the singularity in the solution of the Einstein equations
(21). Indeed, Jlthough ihe first term in (28) is strictly negative and hence it describes the

attraction of fermioirs and accelerates the cosmological collapse, but the second term is

positive for the polarised ATF-fermions and thus the final answer about the singularity
hepends on the d,ifferetrce between these two terms. Anyhow the possibility of a^verting

th6 singularity, absent in the case of standard spinor matter, is non-zero for t,he fermion

matter under consideration.
Note that for neutrino, when g : *TsV, we again obtain the theory without any non-

linearity, like in the Dirac neutrino case.

4. Quantiseil ATF-Fermions in Curveil Spaee'Time

Let us investigate now the quantised ATX'theory in the classical Riemann-Cartan

space-time. The most important quantities are the oneJoop gravitational counterterms,

rifri"tt d.etermine the quaiiclassical approximation for the Einstein-Cartantheory. fnthis

section we shall calculate these counterterms and also the related conformal and axial

current anomalies. Earlier we have obtained the analogous results for the standard Dirac

spinor field in spaces with torsion [25]. Now weuse the same formalism and notations for

CTX''-f"t*ions, and for the details the reader should address the ref. [25].
The generalized Dirac operator, see (19),

A : i y P ( V , - Q ) - l n : A u i , n

formally coincides with that of the standard spinor field (cf. eq. (a.1) of [25]) but note

howevei that the difference is in the covariant derivative: now it acts on the, matrix

(26)

(27)

(2e)
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lsq and hence the Z-bundle connection ar, (see [25]) is

' @p,ii,kt:1Tr)* 6ti ( ir)ri 6ro. (30)

(Explicitly the covariant derivative is now (V ,rp)ui : 0 rllt;,i * a rei,rflsn.)
The Z-bundle curvature for the connection (30)

I p, : 0 *@, 
- 0 roo, * @ t"@, 

-.',!r@ p : lE rr) ti,o, : (fr ,r) u, 6ti - (fr rr)ri 6 i,o :

in view of (15) becomes

: 
+ fr*p*,{(o*o)* 6ri - @"\ti 6*}.

The self-adjoint second order Dirac operator D - A* A for (29) is again formally (and
notationally) the same as the operator (4.3), (a.a) of the ref. [25]. However taking into
account the matrix nature of Vri we get the explicit form of the matrices Bp and X in

D - -(g*,V F, *  2BrVp + X).
They are:

(Br) ti,r,t : 
+ Q*p@*\ u, 6ti,

(x)u,tt: (+ @*Ffr*il* -Y *Qp@*F)* * (xol*) 0,,

1- 
+ (o"F)* (R*p) u

(xo)*: (-fr  pQp + QpQ, * m2) 6*.

X'rom these for the matrix Z we get'

(Zu,r,t) : (n$))db dri * (ZQ))u,or,

where

(20)tr: 
+ 

(hopp, - zQflpQrr,) (o*por,)*

* (xo)* * (-u"o B * eHBe, - 
+v reoe)@n')uo, 

(34)

(zat)u3t:  -  
*Er,-r(oo\) ,u,(or ' ) t i .  

(gb)

Analogously for the matrix Y p, (see eq. (3.9) of [25]) one obtains

(Y r,)ti,r,t: lYflh*d,i * (Yllhri 6*, (36)

1
1Yl1))*: +@opr,(o"F)u,, 

(37)

(38)' '1Y!,2))ti: - 
I fr*rr,@*u)r,,

Qopp, : fropp, I 4tr 6Q,loF - 4Ql,,Qp*p - 8Qtupn$,$. (39)

(31)

(32)

where

(33)
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Thus we have

Tr(Z) :  { ly( / , ( t )1,  (a0a)

Tr(Z)2 : 4Tr(Z(1))2 + Tr(Z(z)12, (40b)

Tr(Y,Yp,) :  aTr{Yf,r) f ( r )uu + Yf)Y(z)p"} ,  (a0c)

and hence the b* coefficient for the Minakshisundaram expansion of the heat kernel for
the operator (29) is given by the expression

bE(D) : 4ba(De1st,c:) * AbE, (41)

where

*  ab  _  2  b  h ,Fp, .'a: 
{n1zt'^flt ' ,

We thus see that the Minakshisundaram coefficient (41) for the ATX'-fermion field
is different from a naive suin of contributions of four types of ordinary spinor fields
(represented in (41) by the first term) by the Yang-Mills type curvature contraction.
Consequently, in the quasiclassical approximation to the ECT with ATtr'-fermions the
torsion (or better to say, the local Lorentz connection) becomes totally propagating,
and not only the axial trace part of it. It is also very important that the additional gravi-

tational counterterm in (41) has a simple Poincar6 invariant structure ho.bu,fr,o6u'', as
compared to the usual spinors in U n

Let us now calculate the anomalies for the ATX'-fermions.
Like in the ordinary theory, the massless case of the theory (18) is invariant under

the left 7u-transformations,
r p - > I p ' : T s l ! ) ,

and the left axial (classical) current is conserved,

Jt : i, Tr(pyuywy), V *Jt 
- o.

Ilowever, using the me'thod of ref. [25] (sect. 4.3) one can easily get for the vacuum
average

, <V ,J, ;> :  -Lh det A(x) l - :o:  Z(4n)-z I , r  l (yu),r i ,6 iy(Ka)r i , ,n l ,t L  ; t z  
d a ( r )

and after taking the trace we find

(V ,J(> : 4(V pJ#)orn.rc + P, (42)

where

P - -  
1  f t  " -

W 
-'eoo\ RQo rrgw'"F '

Again we see that in additions to the four times result for the Dirac case the non-
trivial contribution of the Riemann-Cartan Pontriagin integrand is present.

In the previous section we have seen that the theory (18) is invariant in curved space-
time under the right 7u-transformations, the only relict of the BO(2,4) right symmetry
of the flat space model. Thus onthe classicalleveltheright axial current,Jk: iTr(rlty'rpy)
is also conserved,

Y r J h - O .  
'

Let us show that in quantum theory this conservation law is not disturbed, i.e. there are
no anomalies for it.
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fndeed, let us find the vacuum aYerage'

A
(v ,Jk) : ffiin 

det l(")l*:o (43)

where the opera tor i1u1is defined as follows
1qrF

(i)oi,r, - Ati,,;t - i'(ys)ti (y\u, d'fu : Ail,ot + (t Ai*,r, - At*,or&) Us)*i' @4)

I.{otice however that the generalized. Dirac operator (29) commutes with the right 7u
multiplication,

Au*,or(yr)* i :  (Ts)mAoi,^ 
|

(l')ui,rr: Af;i,n + 2l& A?*,*ilTs)*fl * o(uz), (45)

and for the arbitrary degree of. Az we then find

1iz)ii,nt: V\k,nt * znl&, (al*,m) (yu)*il + fltrk, [46)
where

f(Dci,' d"p"rrd only linearly on &"2, &', ..., &n.

. Thus, since the trace of the commutator is identically zeto, Trl&, (Az\" 'Tsl -0, we

get finally

Tr exp (-t iz(e)) : Tr 
Er+, 

(_"q" (lr(o))" 
$il

:  Tr exp (-f  A') + l(&',  . . .) ,

where

r(&,,...) : r, (,2^# e,r r*'1.
\h:g rt" /

Consequently, we have

d

MTr 
exP (- t  A2(a))1":o -  o '

and, since the (divergent) determinant can be defined. by a well known formula,

Y  F a t
lndet A'(o):  -  

J t r ,  exp (- f  A'(o)) ,
0

we get for (43) the'final answer

1 A
(YrJh) : ;dn 

det a'(o) lo=o : o. (48)

Hence, we have proved that the axial right current has no anomalies in the presence

of the classical g"u.iitrtional field, Note that the result, (48) is valid in general, in any

loop-approximation .
The absence of anomalies for the right yu-current is naturally explained, if one notice

that the operator A (29) transforms yu-odd wave functions into yu-odd ones and analo-

gously even to even ones.
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5. Conelusion

We have studied in this paper the gravitational interaction of antisymmetric^ tensor

fields which in the fvanenkb-iandau-Kahl"" approach describe the system of fermion

particles. It turns out that contrary to t_he flat space theory, in^which these fermions

hecouple and are reduced to the four independent Dirac spinor fields, in an arbitrary

"o"r"d 
manifold the ATF-fermions interact in a non-trivial manner with the rnetric and

connection. An important consequence of such interaction is the emergence of the effec-

tive non-linear seli-coupling of ihe fermion field.s. In our opinion the above obtained

generalized nonlinear fJrrniinic theory 9an be used. in construction of sub-quark_ models

[.f. ".g. 
ref. [20]). The interesting possibility of averting the cosmological singularity is

now unde" ,onrid""ration and preliminary results (to be published elsewhere) show that

the ATX'-fermions can prevent collapse in a class of spatially homogeneous cosmological

models.
Of course, the above investigation is only a small part of the study of the properties

of the spin-coupling between the ferrnions and the gravitational field. There still remain

the prJbl"** 6f o6tuinitrg the concrete physical effects within the framework under

"orrrid"rution, 
the self-consistent quantisation of both the gravity and the fermion matter,

the renonlalizability problem etc] It seems also worth studying the supergravity rnodels

rvith ATtr'-fermions, t^["* describing not only fields, which mediate the interaction, but

also the fundamental half-integer spin matter in purely geometrical terms.

In conclusion we want to foint- out on the fundamental question to be solved. fn

the flat space-time the ordinary quantum electrodynamics,with the standard Dirac

fields is iniistinguishable frorn th; QED with ATX'-fermions. Moreover it is easy to-otrtain

the non-abelian-generalization, assuming that the ATF-fermions carry additional inter-

nal indices and tiansfonn under a representation of some internal (colour, flavour etc.)

syrnmetry group, and hence one can construct alternative electroweak and grand- unified

rirodels *itn Aff-fermions instead the Dirac spinors. Thus should we live in the Min-

kowsky space-time we could never get to know what kind of matter we and the w hole

Univeise is constructed from: either Dira" or ATF fermions. Ilowever gravity, as we h ave

seen above, feels the difference between these two types of half integer spin particles.

I{ence only gravitational experiments can give a definite answer on the important qu es-

tion: fro,ri*lich matter thetniverse is built ? This is one of the most impressive concl u-

sions, since it is commonly assumed (especially by the elenrentary particle physicist s)

that ihe gravitation does not play an important role in the high energy physics due to

the srnall value of the gravitational coupling constant x.
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