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Abstract
A new statistical approach to alignment (finding the longest common
subsequence) of two random RNA-type sequences is proposed. We have
constructed a generalized ‘dynamic programming’ algorithm for finding the
extreme value of the free energy of two noncoding RNAs. In our procedure, we
take into account the binding free energy of two random heteropolymer chains
which are capable of forming the cloverleaf-like spatial structures typical for
RNA molecules. The algorithm is based on two observations: (i) the standard
alignment problem can be considered as a zero-temperature limit of a more
general statistical problem of binding of two associating heteropolymer chains;
(ii) this last problem can be generalized naturally to consider sequences with
hierarchical cloverleaf-like structures (i.e. of RNA type). The approach also
permits us to perform a ‘secondary structure recovery’. Namely, we can predict
the optimal secondary structures of interacting RNAs in a zero-temperature
limit knowing only their primary sequences.

PACS numbers: 05.40.−a, 87.14.gn

(Some figures in this article are in colour only in the electronic version)

1. Introduction: noncoding RNAs and associating heteropolymers

According to a common definition, the noncoding RNA (ncRNA) is an RNA molecule that
is not translated into a protein [1]. The ncRNAs either regulate the gene expression directly,
for example by occupying the ribosome binding site, or indirectly providing RNA targeting
specificity for a protein-based regulatory mechanism [2]. In general, regulatory RNAs act
in the cell by one of the two basic mechanisms: by base-pairing interactions with other
nucleic acids or by binding to proteins [1, 3, 4]. Thus, the base pairing with target molecules
constitutes the typical mechanism, by which the ncRNA regulates the gene expression.
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Since base-pairing of noncoding and target RNAs plays such important biological role,
it is a worthy task to construct an algorithm, which, knowing the primary structures of each
macromolecule, allows us to estimate theoretically the binding free energy of an ncRNA–target
RNA complex. This problem resembles the one of alignment (or comparison) of two DNA
sequences (or, more generally, two given sequences of letters) with one principal difference: in
the ncRNA case one should align the sequences of nucleotides which constitute pairs between
two RNAs, and also take into account the secondary structure of each RNA which comes into
play by additional contribution to the total cost function.

In brief, the main goal of this work is to develop a constructive method to build a ‘cost
function’, which characterizes a matching (alignment) of two noncoding RNAs with arbitrary
primary sequences. To put the problem of alignment of ncRNAs into context of conventional
statistical physics, it seems desirable to specify the basic features of ncRNAs which would
play the major role in our analysis.

The ncRNAs are the specific examples of a wide class of so-called associating
heteropolymers. Generally speaking, we call a polymer ‘associating’ if, besides the strong
covalent interactions responsible for the frozen primary sequence of monomer units, it is
capable of forming additional weaker reversible temperature-dependent (thermoreversible)
bonds between different monomers. For associating polymers the variety of possible
thermodynamic states (‘secondary and ternary structures’, in biological terminology) is
determined by the interplay between the following three major factors: (i) the energy gain
due to the direct ‘pairing’, i.e. formation of thermoreversible contacts; (ii) the combinatoric
entropy gain due to the choice of which particular monomers (among those able to participate
in bonds formation) do actually create bonds; (iii) the loss of conformational entropy of the
polymer chain due to pairing (and in particular, the entropic penalty of loop creation between
two paired monomers).

The RNA molecules differ from other biologically active associating polymers, such as,
for instance, proteins (see [5] for a review), by a capability of forming mostly hierarchical
‘cloverleaf-like’ (or ‘cactus-like’) secondary structures. In other words, the formation of a
thermoreversible contact between two distant monomers in an RNA (or in a single-stranded
DNA) molecule imposes a nonlocal constraint on a number of possible thermoreversible bonds
formed by other monomers: all bonds in an RNA chain are known to be arranged in a way
to allow only hierarchical cactus-like folded conformations topologically isomorphic to a
tree. The pairs of bonds, which do not obey such a structure are called ‘pseudoknots’ (see
figure 2(b)); in most cases their formation in RNA molecules is highly suppressed. We shall
not discuss here the reason why it happens, but rather accept the absence of pseudoknots as a
matter of fact. Let us note however that in the work [6] the dynamic programming algorithm
has been developed for predicting optimal RNA secondary structure, including pseudoknots.

Being formulated in statistical terms, the main goal of our work is as follows. We propose
a new statistically justified algorithm for the determination of the binding free energy of two
primary heteropolymer sequences allowing for the possibility for each sequence to form a
hierarchical cactus-like secondary structure, typical for RNA molecules. Using this algorithm
we can also predict optimal secondary structures of each interacting ncRNAs by knowing their
primary sequences.

2. Theoretical background

Let us reveal the similarities and differences between computations of the free energy of
associating heteropolymer complexes and standard matching algorithms.
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The matching (or ‘alignment’) problem, even for linear structures is one of the key tasks of
computational evolutionary biology. In particular, one of the most important applications
of longest common subsequence (LCS) search in linear structures is a quantitative definition
of a ‘closeness’ of two DNA sequences. Such a comparison provides information about how
far, in evolutionary terms, two genes of one parent have deviated from each other. Also, when
a new DNA molecule is sequenced in vitro, it is important to know whether it is really new or
is it similar to already existing molecules. This is achieved quantitatively by measuring the
LCS of the new molecule with other ones available from databases.

The task of this work consists of extending the statistical approach developed for alignment
of linear sequences to the computation of pairing free energy of two RNA-type structures.
The target object of our approach is the ground state free energy of complexes ncRNA–target
RNA, or ncRNA–DNA.

2.1. Alignment of linear sequences

The problem of finding the LCS of a pair of linear sequences drawn from the alphabet of c
letters is formulated as follows. Consider two sequences α = {α1, α2, . . . , αm} (of length m)
and β = {β1, β2, . . . , βn} (of length n). For example, let α and β be two random sequences
of c = 4 base pairs A, C, G, T of a DNA molecule, e.g. α = {A, C, G, C, T, A, C} with m = 7
and β = {C, T, G, A, C} with n = 5. Any subsequence of α (or β) is an ordered sublist of α

(β) entries which need not be consecutive, e.g. it could be {C, G, T, C}, but not {T, G, C} for
the α sequence. A common subsequence of two sequences α and β is a subsequence of both
of them. For example, the subsequence {C, G, A, C} is a common subsequence of both α and
β. There are many possible common subsequences of a pair of initial sequences. The aim
of the LCS problem is to find the longest of them. This problem and its variants have been
widely studied in biology [7–10], computer science [11–14], probability theory [16–21] and
more recently in statistical physics [15, 22–25].

The basis of dynamic programming algorithms for comparing genetic sequences has
been formulated for the first time in [26] (see also [27]). In most general settings, this
algorithm takes into account the number of perfect matches in the pair of sequences and
also distinguishes between ‘mismatches’ and ‘gaps’. Being formulated in statistical terms, it
consists in constructing a ‘cost function’, F, which has a meaning of energy (see, for example,
[28, 29] for details):

F = Nmatch + μNmis + δNgap. (1)

In equation (1), Nmatch, Nmis and Ngap are, respectively, the numbers of matches, mismatches
and gaps for a given alignment of two sequences, and μ and δ are respectively the energies
of mismatches and gaps (without a loss of generality, the energy of matches can be set to 1).
Besides equation (1) we have an obvious conservation law

n + m = 2Nmatch + 2Nmis + Ngap (2)

which allows one to exclude Ngap from equation (1) and rewrite it as follows:

F = Nmatch + μNmis + δ(n + m − 2Nmatch − 2Nmis)

= (1 − 2δ)Nmatch + (μ − 2δ)Nmis + const. (3)

In equation (3) the irrelevant constant δ(n + m) can be dropped out.
Adopting (1 − 2δ) as a unit of energy, we arrive to the expression

F̃ = Nmatch + γNmis (4)
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where

γ = μ − 2δ

1 − 2δ
, (5)

and γ � 1 by definition. The interesting region is 0 � γ � 1, otherwise there are no
mismatches at all in the ground state (i.e. there is no difference between γ = 0, which
corresponds to the simplest version of the LCS problem, and γ < 0).

The maximal cost function

F̃ max = max [Nmatch + γNmis] (6)

can be computed recursively using the ‘dynamic programming’ algorithm [26–29]

F̃ max
m,n = max

[
F̃ max

m−1,n, F̃
max
m,n−1, F̃

max
m−1,n−1 + ζm,n

]
(7)

with

ζm,n =
{

1 for match
γ for mismatch.

(8)

It is known [28–30] that the statistical behavior of the matching cost function (7)–(8)
in random linear sequences is substantially non-Gaussian. In particular, for a pair of linear
sequences of lengths m = n (n � 1) the fluctuations of maximal cost function (averaged
over different realizations of sequences) grow as n1/3. Moreover, in the previous study of one
of us (SN) it was shown [30] that properly normalized asymptotic distribution of the LCS in
a simplified version of the problem, known in the literature as a ‘Bernoulli model’, is given
by the so-called Tracy–Widom (TW) distribution. The TW law has been derived first for the
distribution of the highest eigenvalues of random matrices belonging to the Gaussian unitary
ensemble [31]6.

2.2. Matching versus pairing of two random linear heteropolymers

The main goal of this paper consists in developing an algorithm for the computation of a cost
function, which characterizes the similarity of two given RNA-type sequences. To succeed,
we should incorporate the energetic and entropic contributions coming from the different
rearrangements of intra-molecular bonds typical for RNAs into the conventional cost function
discussed above. It is not obvious how to do that directly in the frameworks of the dynamic
programming approach formalized in the recursion relation (7)–(8). To proceed, we exploit
some trick (formulated for the first time in [33]), which consists of two consecutive steps.

First, we reformulate the recursion relation (7) in terms natural for statistical mechanical
consideration and show that (7)–(8) can be regarded as a relation for the free energy of some
statistical model describing the formation of a complex of two random linear heteropolymer
chains in a zero-temperature limit. Second, we take into account the possibility for these
heteropolymers of forming complex spatial cactus-like structures and write the corresponding
recursion relations for the partition function (but not for the free energy) at some nonzero
temperature T. By taking the limit T → 0 at the very end we arrive at the desired cost
function.

To accomplish the first of these two tasks, consider the following auxiliary statistical
model describing the formation of a complex of two heteropolymer linear chains with arbitrary
primary sequences. Let the chains be of lengths L1 = ma and L2 = na, respectively. In what
follows, we measure the lengths of the chains in numbers of monomers, m and n, which implies
a = 1. Every monomer can be chosen from a set of c different types A, B, C, D, . . . Monomers

6 For a recent review of the appearance of Tracy–Widom distribution in several physics problems, see [32].
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Figure 1. Schematic picture of a complex of two random linear heteropolymer chains with two
types of letters (c = 2).

of the first chain could form saturating thermoreversible bonds with monomers of the second
chain (the term ‘saturating’ here means that any monomer can form a bond with at most one
monomer of the other chain). The bonds between similar types (like A–A, B–B, C–C, etc)
have the attraction energy u and are called below ‘matches’, while the bonds between different
types (like A–B, A–D, B–D, etc) have the attraction energy v and are called ‘mismatches’7.
Suppose also that some parts of the chains can form loops. These loops obviously produce
‘gaps’ since the monomers inside the loops of one chain have no matching (or mismatching)
counterparts in the other chain. We give an example of a configuration of such a system with
c = 2 in figure 1.

Our goal is to compute the free energy of the described model at sufficiently low
temperatures, which allows us to assume that the entropic contribution of the loop formation is
negligible compared to the energetic part of direct interactions between monomers. Let Gm,n

be the partition function of such a complex, i.e. the sum of contributions from all arrangements
of bonds. In the low-temperature limit Gm,n satisfies a recursion⎧⎪⎪⎨

⎪⎪⎩
Gm,n = 1 +

m,n∑
i,j=1

βi,jGi−1,j−1

Gm,0 = 1; G0,n = 1; G0,0 = 1.

(9)

The meaning of equation (9) is straightforward. Starting from, say, left ends of chains (see
figure 1) we find the first actually existing contact between the monomers i (of the first chain)
and j (of the second chain) and sum over all possible arrangements of this first contact. The
first term ‘1’ in (9) corresponds to the arrangement with no contacts at all. The entries βi,j

(1 � i � m, 1 � j � n) are the statistical weights of bonds; they are encoded in a contact
map {β}:

βm,n =
{
β+ ≡ eu/T i and j match
β− ≡ ev/T i and j do not match.

(10)

7 This general description covers both cases (DNA and RNA) by a straightforward redefinition of letters.
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Straightforward computation shows that the partition function Gm,n (9) obeys the
following exact local recursion8:

Gm,n = Gm−1,n + Gm,n−1 + (βm,n − 1)Gm−1,n−1. (11)

Now, write the partition function Gm,n as Gm,n = exp{Fm,n/T }, where −Fn,m and T are
the free energy and the temperature of the complex of two heterogeneous chains of lengths m
and n. Considering the T → 0 limit in equation (11), we get

Fm,n = lim
T →0

T ln(eFm−1,n/T + eFm,n−1/T + (βm,n − 1)eFm−1,n−1/T ) (12)

which can be regarded as an equation for the ground state energy of a chain. Equation (12)
can be rewritten as

Fm,n = max[Fm−1,n, Fm,n−1, Fm−1,n−1 + ηm,n] (13)

where

ηm,n = T ln(βm,n − 1)

=
{

η+ = T ln(eu/T − 1) match

η− = T ln(ev/T − 1) mismatch.
(14)

Indeed, the ground state energy (13) may correspond either (i) to last two monomers connected,
and then Fm,n equals to F max

m−1,n−1 + ηm,n, or (ii) to the unconnected end monomer of first (or
second) chain, and then Fm,n is F max

m,n−1 (or F max
m−1,n).

Taking η+ as the unit of energy, one can rewrite (13) in a form identical to the dynamic
programming equation (7):

F̃m,n = max[F̃m−1,n, F̃m,n−1, F̃m−1,n−1 + η̃m,n] (15)

with

η̃m,n =
⎧⎨
⎩

1 in case of match

a = η−

η+
in case of mismatch

(16)

(compare to (8)). The parameter a has a simple expression in terms of coupling constants u
and v:

a = η−

η+
= ln(ev/T − 1)

ln(eu/T − 1)

∣∣∣∣
T →0

= v

u
. (17)

The initial conditions for F̃m,n are transformed into F̃0,n = F̃n,0 = F̃0,0 = 0.
Note that the model of heteropolymer binding described above is an auxiliary one and it

bears only vague resemblance to the formation of real polymer–polymer complexes of linear
geometry (on can think of a formation of a double-stranded DNA as, probably, the most
familiar example). Indeed, in the partition function described by (9), a series of important
features of real-life DNAs are neglected, namely

(i) the ‘loop factors’, i.e. the entropic penalty in the partition function due to forcing ends of
side-loops (see figure 1) to meet again;

(ii) the cooperativity of bond formation, meaning that it is much easier to form a bond if there
is another one between two adjacent monomers;

8 Note that if βi,j = 2 for all 1 � i � m and 1 � j � n, the recursion relation (11) generates the so-called Delannoy
numbers [34].
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(a) (b) (c) (d)

Figure 2. Schematic picture of allowed (a) cactus-like and prohibited (b) pseudoknot
configurations of the bonds; (c), (d): arc diagrams corresponding respectively to configurations (a)
and (b) (note the intersection of arcs in (d)).

(iii) the restriction on the minimal loop size, which takes into account the finite flexibility of
polymer chains;

(iv) the fact that different matches (i.e. A–A versus B–B) can have different energies.

All these factors are known to affect the formation of double-stranded DNA structures
(see [35], for example) but we would like to emphasize on the following essential point.
The procedure leading from (9) to (15) is weakly sensitive to an exact form of equation (9).
Only two crucial properties should be taken into account: (1) equation (9) is linear in G,
which reflects the very fact that we are considering the binding of linear chains, and (2) the
factor βi,j describing the bond formation is local. Therefore, since the cooperativity, the
minimal loop weight and the variations in binding energies influence only local properties
of chains, the procedure described by equations (9)–(16) can be easily generalized in a way
to account for all these facts, and the corresponding expressions are straightforward if rather
cumbersome. A more complicated problem is that of accounting for loop factors, since the
loop factors are essentially nonlocal (they depend on the distance between two adjacent bonds)
and in this case one cannot preserve a local dynamic programming algorithm similar to (15).
Fortunately, though, the loop factors are of entropic nature and therefore become negligible in
the low-temperature limit.

In turn, the construction of a dynamic programming algorithm for alignment of sequences
that have an internal secondary structure of RNA-like type is a rather more tricky problem.
Indeed, there is an energetic contribution associated with this secondary structure which
survives even in the low-temperature limit. Nevertheless it is still possible to develop a
nonlocal matching algorithm for this case. This is exactly the problem we address in the
forthcoming sections of this paper.

2.3. Matching versus pairing of two random RNA-type heteropolymers

Here, we generalize the theory of heteropolymer binding developed above for the case of
RNA molecules, whose monomers, apart from forming inter-chain bonds, are capable also of
creating intra-chain links. As mentioned in the introduction, we assume that the structures
formed by thermoreversible bonds of each chain are always of a cactus-like type, as shown in
figure 2(a). It means that we restrict ourselves to the situation in which the chain conformations
with ‘pseudoknots’ shown in figure 2(b) are prohibited. The difference between allowed
and not allowed structures becomes more transparent, being redrawn in the following way.
Represent a polymer under consideration as a straight line with active monomers situated
along it in the natural order and depict bonds by dashed arcs connecting the corresponding

7
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Figure 3. Diagrammatic form of the Dyson-type equation (19) for the partition function of an
individual chain gn with cactus-like topology.

monomers. Now, the absence of pseudoknots means the absence of intersection of arcs—see
figures 2(c) and (d).

Similarly to the previous section, we neglect for simplicity the cooperativity effect and
the fact that different pairs of matching nucleotides have different matching energies. These
assumptions are known to be false for real RNA molecules (see [36] for the theory of secondary
structure formation in RNA-like homopolymers where these effects are taken into account).
However, as we have mentioned above, our model allows a fairly straightforward generalization
to account for all these factors.

Following [37] we write the partition function Gm,n of a complex of two heteropolymers
capable of forming a cactus-like structure (compare equation (9)):⎧⎪⎪⎨

⎪⎪⎩
Gm,n = g

(1)
1,mg

(2)
1,n +

m,n∑
i,j=1

βi,jGi−1,j−1g
(1)
i+1,mg

(2)
j+1,n

Gm,0 = g
(1)
1,m; G0,n = g

(2)
1,n; G0,0 = 1,

(18)

where g
(1)
i,j and g

(2)
i,j are the partition functions of individual chains. They satisfy the self-

consistent equation [38, 39]⎧⎪⎪⎨
⎪⎪⎩

g
(a)
k,n = 1 +

n−1∑
i=k

n∑
j=i+1+�

β ′
i,j g

(a)
i+1,j−1g

(a)
j+1,n;

g
(a)
0 = 1, a = 1, 2.

(19)

This equation (the corresponding diagrammatic representation is shown in figure 3) generates
the secondary structures of RNA-like (cactus) topology and it has frequently appeared in the
RNA context (see, for example, [25, 36, 37, 40]). Here, g

(a)
i,j is the statistical weight of the

loop from the nucleotide i till the nucleotide j in the first (a = 1) or second (a = 2) sequence.
The Boltzmann weights β ′

i,j are the constants of self-association, which are, similarly to βm,n,
encoded by the contact map. The summation over j runs from i + 1 + � till n ensuring the
absence of loops of lengths smaller than � monomers; in what follows we mostly consider
� = 3. Note also that since in this paper we are interested in the low-temperature behavior of
the partition function, we neglect here the aforementioned ‘loop weights’, i.e. entropic factors
due to the formation of intra-chain loops.

Equations (18) and (19) constitute the analytical basis of our numerical studies, for the
problem of RNA-like matching (i.e. matching of sequences with RNA-type architecture).
These equations replace the dynamic programming algorithm (7)–(8) valid for linear
sequences.

3. Matching algorithm for two noncoding RNAs

In this section, we describe an algorithm for computing the binding free energy (which plays
a role of the cost function) for a pair of two noncoding RNAs. If the cactus-like secondary

8
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AUCGAUGUAGGGUCACCGGGCUUAUGUUACGACGAGAUGUCUUGUUCGAUCAUGCGCUUCCGCGGAGAGUGGAAA
AGUUGCACCGCCAGACUACUUAACUAAACGUCGGCCAAGACAAUUCGCAUCGACCUAGUUAGCACGCACCAUCGA

- s1
- s2

Figure 4. Two trial sequences of m = n = 75 nucleotides.

structure within the RNAs constituting the complex is not allowed (this case corresponds to
inserting β ′

i,j = 0 into (19)), the extrapolation of the free energy to zero temperature leads
to the well-known standard dynamic programming algorithm described in (7) and (8). For
brevity, we call this case ‘linear’. When cactus-like structures exist (we call this case ‘RNA-
type’ matching) our algorithm is not reduced (even at zero temperature) to any local recursive
scheme.

For clarity we formulate the sequential steps of our algorithm using a specific example
of two trial sequences of nucleotides of lengths m and n with m = n = 75 taken from [41].
These sequences are depicted in figure 4. We are going to show how these sequences are
aligned according to both ‘linear’ and ‘RNA-like’ algorithms. The corresponding binding free
energies (cost functions) of these alignments

Fm,n = T ln Gm,n

are calculated.

3.1. Linear matching

To compute the cost function for the ‘linear’ alignment, proceed as follows. Construct the
matrix G whose elements Gi,j (1 � i � m; 1 � j � n) are the partition functions satisfying
the relation (10)–(11) with the boundary conditions Gm,0 = G0,n = G0,0 = 1 (see (9)).
The matrix element Gi,j defines matching of i first nucleotides of the first sequence with j

first nucleotides of the second one. Assume that the effective energy of two complimentary
nucleotides in (10) is u = 1, while for noncomplimentary ones we take v = 0. It is clear from
(11) that the search of Gm,n can be completed in polynomial time ∼ O(mn). At T → 0 we
recover the standard dynamic programming algorithm [26, 27] (see (7)).

3.2. RNA-type matching

Suppose now that both sequences in figure 4 can form hierarchical cactus-like (i.e. ‘RNA-
type’) structures. At finite temperature the computation of the free energy of the complex built
by the pair of RNA-type sequences can be accomplished as follows.

Find the matrices g(1) and g(2) (of sizes m × m and n × n) of statistical weights of first
and second sequences separately. To do that note that on the rhs of (19) the difference in lower
indices of corresponding g(a)s is always smaller than on the lhs. This allows us to solve the
system of equations (19) recursively, starting with obvious boundary conditions g

(a)
i,i = 1 for

any i. Indeed, from (19) equipped by defined boundary conditions one immediately finds the
elements g

(a)
i,i+1; on the next step, one calculates g

(a)
i,i+2. For definiteness, one can set g

(a)
i,j = 0

for all i > j . Now, knowing the matrices g(1) and g(2) find the elements Gi,j of the matrix
G by solving (18). Obviously, calculation of each Gi,j takes not more than O(m × n) time
steps. Therefore, the whole matrix G can be determined in time ∼ O(m2 × n2).

Now, the ground state free energy Fm,n (i.e. the binding free energy at zero temperature)
for RNA-like structures can be explicitly computed by extending the approach developed in

9
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section 2.3. Indeed, taking a zero-temperature limit in (18) (compare to equations (15)–(16))
we get

Fm,n = max
i=1,...,m

j=1,...,n

[
f

(1)
1,m + f

(2)
1,n ,Q

m,n
i,j

]
, (20)

where f
(a)
i,j = limT →0 T ln g

(a)
i,j (a = 1, 2) are the free energies of individual subsequences

from the nucleotide i till the nucleotide j , and Q
m,n
i,j is the zero-temperature limit of the (i, j)th

term in equation (18):

Q
m,n
i,j = Fi−1,j−1 + f

(1)
i+1,m + f

(2)
j+1,n + η̃i,j . (21)

Clearly, Q
m,n
i,j has a meaning of a ground state free energy of a complex which is forced to

have a bond in position (i, j). In turn, the ground state energy of a single chain satisfies the
following equation:

f
(a)
i,j = max

r=1,...,i

s=i+1+�,...,j

[
f

(a)
r+1,s−1 + f

(a)
s+1,j + η̃′(a)

r,s

]
. (22)

Here the values η̃i,j are the inter-sequence matching constants (compare to (16)), while η̃
′(a)
i,j

are the intra-sequence matching constants (compare to β ′
i,j in (19)).

The boundary conditions for the ground state free energy follow from the boundary
conditions of the partition function (18):⎧⎪⎪⎨

⎪⎪⎩
F0,0 = 0;
Fi,0 = f

(1)
1,i ; 1 � i � m

F0,j = f
(2)
1,j ; 1 � j � n.

(23)

Thus, to compute the ground state free energy of the complex of two RNA-like sequences,
we should first reconstruct the matrices f (1) and f (2) for individual chains by applying
equation (22) and then find the matrix F using equation (20). The boundary conditions (23)
together with equation (21) allow us to compute the elements of the matrices Q1,j for m = 1
and any 1 � j � n. Knowing the corresponding matrix Q1,j we define the elements F1,j

(1 � j � n) of the free energy matrix by using equation (20). Then we proceed recursively
and determine the matrices Q2,j , compute F2,j (1 � j � n), etc. Clearly, this algorithm can
be completed in time of order O(m2 × n2).

3.3. Statistical analysis of a pair of random sequences

We have performed the statistical analysis of the ground state energy for pairs of random
sequences with linear and RNA-type matching. For simplicity, we considered the chains of
same length n. It has been shown in [30] that for linear matching the ground state free energy
in the so-called Bernoulli matching approximation has the following behavior at n � 1:

〈F 〉 ≈ 2

1 +
√

c
n + f (c)〈χ〉n1/3

σ ≡
√

〈F 2〉 − 〈F 〉2 ≈
√

〈χ2〉 − 〈χ〉2f (c)n1/3,

(24)

where f (c) = c1/6(
√

c−1)1/3
√

c+1
(see [30] for details), c is the number of different letters in the

sequence (in our case it is just the number of nucleotides, c = 4) and χ is some random
variable with known n-independent distribution (the so-called Tracy–Widom distribution,
〈χ〉 = −1.7711 . . . and 〈χ2〉 − 〈χ〉2 = 0.8132 . . .).

The corresponding numerical results are presented in figure 5. The slope kl ≈ 0.65 in
figure 13(a) is in very good agreement with the value kl = lim

n→∞
〈F 〉
n

→ 2
3 computed from the

10
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(a) (b)

Figure 5. Plots of the ground state energy, 〈F(n, T = 0)〉 (linear scale), and its fluctuations, σ(n)

(double logarithmic scale) for (a) linear matching and (b) RNA-like matching.

first of equations (24), while the slope 0.38 in figure 13(b) is close to the exponent 1
3 in the

second line of (24). The averaging has been performed over 200 different randomly chosen
structures with a uniform distribution of c = 4 nucleotides.

The similar analysis have been done for the same trial sequences but with RNA-type
matching rules with � = 0. The plots of 〈F(n)〉 and σ(n) are shown in figures 5(c). One
sees that again, similarly to the linear matching, 〈F(n)〉 = kcn for large n, but the coefficient
kc ≈ 0.92 is larger than kl. This signals the large number of pairs in the ground state, leading
to the loop creation. The slope in figure 5(d) allows one to conclude that the loop creation does
not affect the universality class of fluctuations and it remains the same as for linear sequences.
The details of this statistical analysis will be published separately [42].

4. Secondary structure recovery

In this section, we show how the algorithm used for the computation of the ground state
energy of the RNA-like complexes can help to recover the details of the ground state
secondary structure. We start with recalling the corresponding procedure for linear matching
[28, 29, 33], and then we pass on to the more complicated RNA-like case.

11
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C G C A A G C U C

U 0 0 0 1 1 0 0 0 0

C 0 1 0 0 0 1 0 0 0

G 1 0 1 0 0 0 1 0 1

A 0 0 0 0 0 0 0 1 0

A 0 0 0 0 0 0 0 1 0

A 0 0 0 0 0 0 0 1 0

U 0 0 0 1 1 0 0 0 0

G 1 0 1 0 0 0 1 0 1

G 1 0 1 0 0 0 1 0 1

C G C A A G C U C

U 0 0 0 1 1 1 1 1 1

C 0 1 1 1 1 2 2 2 2

G 1 1 2 2 2 2 3 3 3

A 1 1 2 2 2 2 3 4 4

A 1 1 2 2 2 2 3 4 4

A 1 1 2 2 2 2 3 4 4

U 1 1 2 3 3 3 3 4 4

G 1 1 2 3 3 3 4 4 5

G 1 1 2 3 3 3 4 4 5

= F =

(a) (b)

S2

1
S

Figure 6. (a) Incidence matrix η̃ and (b) ground state free energy matrix F.

4.1. Finding the longest common subsequence for linear chains

Sequence matching problem for linear structures consists in finding the longest common
subsequence of two given sequences of nucleotides. In other words, we are interested not
just in the length of the LCS (which is provided by the dynamic programming algorithm (7),
(8)) but in the complete set of matched nucleotides. Note that a degeneracy in the ground
state can exist, meaning that the ‘best’ common subsequence is not unique. Correspondingly,
the algorithm of LCS recovery described below may have ‘branching points’, and following
different branches one can recover different best subsequences.

Let us demonstrate the recovery algorithm on a simple example. Take two sequences of
nucleotides, say

U C G A A A U G G −S1
U C G A A A U G G −S2

(25)

(in this case m = n = 9). Construct the incidence matrix η̃ with η̃i,j = 1 if monomers
i of the first sequence and j of the second one match, and η̃i,j = 0 otherwise—see
figure 6(a). Then—see figure 6(b)—construct the matrix of ground state free energies F
using the recursion algorithm (15)–(16). The lower right element of this matrix F9,9 = 5 is
the ground state free energy of the whole linear complex.

Now, in order to see which particular nucleotides do form links, one should pay attention
to which particular option is realized on each step of algorithm (7). All this information is
preserved in the F matrix. Indeed, take an element Fi,j with any i, j and compare its value to
the values of three neighboring matrix elements Fi−1,j−1, Fi−1,j , Fi,j−1. Then we proceed as
follows.

(1) If Fi−1,j−1 = max[Fi−1,j−1, Fi−1,j , Fi,j−1], then to get the desired value of Fi,j one
should link the ith nucleotide in the first sequence to the j th one in the second one.

(2) If Fi−1,j = max[Fi−1,j−1, Fi−1,j , Fi,j−1], then the ith nucleotide in the first sequence does
not influence the Fi,j and can be skipped.

(3) If Fi,j−1 = max[Fi−1,j−1, Fi−1,j , Fi,j−1], then the ith nucleotide in the first sequence does
not influence the Fi,j and can be skipped.

If several of these options happen at once, one gets the aforementioned branching point
which ultimately would lead to different ways of realizing the ground state.

12
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(b)(a)

U C G A

A G

G

C U C

A A

C G C A

U G

C G C A A G G G G

U 0 0 0 1 1 0 0 0 0

C 0 1 1 1 1 2 2 2 2

G 1 1 2 2 2 2 3 3 3

A 1 1 2 2 2 2 3 4 4

A 1 1 2 2 2 2 3 4 4

A 1 1 2 2 2 2 3 4 4

U 1 1 2 3 3 3 3 4 4

G 1 1 2 3 3 3 4 4 5

G 1 1 2 3 3 3 4 4 5

Figure 7. Structure recovery algorithm for linear chains: (a) free energy matrix; (b) recovered
matching.

Starting this procedure with the element at the low right corner of F (F9,9 in our case—see
figure 7(a)) and repeating the algorithm recursively one gets the desired longest common
subsequence shown in figure 7(b).

4.2. Secondary structure recovery for RNA-type matching

Structure recovery for the chains capable of forming cactus-like architecture is a much more
involved problem; however, it can also be described recursively. In this case the algorithm
consists of the following successive steps.

To recover the inter-chain contacts we proceed as follows. Construct the matrices F,
f (1),(2) and Qi,j for i = 1, . . . , n, j = 1, . . . , m as prescribed by the algorithm of finding the
ground state free energy. Take the element Fm,n and check if Fm,n = f

(1)
1,m+f

(2)
1,n . If yes, then the

ground state corresponds to two unconnected RNA structures, and one should go immediately
to the intra-chain structure recovery. If not, consider the matrix Qm,n (equation (21)) and
choose its maximal element Qm,n

p,q . This element corresponds to pairing between the nucleotide
p of the first sequence and nucleotide q of the second one; this pairing should exist in the ground
state secondary structure. (Once again, the existence of several maximal elements of Qm,n

should be considered as a branching point of the algorithm.) Now, substitute m → (p − 1),
n → (q − 1) and repeat this procedure. Proceeding recursively until min(p, q) � 1, one gets
all the inter-chain contacts in the primary structure.

Knowing all pairs of nucleotides linking two chains together, one should reconstruct the
secondary structure of intra-chain loops between these connections. To do that, proceed
as follows. Assume, for definiteness, that we are interested in the internal structure of the
first match between ith and j th nucleotides (these nucleotides are involved in the inter-chain
connections). Build the matrix Si,j consisting of elements S

i,j
r,s = f

(1)
r+1,s−1 + f

(1)
s+1,j + η̃r,s with

i < r < s < j . Find the largest element of this matrix; let it be, say, Si,j
p,t . Then the nucleotides

p and t do form a bond, and there are no more bonds between nucleotides with numbers i
and p. Now repeat the same procedure substituting p → i and t → j , and also substituting
t → i and j → j . Since on each step the difference between the starting and ending indices
decreases, this procedure converges to the desired secondary structure (list of bonds).

To understand the algorithm better let us demonstrate it by example (25). The
corresponding incidence matrix η̃ (for cross-sequence matching S1–S2) is shown in

13
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U C G A A A U G G

U 0 0 0 1 1 1 0 0 0

C 0 0 1 0 0 0 0 1 1

G 0 1 0 0 0 0 0 0 0

A 1 0 0 0 0 0 1 0 0

A 1 0 0 0 0 0 1 0 0

A 1 0 0 0 0 0 1 0 0

U 0 0 0 1 1 1 0 0 0

G 0 1 0 0 0 0 0 0 0

G 0 1 0 0 0 0 0 0 0

C G C A A G G G G

C 0 1 0 0 0 1 0 0 0

G 1 0 1 0 0 0 1 0 1

C 0 1 0 0 0 1 0 0 0

A 0 0 0 0 0 0 0 1 0

A 0 0 0 0 0 0 0 1 0

G 1 0 1 0 0 0 1 0 1

C 0 1 0 0 0 1 0 0 0

U 0 0 0 1 1 0 0 0 0

C 0 1 0 0 0 1 0 0 0

” =’=

S1 S2

1
S

2
S

(a) (b)

Figure 8. Incidence matrices for pairs of chains with possible clover-leaf structures in each
sequence: (a) internal matching S1–S1; (b) internal matching S2–S2.

C G C A A G G G G

U 0 1 1 2 2 2 3 4 4

C 0 1 1 2 2 3 3 4 4

G 1 2 2 3 3 3 4 5 5

A 2 3 3 3 3 4 4 5 5

A 2 3 3 3 3 4 4 5 5

A 2 3 3 3 3 4 4 5 5

U 3 4 4 4 4 5 5 6 6

G 4 4 5 5 5 5 6 7 7

G 4 4 5 5 5 5 6 7 8

F = f =(2)
f =(1)

(a) (b) (c)

U C G A A A U G G

U 0 0 1 2 2 2 3 3 3

C 0 0 1 1 1 1 2 2 2

G 0 0 0 0 0 0 1 1 1

A 0 0 0 0 0 0 1 1 1

A 0 0 0 0 0 0 1 1 1

A 0 0 0 0 0 0 1 1 1

U 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0

C G C A A G C U C

C 0 1 1 1 1 2 2 3 3

G 0 0 1 1 1 1 2 3 3

C 0 0 0 0 0 1 1 2 2

A 0 0 0 0 0 0 1 2 2

A 0 0 0 0 0 0 1 2 2

G 0 0 0 0 0 0 1 1 1

C 0 0 0 0 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

Figure 9. Algorithm description: energies corresponding to incidence matrices in figure 8: (a)
ground-state free energy matrix; statistical weights of the first (a) and second (b) sequences.

figure 6(a), while the incidence matrices η′ (for internal matching of the first sequence),
η′′ (for internal matching of the second one) are shown in figures 8(a) and (b),
respectively.

The ground-state free energy matrices Fs, as well as the matrices of effective statistical
weights f (1) and f (2) of first and second sequences, are shown in figures 9(a)–(c) (for
simplicity, we assume here � = 0, but note that the algorithm is insensitive to the value
of �).

We begin with the reconstruction of the optimal set of contacts between first and second
chains (the inter-chain structure recovery).

Step 1. Since F9,9 > f
(1)
1,9 + f

(2)
1,9 consider the matrix Q for F 9,9—see figure 10(a).9 The

maximal element of the matrix Q is Qmax = Q9,9 = 8, meaning that the ninth nucleotide of
S1 forms a bond with the ninth nucleotide of S2.

Step 2. Since F8,8 > f
(1)
1,8 + f

(2)
1,8 , take the matrix Q for F 8,8—see figure 10(b). The maximal

element of the current matrix Q is Qmax = {Q8,1 or Q8,3} = 7, meaning that the eighth

9 For brevity we present only those matrices Qi,j which are used for the structure recovery. For each (i, j) the matrix
Qm,n is of size m × n.
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5 4 5 6 5 3 4 4

4 4 4 4 4 4 3 4

5 3 5 4 4 3 5 4

5 4 5 5 5 4 4 6

6 5 6 6 5 4 5 6

5 4 5 5 4 3 4 5

5 4 5 6 5 3 4 4

7 5 7 6 5 4 6 5

5 4 5 6 5 3 4 4 5

4 4 4 4 4 4 3 4 5

5 3 5 4 4 3 5 4 6

5 4 5 5 5 4 4 6 6

6 5 6 6 5 4 5 6 6

5 4 5 6 5 3 4 4 5

5 4 5 6 5 3 4 4 5

7 5 7 6 5 4 6 5 7

7 6 7 7 6 5 6 6 8

Q Ffor 9,9

Q Ffor 8,8

(a) (b)

Figure 10. Algorithm description for inter-chain contacts: matrices Q corresponding to (a) F9,9;
(b) F8,8.

C G A A A U

U 1 1 3 3 2 1

C 2 1 1 0 0 0

G 1 1 0 0 0 0

A 1 0 1 0 0 0

A 0 1 0 0 0 0

A 1 0 0 0 0 0

U C G A A A U

U 0 0 1 2 2 2 3

C 0 0 1 1 1 1 2

G 0 0 0 0 0 0 1

A 0 0 0 0 0 0 1

A 0 0 0 0 0 0 1

A 0 0 0 0 0 0 1

U 0 0 0 0 0 0 0
U C G A A A U

f (1) =
S =

(a) (b) (c)

Figure 11. Algorithm description for inter-chain contacts: matrices f (1) (a) and S (b); the
corresponding loop structure (c).

nucleotide of S1 forms a bond with the first nucleotide of S2 or the eighth nucleotide of S1
forms a bond with the third nucleotide of S2—see the structures shown in figure 12.

Step 3. (Only for the structure 2 in figure 12(b)). Since F7,2 > f
(1)
1,7 + f

(2)
1,2 there are no more

interacting inter-chain pairs.

To finalize we should now reconstruct the loop structures of both ground states. So we
proceed with the intra-chain structure recovery.

The loop is reconstructed using the corresponding values of fp,q . Consider the structure
recovery on example of the loop with f

(1)
1,7 : U C G A A A U. The matrices f (1) and S

corresponding to the element f
(1)
1,7 = 3 are depicted in figures 11(a) and (b). The maximal

element of the matrix S for the statistical weight f1,7 is shown in figure 11(b) and is
Smax = S1,3 = S1,4 = 3. If we choose the element S1,3, the nucleotides with numbers 1
and 4 form a bond. Considering now f

(1)
2,3 = 1 and f

(1)

5,7 = 1 and developing the corresponding
matrices S (we do not write them because of their simplicity), we arrive at the internal loop
structure shown in figure 11(c).

The overall structures with inter- and intra-chain optimal matches are shown in
figures 12(a) and (b).

We have applied this algorithm to the longer trial sequences shown in figure 4. We have
performed the structure recovery for three different cases: linear matching (a), RNA-like
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1s -1s -UCGAAAU

GCAAGCU

GG

C C

UCGAAAU

CG AAGCU

GG

C C 2s -2s -
or

(a) (b)

Figure 12. Algorithm description: recovered structures for the pair of sequences shown in (25):
(a) and (b) have identical ground state free energies.

- s1

- s2

A G A GU ACC C A A G U A C U U A GGAAAUC AUGU GG C GG CU AUGUUA G CG G U UCU GUUCG U A GCGCU C GCGG GAGUA CUG

UG A C UU C AAA G C G UUC A CUA UU AC A A GAGU CACCGCC GA UAC AA CCAAGACAA GCAUCG AGC GC CC UC AGCGUCU

(a)

- s1

- s2

A AGG U G C CG A UGUUCGAUCAUGCGCUUCCGCGGAGAGUGGAAAUCGAUGU G CACC GG UU UGUUA ACGAG UGUCU

AGACACUCGUUAACAAACCGGUGCACAUCGA

A

UUGCACCGCCAGA UUAACUAA C G C A CGACCUAGUUAGCACG C UC

(c)

- s1

- s2

AUCGAU UA ACCGGGCUUA GUUACGAC UCGAUCAUGCGCUUCCGCGGAGA A A

AGUUGCA G A UA UA ACGUCGGC GACAAUUCGCAUCGACCUAGUUAG CG A CGA

CG

CC

GGUGUGUUUGUAGAGUCUGGG

CCACACAAACAUCUCAGACCC

A

U

(b)

Figure 13. Structures recovered from the pair of sequences shown in figure 4: (a) linear structure;
(b) branching structure with � = 0; (c) branching structure with � = 3.

matching with � = 0 (b), and RNA-like matching with � = 3 (c). The resulting structures are
depicted in figure 13.

5. Conclusion

In this paper, we have developed and implemented a new statistical algorithm for quantitative
determination of the binding free energy of two heteropolymer sequences under the supposition
that each sequence can form a hierarchical cactus-like secondary structure, typical for RNA
molecules.

In section 3, we offered a constructive way to build a ‘cost function’ characterizing
the matching of two noncoding RNAs with arbitrary primary sequences. The substantial
difference of this procedure from the convenient sequence comparison is that in the ncRNA
case we not only align the sequences of nucleotides which constitute pairs between two RNAs
but also take into account the secondary structure of the parts of RNA between the aligned
nucleotides. Our algorithm is based on two facts: (i) the standard alignment problem can be
reformulated as a zero-temperature limit of a more general statistical problem of binding two
associating heteropolymer chains; (ii) the last problem can be straightforwardly generalized
onto the sequences with hierarchical cactus-like structures (i.e. of RNA type). Taking the
zero-temperature limit at the very end we arrive at the desired ground state free energy with
the account for entropy of side cactus-like loops.
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We have demonstrated in detail (see section 4) how our algorithm enables us to solve the
secondary structure recovery problem. In particular, we can predict in zero-temperature limit
the secondary structure of each ncRNA (without pseudoknots) by knowing only their primary
sequences.

Let us emphasize that the structure recovered turns out to be very sensitive to the details
of the model: compare figures 12(b) and (c), which differ only by the minimal allowed size of
a loop. The theoretical question which still remains open concerns the quantitative description
of the change in the topology of RNA pairing when � is changed. Yet it is not clear whether
this change in topology is phase transition or just a cooperative effect. We plan to attack this
question in a separate publication [42].

Such a strong sensitivity of the secondary structure to the details of the model means that
to get the experimentally verifiable secondary structures, one should plug into the model as
much information about exact values of loop factors, cooperativity parameters and interaction
energies as possible. As we have mentioned in the discussion at the end of section 2.2, the
procedure developed in this paper can be straightforwardly generalized to allow for all these
factors. The corresponding results concerning the prediction of real RNA complexes as well
as comparison of our algorithm with the ones existing in the literature will be provided in the
forthcoming paper [42].

Let us emphasize that in this contribution we were guided by an attempt to avoid as
much as possible some heuristic ‘cookings’ remaining in the framework of statistical physics.
So we have exploited the similarity in mathematical description of matching (alignment)
problem and finding the free energy of a complex of two mutually ‘adsorbed’ (i.e. paired)
heteropolymer chains. We believe that this similarity could lead for mutual enrichment
of both dynamic programming approach to alignment of sequences and investigation of
conformational properties of adsorbed heteropolymers10.
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