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Abstract. We investigate the coupling of classical and quantum antisymmetric tensor fields,
which describe fermions, with the gauge gravitational field. We show that within the framework of
the classical Einstein-Cartan theory the new generalized nonlinear fermion theory can be formulated,
which turns out to be the correct microscopie description of the Weyssenhoff spinning fluid. The one-
loop gravitational counterterms and the conformal stress tensor and the axial vector current ano-
malies are obtained. The differences between the antisymmetric tensor fermions and the usual Dirac

spinor fields are discussed.

Gravitative Wechselwirkung von Fermischen antisymmetrischen Tensorfeldern

Inhaltsiibersicht. Wir untersuchen die Kopplung von klassischen und quantisierten anti-
symmetrischen Tensorfeldern, die Fermionen beschreiben, mittels eines gravitativen Eichfeldes. Wir
zeigen, daB innerhalb der klassischen Einstein-Cartan-Theorie die neue allgemeine nichtlineare Fer-
mionentheorie formuliert werden kann. Sie erweist sich als die korrekte mikroskopische Beschreibung
der Weyssenhoffschen Spinfliissigkeit. Man erhiilt die gravitativen 1-Schleifen-Gegenterme, den kon-
formen Spannungstensor und die achsiale Vektorstromanomalie. Die Unterschiede zwischen den anti-
symmetrischen Tensorfermionen und den iiblichen Diracschen Spinorfeldern werden diskutiert.

1. Introduetion

In 1928 Dirac [1] has established the relativistic wave equation which describes a
particle with spin 1/2 in terms of spinors. Independently IVANENKO and LANpAU [2] have
suggested an alternative relativistic equation for the wave function represented by a
system of antisymmetric tensor fields. Recently the mathematician E. KiHLER [3]
has rediscovered this equation and studied its properties in detail; in the modern litera-
ture the mentioned equation is often refered to as the Dirae-Kihler equation.

During the last years much attention is paid to the investigation of field-theoretic
models with antisymmetric tensor fields (ATF). It turns out that ATF play an important
role in the dual string model, in supergravity, in the gauge theory of gravity. In quantum
chromodynamics they are realized as asymptot ic fields for the bound configurations and
are necessary for the explanation of the U(1) problem in QCD (see e.g. [4, B]). ATF
represent a new type of the gauge invariance [5] and, what is most important, they can
be described with the help of differential-geometric met hods as exterior differential
forms on a space-time manifold.

In all above mentioned models ATF describe boson fields, i.e. the particles with an
integer spin. This is natural from the point of view of the tensorial character of their
transformation law under the action of the Lorentz group. At the same time there exists
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the fundamental connection between the Clifford algebra and the exterior form algebra
[6], and one can suppose the possibility of the description of half-integer spin fields by
means of ATF. In the refs. [2, 3] this supposition is supported and the concept of the
fermions without spinors is introduced. This notion has proved to be very useful in
different fieldt heoretical models. We want to mention first, that already in the earlier works
[3, 8] it was shown that ATF-fermions behave exactly as the usual Dirac spinor fields
when interacting with an electromagnetic field. However they have some advantages,
since unlike the Dirac fields, which one cannot unambigiously transfer on the lattice
(cf. [14]), ATF-fermions can be naturally described on the lattice within the framework
of the homology theory on a space-time [9]. Secondly, it is very tempting to construct
a supersymmetric generalization of this model, since then both fermions and bosons will
be unified in a single geometrical object-differential form (for preliminary discussion of
this possibility see [11]). An important aspect is also the natural account of the topolo-
gical properties of space-time and their influence on physical processes. Finally, it is
worth mentioning that one does not need the tetrad fields for the description of fermions
on a Riemannian background, since the exterior form formalism is by definition coordinate
invariant. As a consequence the spin-structure can be defined globally over an arbitrary
space-time contrary to the case of the Dirac fields.

In the present paper we study the differences of the gravitational interactions of
ATF-fermions as compared to the usual results of Dirac fields in a curved space-time.

2. ATF-Fermions in Flat Space-Time

In this section we brielfy review the description of fermions without Dirac fields
in the flat Minkowsky space-time.

Let @ be the complex inhomogeneous differential form on the four-dimensional differ-
entiable manifold,

D = té:n%q)mmpk dat A Lo daf, (1)
The fermion Ivanenko-Landau-Kihler equation is
{i(d — 8) —m} D =0, (2)
where d and § are respectively the exterior differential and co-differential: for the form
1

Y = 7 Voo dax's a ... n datk,
1 i
dy = T (O Petip g dxii A .. A datRe,

1 O, oy i L.
09 = — e 0 ) B A

Despite the compact form of the ILK equation (2) in differential forms it will be more
convenient for us to write it down in components. We then describe the inhomogeneous
field @ by the set of ATF of the rank 0, ..., 4,

D =g, ok =01,..., 4}, . (3)
for which the eq. (2) takes the following form !
’-tk F}!qujﬂ':--.ﬂkl +_ a";"‘"l"'ﬂk) — ?R(P”I“J’k — [)_ (4]

=210, e 4%
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The set of equations (4) can be derived from the aetion principle with the Lagrangian
S 0 fidge . .
L= k.?:]l’,_! {?‘Pm"'ﬂ" (k d.ﬁ:(}(#;...ﬂ‘. i a,'}-r m,...,uk}
i » (9)
i T (k E".u.q"ﬂ:...p;‘ & 0 \rF.\ﬂ,...;:‘.] ")"'mm'"k =k '”“}_—'.ﬂ,...x-‘pq el
As it was shown earlier [9] there exists a transformation, we call it the canonical one,

from antisymmetrie tensors to the Dirac spinors. It can be formulated as follows

Bk —1) 6
v ‘P;;,...;:‘_ = (__I) 2 Tr(%”r;:....pl.)' ( )

Here  is the Dirac second order spinor, i.e. it can be represented by a complex 44
matrix y;; with ¢, j = 1, ..., 4 as the spinor indices.
The Dirac-spin tensors
I‘.u;---.ﬂ;_- = Vi g0 Vi k=1,...,4,

together with the identity matrix form the basis of the fourdimensional Dirac algebra,
defined by the standard relations

Ve T Vit = 2"?1!!'[ :
Note that for the signature of the Minkowski metric and for the Dirac y-matrices we use
the Bogoliubov-Shirkov conventions. The complex conjugation of (6) defines the conju-
gated Dirac two-spinor via

Faves = TG ) (7)
where

p =yl
Substituting (6)—(7) into (5) we find for the Lagrangian

Ti=4]'r %(1};}*' ap — 2,9yt ) — myp). (8)
This result is easily obtained with the help of the main Fierz identity
1. LY EE—1)
OimOjn = -4_‘%#:_!(_1) A i o (R
In the following we also use the identities for the products of the Dirac matrices,
ity — [rottiebi k’;_."{}h]‘ﬂ:---ﬂk], (9a)
Fﬁf.---ﬂ;-y" = [Vt kF[J‘I---J‘k—-n}F‘k]". (gb)

Let us briefly discuss the invariance properties of the theory under consideration.
Under the Lorentz group transformations

at— a2t = Ak,

Gl e = A, AR, (10)
the two-spinors #;; transform as usual,

p—=y = SpS-? (11)

where the matrix § realizes the spinor representation of the Lorentz group and is con-
nected with A via

S ‘1},!"q — _'[":j"'_
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The invariance of (8) under the Lorentz group yields the conservation of the spin, which
includes contributions of the standard spin of the Dirac field (the left-spin in the termi-
nology of the ref. [7]) and the additional right-spin. The latter corresponds to the Lo-
rentz subgroup of the group of right transformations

p—>y =M, p>y = My, (12)
which evidently leave the Lagrangian (8) invariant. As one can easily see the matrix
M realizes the representation of the conformal group SO(2, 4). This fact was noticed
earlier by a number of authors [15] who have investigated various forms of the two-
spinor equation, derived from (8), and/or the equation (4). However all of them related
the equation under consideration with bosons, and not with fermions, as it is supposed
in the Ivanenko-Landau-Kihler approach. One can show that quantisation of the theory
(8) according to the Bose-Einstein statistics, as proposed in [15], leads to inconsistencies
and the correct way out is to adopt the Fermi-Dirac quantisation rules [16], thus inter-
preting the field (3) as the set of four Dirac fields with the spin 1/2. These Dirac fields
are presicely those minimal left ideals, introduced in [3, 8] and in the flat space-time in
the presence of electromagnetic field they decouple from each other and behave as four
independent fermion particles with identical masses. However in a curved space-time
this is not the case and a separate study of the gravitational interactions of ATF-ferm-
ions is required.

3. Gravitational Interaetion of Classical ATF-Fermions

In the framework of the gauge theory of gravity [17] the geometrical structure of
space-time is determined by the gauge gravitational potentials, which in the case of the
Poincaré group are the tetrad fields and the local Lorentz connection,

Az, =—1",,
These define the Riemann-Cartan structure which consists of the metric g, = k';ﬁk-ffu,,;,
and the _glohal non-symmetric connection Iy, = kykjl, + k:l 0,h%, compatible with the
metrie, Vg, = 0, but possessing the non-zero torsion @7, = I'[,;. Hereinafter we denote
by a tilde the objects, constructed from the Riemann-Cartan connection with torsion,
reserving the usual notation without additional marks for the Riemannian objects.

constructed from the Christoffel symbols, {3} = —%-g""(ﬁf,{;_m. + 0,93, — 0.9pu)-

Let us now introduce the interaction of the classical ATF-fermion field with the
gange gravitational field. As usual (see e.g. [18]) we assume the minimal coupling recipe
is valid according to which the Minkowsky metrie is substituted by the Riemannian one
and all the partial derivatives are replaced by the Riemann-Cartan covariant ones,

L~ " — o ax y A 7 A
élﬂ.‘f’#-»--n;l = vlﬂ.(f’m---ﬂkl* d Pyt v Pptyenptye

Henece in the two-spinor variables we find

v“fu(-‘(lﬂu---!',{J =i(—1) 2 Tr(vlmwpm---ﬂ;-l"' :
Wy : 54
=T (_ l) 2 T?’{ 111;1‘..4.‘&. 1v;c£.;'¥’J 1

where

V=2 + [.I;,,, ]
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is the spinor covariant derivative, defined by the spinor connection

[ ! 7 1 b

Pn == T}’u}’brrr;: == Tgab-l—“ we (14)

As usually the latter is defined so that the curved y-matrices are covariantly constant,
V7, = 0, and the spin-curvature is

A A e o 1 - ,
R, =2d,l,— I, +[I1)]= Taﬂbﬁ‘mw.. (15)
Analogously
~ R+
v“ﬁ”\,-:....;q. —— (—1) 2 ?'r(vwwp:\sm...ﬂ&} :
E(l—1) 5 (16)
S (_]} A T?{Py....y‘.\ v"'f’},
and thus finally, making use of (9), we get
. E (E—1) . _
k v[;thj;@..‘;al.j + vh\?;m,...yk = (_ l) % Tr[j‘p,.“uk}" vn'}‘)- { | ‘,}

Thus the Lagrangian of the gravitationally interacted ATF-fermion theory is the
following,

)ty o SIS =
L = ATy {—2- (py"V p — V gyp'y) — mypy } . (18)

The field equations are then
{iy"(V, — Q) —m}yp = 0. (19)

It is important to note that the group of symmetries of the theory under considera-
tion is changed in the curved space-time. Indeed, since in general the generators of
S0(2, 4) do not commute with the Lorentz generators, the theory (18), (19) is not in-
variant under the right transformations. The only exception is the case of the right y;-
transformations, under which (18) is invariant both in massless and in massive cases as
well as in a curved space-time.

The theory (18) in the massless case (m = 0) is invariant also under the local con-
formal transformations, g,,—> €9, ¥ — %2y, where o = g(x). However the Weyl
transformations of the metric must be interpreted in the sense of the tetrad scaling,
which defines the conformal transformations in the Riemann-Cartan space-time accord-
ing to the refs. [19]. As for the torsion-free case of the Riemannian theory, it was shown
in [20] that the theory of ATF-fermions is invariant only under the global conformal
transformations,

Let us now consider the self-consistent theory of the ATF-fermions, interacting with
the gravitational field in the framework of the Einstein-Cartan theory (ECT). The total
Lagrangian is then

e i e : P .
L=——R+Tri5 "V — V@' — mw] (20)

2%

Baly
where we denoted as usual # = ——.
[
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The gravitational field equations are derived from the variation of the action (20) by
-k and I, The corresponding Einstein-Palatini equations are as follows

- U e = 5
Ry — 5 hiR = % Tripy* V p — V 97"yp), (21)

Q-",m' + a;Qv = é:Q,u = it'\ S;n- = :;'i g’?’[iﬁ[{}f‘, a;n'} Y= 20;;.-';;"/'"}’]- (22}

The Einstein equations (21) turn out to be the same as if the gravitational field inter-
acts with four fermion Dirac fields, and this at the first sight supports the earlier results
in a flat space-time. However the Palatini equation (22) differs considerably from the
expected analogy with the four types of fermions in a Riemann-Cartan space; here we
obtain, that not only the usnal (left one) spin, but also the right-spin produce the space-
time torsion via (22). From this equation one easily gets

i = :
o = — 7 {— & 8 + Trllo,. 0F + OG.0,5] Y701} (23)

where —J% = i Tr(py*ysyp) is the standard axial current, connected with the left-spin,
and the rest is the right-spin contribution. Note that in this theory unlike the usnal ECT
with Dirac fields the trace of torsion does not vanish,

ix =
Q;.r = Ql:ml — ? ’I‘F((}‘Iﬂ_?{l}’"‘f!!) - (24}

Substituting (23) back into (19) we obtain the non-linear spinor equation, which
generalizes the fundamental y*-equation [21]. Interpreting the two-spin y;; as the set of
four spin 1/2 fermion fields—as proposed in [12] we can think of them as the four genera-
tions of quarks—we can now suggest the obtained non-linear spinor equation to underly
the generalized sub-quark theory with non-trivial selfinteraction between the different
types of fermion constituents. Having in mind that the geometrical arguments often
lead to the correct mathematical schemes of the physical theories (as is the case for ex-
ample for the standard non-linear spinor theory [22]), one can suppose that thus obtained
generalized non-linear equation will be useful in the study of possible sub-quark models.

Instead of writing down this equation explicitly it appears more interesting to give
the corresponding effective nonlinearity in the Lagrangian. Since the Riemann-Cartan
curvature sealar can be decomposed into the Riemannian and torsion-dependent parts,

R=R —4Q,Q" — K, K",
and the contorsion

K;:' = Q;‘(r + Q,ulr,f'= '!" Ql"n,lx.-

is easily expressed in terms of spinor fields via (23), we get

L=— %R i L8 {% (" Vouy —V,py'y) — mﬁw}
+ %mm + K K" + % K8 s (20)
= — %R 4 Ty {'7 "V — Vi) — m*ﬁw} + L .
. j—’ﬁ (SHS,,, + 2SHMS,  — 2918 ).
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Let us point out the interesting possibilities, offered by the generalized non-linear
theory. Let us suppose the following structure of the two-spinor y;;, which can occur
in the concrete problem,

Vij = it (26)
where ¢ and y are the usual Dirac spinors. Then, denoting their bilinear combinations
S, =txo.y), S=711
Ip = ‘;?p?;'t J.u = QYYD
we get
3¢, = 2(Se5,J* — I'S,,). (27)

el T

Hence the effective non-linear Lagrangian reduces to

Lege = (88, + 28,8 — 28,8 = = == (Seapyl® + Sulo.  (28)

128 3

This result has two far-going consequences. First, as we see from (27) the ATF-ferm-
ions turn out to be the correct microscopic description of the spinning classical matter,
which in the fluid like limit is represented by the well-known WEYSSENHOFF-RAABE [23]
fluid. Recently it has been recognized that the usual Dirac matter yields a different quasi-
classical description (cf. e.g. [24]) and hence the problem has arisen, what matter can
underly the Weysenhoff’s approximation. Now we can suggest a possible answer: the
Weysenhoff-Raabe spinning fluid is naturally obtained from the ATF-fermion matter,
and the corresponding spin density is determined by the “internal” right-spin fermions,
S, = S,,(z), while the current I vector, proportional to the fluid four-velocity «* is
defined by the usual spinor field ¢.

The second consequence is related to the above observation and consists in the pre-
diction of the possibility to avert the singularity in the solution of the Einstein equations
(21). Indeed, although the first term in (28) is strictly negative and hence it deseribes the
attraction of fermions and accelerates the cosmological collapse, but the second term is
positive for the polarised ATF-fermions and thus the final answer about the singularity
depends on the difference between these two terms. Anyhow the possibility of averting
the singularity, absent in the case of standard spinor matter, is non-zero for the fermion
matter under consideration.

Note that for neutrino, when ¢ = +4-y,¢, we again obtain the theory without any non-
linearity, like in the Dirac neutrino case.

4. Quantised ATF-Fermions in Curved Space-Time

Let us investigate now the quantised ATF theory in the classical Riemann-Cartan
space-time. The most important quantities are the one-loop gravitat ional counterterms,
which determine the quasiclassical approximation for the Einstein-Cartan theory. Inthis
section we shall calculate these counterterms and also the related conformal and axial
current anomalies. Barlier we have obtained the analogous results for the standard Dirac
spinor field in spaces with torsion [25]. Now we use the same formalism and notations for
ATF-fermions, and for the details the reader should address the ref. [25].

The generalized Dirac operator, see (19),

A=iy"(V, — Q) —m=Ayu (29)

formally coincides with that of the standard spinor field (cf. eq. (4.1) of [25]) but note
however that the difference is in the covariant derivative: now it acts on the matrix
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y;; and hence the V-bundle connection o, (see [25]) is
O i = {P;:)Hr 0 — (fiﬂ}."f O+ (30)

(Explicitly the covariant derivative is now (\-7P1p)ﬁ = 0,95 + OuiiPu-)
The V-bundle curvature for the connection (30)

F;u- =— apr')l' = al'(ujl +' (H,u”’l' = U)I'ﬂ)ﬂ = (va)-a'f‘ki' — {épm)ii' a."f == (R;n-)lf 6# =

in view of (1) becomes
1 = .
= TR\M.-{(U"’);‘& O — (aP); 0y - (31)

The self-adjoint second order Dirac operator D = A* A for (29) is again formally (and
notationally) the same as the operator (4.3), (4.4) of the ref. [25]. However taking into
account the matrix nature of y;; we get the explicit form of the matrices 8¢ and X in

D= —(gm vﬂvl' il 284 v;; + X,

They are:
(8140 = 5 @) By,
Xy = |5 @ Roplic — V.0 + (K] 8y (32)
| x
N ()i (Bop) i
where

{XU)“’ = {_VA'IHQ‘" + Q;ng —i_ .’n‘l} 6‘]-.

From these for the matrix Z we get

(Zija) = (ZV)qt. 0y + (295, (33)
where
i
(z“))ﬂ' i _S'(Rnﬂ,m' = ?‘Q.Q\-ﬂQe,-iv) (a.‘ﬂa#r)ﬂ'
) 3 (34)
o+ (—.0s + 4@ — 57,050
gen., L7 B v
(2N = — T R p(0%) it ()5 (35)
Analogously for the matrix ¥, (see eq. (3.9) of [25]) one obtains
(Y)iiae = (Yir 0 + (Y25 6415 (36)
where
1
(Y = e D50t (37)
. L
( Y 5:2:)).*_1 S T ‘R-.\ﬂ;w(alﬂ)ff’ (38] v

d’aﬁm’ - ‘aﬁ,mv + 46{;:Qr];xﬂ - 4@?;va¢§ = 8@[;:[:\:@[@!»]&' (39}
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Thus we have

Tr(Z)y = 4Tr(ZV), (40a)
Tr(Z)? = ATr(ZV)E + TrZ®)2, (40h)
Tr(Y,, Yy = ATr{ ¥ DY 1 y@y@mw) (40¢)

and hence the b, coefficient for the Minakshisandaram expansion of the heat kernel for
the operator (29) is given by the expression

’M(DJ = "HJ-;(DDTIL-U') o —/-w-lv (41}

where

Ab, = R R,

(4 }2

We thus see that the Minakshisundaram coefficient (41) for the ATF-fermion field
is different from a naive sum of contributions of four types of ordinary spinor fields
(represented in (41) by the first term) by the Yang-Mills type curvature contraction.
Comsequently, in the quasiclassical approximation to the ECT with ATF-fermions the
torsion (or better to say, the local Lorentz connection) becomes totally propagating,
and not only the axial trace part of it. It is also very important that the additional gravi-
tational counterterm in (41) has a simple Poincaré invariant structure R b R, as
compared to the usual spinors in U,.

Let us now calculate the anomalies for the ATF-fermions.

Like in the ordinary theory, the massless case of the theory (18) is invariant under
the left y.-transformations,

Y=y =759,
and the left axial (classical) current is conserved,
Ji =i Tripysy'y), Vg =0.
However, using the method of ref. [25] (sect. 4.3) one can easily get for the vacuum
average

N JE = rﬁa'(::r) In det A(x)|,—o = 2(42)~2 T'r [(75)5i05 (K )iy ual
and after taking the trace we find
NI =4V I pirac + P (42)
where
1 = % .
P=— 393 B pop R, ehr8,

Again we see that in additions to the four times result for the Dirac case the non-
trivial contribution of the Riemann-Cartan Pontriagin integrand is present.

In the previous section we have seen that the theory (18) is invariant in curved space-
time under the right y.-transformations, the only relict of the SO(2, 4) right symmetry
of the flat space model. Thus on the classical level the right axial current, J 4 = i T'r(py*yy;)
is also conserved,

V% = 0.

Let us show that in quantum theory this conservation law is not disturbed, i.e. there are
no anomalies for it.
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Indeed, let us find the vacuum average,

G = In det A(x)]._g : (43)

0
onx(x)

where the operator Ala) is defined as follows
(Dij = A st — Wy 7"Vie 0% = Aigg + (8 Aimpa — Ao 1) (Vs)mie (44)

Notice however that the generalized Dirac operator (29) commutes with the right y;
multiplication,

A inl..i‘l(}’;'u)mi == (ya)fm A b

Hence

(A% = A% + 2A& A ye)mil + O3, (43)
and for the arbitrary degree of /% we then find

(4° = (A%5u + 20[& (A3 1) Vs)mi) + [ (46)
where

f®4; 1 depend only linearly on &% &% ..., &".

Thus, since the trace of the commutator is identically zero, Tr{x, (4,)" - y5] = 0, we
get finally
. L v
Trexp (—t A¥x)) = Tr 3 —(—)" (4%x))"

= Trexp (—t 4% + F(&3,...),

where

F(a2,...) = Tr(g‘ L[(_g}uf{m)_

g T

Consequently, we have

& ¥
) Trexp (—t A¥x))|x=0 = 0,
and since the (divergent) determinant can be defined by a well known formula,
9 e y
In det A¥x) = — /‘ -TT’r exp (—t 4%(x)),
i
we get for (43) the final answer
Ceosmon of bl J
NI = 5 In det A%x)|,_, = 0. (48)

Hence, we have proved that the axial right current has no anomalies in the presence
of the classical gravitational field, Note that the result (48) is valid in general, inany
loop-approximation. y

The absence of anomalies for the right y,-current is naturally explained, if one notice
that the operator 4 (29) transforms y;-odd wave functions into y;-odd ones and analo-
gously even to even ones.
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5. Conelusion

We have studied in this paper the gravitational interaction of antisymmetric tensor
fields which in the Ivanenko-Landau-Kahler approach describe the system of fermion
particles. It turns out that contrary to the flat space theory, in which these fermions
decouple and are reduced to the four independent Dirac spinor fields, in an arbitrary
curved manifold the ATF-fermions interact in a non-trivial manner with the metric and
connection. An important consequence of such interaction is the emergence of the effec-
tive non-linear self-coupling of the fermion fields. In our opinion the above obtained
generalized nonlinear fermionic theory can be used in construction of sub-quark models
(cf. e.g. ref. [26])). The interesting possibility of averting the cosmological singularity is
now under consideration and preliminary results (to be published elsewhere) show that
the ATF-fermions can prevent collapse in a class of spatially homogeneous cosmological
models.

Of course, the above investigation is only a small part of the study of the properties
of the spin-coupling between the fermions and the gravitational field. There still remain
the problems of obtaining the concrete physical effects within the framework under
consideration, the self-consistent quantisation of both the gravity and the fermion matter,
the renormalizability problem ete. It seems also worth studying the supergravity models
with ATF-fermions, thus deseribing not only fields, which mediate the interaction, but
also the fundamental half-integer spin matter in purely geometrical terms.

In conclusion we want to point out on the fundamental question to be solved. In
the flat space-time the ordinary quantum electrodynamies with the standard Dirac
fields is indistingnishable from the QED with ATF-fermions. Moreover it is easy to obtain
the non-abelian generalization, assuming that the ATF-fermions carry additional inter-
nal indices and transform under a representation of some internal (colour, flavour etc.)
symmetry group, and hence one can construct alternative electroweak and grand unified
models with ATF-fermions instead the Dirac spinors. Thus should we live in the Min-
kowsky space-time we could never get to know what kind of matter we and the w hole
Universe is constructed from: either Dirac or ATF fermions. However gravity, as we have
seen above, feels the difference between these two types of half integer spin particles.
Hence only gravitational experiments can give a definite answer on the important qu es-
tion: from which matter the Universe is built ? This is one of the most impressive concl u-
sions, since it is commonly assumed (especially by the elementary particle physicists)
that the gravitation does not play an important role in the high energy physies due to
the small value of the gravitational coupling constant .
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