МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Антипов Евгений Александрович

Асимптотика движения фронта в задачах реакция-диффузия-адвекция

01.01.03 — математическая физика

ДИССЕРТАЦИЯ

на соискание ученой степени

кандидата физико-математических наук

Научный руководитель:

доктор физико-математических наук,

профессор Н.Н. НЕФЕДОВ

Оглавление

B	ВВЕДЕНИЕ								
1	Обзор литературы								
2	Реп	Решение вида движущегося фронта в уравнении реакция-							
	диффузия-адвекция для одномерного случая								
	2.1	Поста	Постановка задачи						
	2.2	Постр	lостроение формальной асимптотики решения						
		2.2.1	Регулярная часть асимптотики	23					
		2.2.2	Функции переходного слоя	24					
	2.3	Асимі	птотическое приближение положения фронта						
	2.4	Обосн	боснование асимптотики						
		2.4.1	Построение верхнего и нижнего решений	32					
	2.5	Прим	ep	39					
3	Движение двумерного фронта в задаче реакция-диффузия								
	3.1	Поста	новка задачи	42					
		3.1.1	Присоединенные системы	45					
	3.2	Построение асимптотического приближения решения							
		3.2.1	Регулярная часть асимптотики	49					

C	СПИСОК ЛИТЕРАТУРЫ							
ЗАКЛЮЧЕНИЕ 1								
	4.6	Прим	ep			106		
		4.5.2	Проверка дифференциальных неравенств		•	102		
		4.5.1	Построение верхнего и нижнего решений		•	97		
	4.5	Обосн	ювание асимптотики		•	95		
		4.4.1	Асимптотическое представление решения		•	94		
	4.4	Асими	птотическое приближение положения фронта		•	91		
		4.3.2	Функции переходного слоя			86		
		4.3.1	Регулярная часть асимптотики			84		
	4.3	3 Асимптотическое представление решения				83		
	4.2	Присс	рединенное уравнение			80		
	4.1	Поста	новка задачи			77		
	адв	екция				77		
4	Ды	ижени	е двумерного фронта в задаче реакция-диф	фу	ЗI	1я-		
	3.4	Прим	ep		•	75		
		3.3.2	Проверка дифференциальных неравенств		•	66		
		3.3.1	Построение верхнего и нижнего решений		•	62		
	3.3	В Обоснование асимптотики			•	60		
		3.2.5	Асимптотическое представление решения		•	59		
		3.2.4	Функции пограничных слоев		•	58		
		3.2.3	Асимптотическое приближение положения фро	нта	•	56		
		3.2.2	Функции переходного слоя			50		

Введение

Актуальность темы

Диссертационная работа представляется к защите по специальности 01.01.03 «Математическая физика», одной из целей которой является разработка математического аппарата для исследования математических проблем, возникающих в таких областях теоретической физики как механика жидкости и газа, механика частиц и систем, и других. В частности, особый интерес представляет наличие областей больших градиентов функций, описывающих температуру, плотность или скорость потока частиц, возникающее по причине пространственной неоднородности среды. Эти области называют внутренними переходными слоями. Задачи с внутренними переходными слоями содержат естественный малый параметр, равный отношению ширины переходного слоя к ширине рассматриваемой области, поэтому при разработке соответствующих математических моделей можно с успехом использовать сингулярно возмущенные задачи для уравнений типа реакция-диффузия-адвекция с малым параметром при старшей производной по пространственным координатам [1] - [14]. В частности, интерес представляют задачи, имеющие решения вида движущихся фронтов. К таким задачам относятся, например, исследова-

ние фронтов горения [15] или нелинейных акустических волн [16] - [17]. Исследованию задач с решением вида движущегося фронта посвящена настоящая работа.

Актуальность темы заключается в том, что задачи с малым параметром при старшей производной по пространственным координатам относятся к разряду «жестких», при численном решении которых можно столкнуться с определенными трудностями, такими как выбор начальных условий, лежащих в области влияния решения с внутренним переходным слоем, а также подбор адекватных сеток для реализации разностных схем. Эффективным средством для преодоления этих трудностей является аналитическое исследование решения. Используемые в работе асимптотические методы, в частности, алгоритм Васильевой [18] и асимптотический метод дифференциальных неравенств [19] - [26] позволяют с точностью до малого параметра определить положение переходного слоя и уравнение его движения [27] - [31], а также обосновать существование решения рассматриваемого вида и тем самым подтвердить достоверность численных расчетов. Кроме того, исследования проведенные в работе, могут быть использованы для уточнения уже имеющихся математических моделей или для разработки новых. В частности, результаты, полученные в настоящей работе, являются важным этапом моделирования нелинейных волн, описываемых уравнением Бюргерса с так называемой квадратичной и «модульной» нелинейностями [16] - [17].

Цель работы

Получить обоснованные асимптотические приближения решений началь-

но-краевых задач типа реакция-адвекция-диффузия с решениями вида движущихся одномерных и двумерных фронтов.

Определить влияние, которое оказывают реакция и адвекция на динамику движения фронта.

Задачи

Для достижения поставленной цели решались следующие задачи:

Модификация алгоритма Васильевой для задач с адвективным слагаемым и распространение метода дифференциальных неравенств на случай начально-краевых задач с решением вида движущегося фронта, а также разработка иллюстрационных примеров

- для одномерных начально-краевых задач типа реакция-адвекциядиффузия в случае «большой» адвекции, то есть когда адвективное слагаемое, сравнимо по порядку величины с реактивным, а диффузия мала,
- для двумерных нелинейных начально-краевых задач в которых решение вида движущегося фронта возникает благодаря нелинейным реактивным слагаемым,
- для двумерных начально-краевых задач с большим адвективным слагаемым.

Основные положения, выносимые на защиту

 Исследование новых классов сингулярно возмущенных задач типа реакция-диффузия-адвекция с решениями вида движущегося фронта.

- Разработка алгоритмов построения асимптотических разложений решений одномерных и двумерных задач с внутренними переходными слоями, дающих возможность определять уравнение движения фронта.
- Строгое математическое обоснование результатов. Доказательство существования решений вида движущегося фронта у начально-краевых задач.

Научная новизна

Исследование, проведенное в диссертационной работе продолжает цикл работ [26], [25], [32], касающихся асимптотического исследования решений краевых задач вида движущегося фронта на отрезке. Новизна работы заключается в том, что в ней асимптитические методы впервые были применены для исследования начально- краевых задач с «большим» адвективным слагаемым на отрезке, а также для задач с решением вида фронта в полосе.

Теоретическая и практическая ценность

Практическая значимость диссертационной работы состоит получении условий существования решений вида движущихся фронтов и асимптотических приближений уравнений движения фронта, возникающего за счет «большого» адвективного слагаемого или за счет нелинейного реактивного слагаемого. Полученные результаты могут быть использованы для разработки новых математических моделей в теории горения, акустике и теории упругости.

Теоретическая значимость работы состоит в развитии методов асимп-

тотического исследования локализации фронта, а также распространении асимптотического метода дифференциальных неравенств на новые классы задач.

Личный вклад автора

Личный вклад автора состоит в модификации известных алгоритмов построения асимптотических разложений и обоснования существования решений с движущимися внутренними переходными слоями одномерных и двумерных задач типа реакция-диффузия-адвекция и двумерной начально-краевой задачи типа реакция-диффузия, а также в конструировании примеров указанных типов задач, подготовке публикаций и докладов на научных конференциях по теме диссертационной работы. Результаты представлены в диссертации, получены автором самостоятельно.

Апробация работы

Результаты работы были доложены на следующих конференциях: FDM'14: Sixth Conference on Finite Difference Methods: Theory and Applications (2014, Болгария), Международный научный семинар «Актуальные проблемы математической физики» (2014, Москва), Тихоновские Чтения 2014 года (2014, Москва), 11-th Annual Workshop "Numerical Methods for Problems with Layer Phenomena (2014 Сербия), Ломоносовские чтения -2017 (2017, Москва), International Conference on Mathematical Modeling in Applied Sciences (2017, Санкт-Петербург), Новые тенденции в нелинейной динамике (2017, Ярославль), Тихоновские Чтения 2017 года (2017, Mосква).

Публикации

Статьи в журналах из списка ВАК

- Антипов Е. А., Левашова Н. Т., Нефедов Н. Н. Асимптотика движения фронта в задаче реакция-диффузия-адвекция // Журнал вычислительной математики и математической физики. 2014. Т. 54, № 10. С. 35–49.
- Volkov V.T., Nefedov N.N., Antipov E.A. Asymptotic-numerical method for moving fronts in two-dimensional r-d-a problems // Lecture Notes in Computer Science. - 2015. - Vol. 9045. - P. 408-416.
- Антипов Е.А., Волков В.Т., Левашова Н.Т., Нефедов Н.Н. Решение вида движущегося фронта двумерной задачи реакция-диффузия // Моделирование и анализ информационных систем. — 2017. — Т. 24, № 3. — С. 259–279.

Статьи в сборниках

- Нефедов Н.Н., Левашова Н.Т., Антипов Е.А., Ягремцев А.В. Решение вида контрастной структуры типа ступеньки в нестационарной задаче реакция-адвекция-диффузия случае // Математические методы и приложения. Труды двадцатых математических чтений РГ-СУ. М.: АПКиППРО Москва, 2011. С. 93–99.
- 2. Антипов Е. А., Левашова Н. Т., Нефедов Н. Н., «Асимптотическое приближение решения уравнения реакция-диффузия-адвекция

с нелинейным адвективным слагаемым», Моделирование и анализ информационных систем, 25:1 (2018), 17–31.

Тезисы докладов

- Попов В. Ю., Антипов Е. А., Левашова Н. Т. Численное исследование процессов формирования контрастных структур в задачах реакция-адвекция-диффузия // Научная конференция Тихоновские чтения. 25-29 октября 2010 года. МГУ им. М.В.Ломоносова. МАКС Пресс Москва, 2010. С. 52–53.
- Нефедов Н.Н., Левашова Н.Т., Антипов Е.А., Ягремцев А.В. Решение вида контрастной структуры типа ступеньки в нестационарной задаче реакция-адвекция-диффузия случае. Математические методы и приложения // Мат. методы и приложения. Труды математических чтений РГСУ. АПК и ППРО Москва, 2011. С. 93–99.
- Ягремцев А. В., Антипов Е. А. Исследование решения контрастной структуры типа ступенька в задаче реакция-диффузия-адвекция // Материалы конференции "Ломоносов-2011". — МГУ электронное, 2011.
- Антипов Е.А., Волков В.Т., Левашова Н.Т., Нефедов Н.Н. Асимптотическое описание движущихся фронтов в двумерной задаче реакциядиффузия // Международный научный семинар "Актуальные проблемы математической физики". Сборник тезисов докладов. — Москва, МГУ им. М.В. Ломоносова, Физический факультет, 2014. — С. 116–119.

- 5. Антипов Е.А., Волков В.Т., Левашова Н.Т., Нефедов Н.Н. Асимптотическое описание движущихся фронтов в двумерной задаче реакциядиффузия // Международный научный семинар Актуальные проблемы математической физики. Москва, МГУ имени М.В. Ломоносова, физический факультет. — Издательство физического факультета МГУ Москва, 2014. — С. 116–119.
- Нефедов Н.Н., Волков В.Т., Левашова Н.Т., Антипов Е.А. Асимптотико - численный подход при описании движущегося фронта в задаче реакция-адвекция-диффузия // Научная конференция Тихоновские чтения. Тезисы докладов. — Москва, 2014. — С. 77–78.
- Volkov V.T., NefedovN N., Antipov E.A. Analytic-numerical method for moving fronts in two-dimensional r-d-a problems // Abstract of "FDM'14: Sixth Conference on Finite Difference Methods: Theory and Applications". June 18-23, 2014. Lozenetz, Bulgaria. — 2014. — P. 40–40.
- Volkov V.T., Nefedov N.N., Antipov E.A. Analytic- numerical method for moving fronts in reaction-advection-diffusion equations // Abstracts of the 11-th Annual Workshop "Numerical Methods for Problems with Layer Phenomena", Novi Sad, Serbia. — 2014. — P. 21–22.
- Нефедов Н.Н., Левашова Н.Т., Антипов Е.А. Существование и асмптотика фронтов в многомерных задачах реакция-диффузия-адвекция // Тезисы докладов научной конференции Тихоновские чтения. — МАКС-Пресс Москва, 2017. — С. 75–75.
- 10. Антипов Е.А., Левашова Н.Т., Нефедов Н.Н. Пример построения

асимптотического приближения решения вида движущегося фронта уравнения реакция-диффузи-адвекция в двумерной области // Сборник тезисов международной конфеернции "Новые тенденции в нелинейной динамике". — Ярославский государственный университет им. П.Г. Демидова г. Ярославль, 2017. — С. 15–17.

 Antipov E., Levashova N., Nefedov N. The moving front solution in a two dimensional problem from reaction-diffusion-advection equation // International conference on mathematical modelling in applied sciences. Saint Petersburg-Russia. July 24-28 2017. — Saint Petersburg-Russia, 2017. — P. 203–204.

Структура и объем диссертации

Диссертационная работа состоит из введения, обзора литературы, трех содержательных глав, заключения и списка литературы. Объем диссертации составляет 125 страниц. Список использованной литературы содержит 64 наименований.

Глава 1

Обзор литературы

Алгоритм построения асимптотического приближения по малому параметру решения сингулярно возмущенной задачи с адвективным слагаемым был впервые предложен Васильевой А.Б. в работе [33], в которой была рассмотрена краевая задача в следующей постановке:

$$\varepsilon \frac{d^2 u}{dx^2} = A(u, x) \frac{du}{dx} + B(u, x), \quad u(0, \varepsilon) = u^0, \quad u(1, \varepsilon) = u^1.$$
(1.1)

Здесь A(u, x) и B(u, x) – достаточно гладкие функции в области $(u, x) \in I_u \times [0; 1], I_u$ – некоторый промежуток изменения переменной $u, \varepsilon > 0$ – малый параметр.

Предполагается, что уравнение

$$A(u,x)\frac{du}{dx} + B(u,x) = 0$$
(1.2)

с дополнительными условием $u(0) = u^0$ имеет на отрезке [0,1] решение $u = \varphi^{(-)}(x)$, а с дополнительным условием $u(1) = u^1$ – решение $u = \varphi^{(+)}(x)$, причем

$$\varphi^{(-)}(x) < \varphi^{(+)}(x), \quad x \in [0,1].$$

В этой работе получены условия существования решения вида кон-

трастной структуры, а именно такого решения, которое слева от точки $\hat{x}(\varepsilon) \in (0,1)$ близко к решению дифференциального уравнения (1.2) с начальным условием $u(0) = u^0$, а справа от точки $\hat{x}(\varepsilon)$ близко к решению дифференциального уравнения (1.2) с начальным условием $u(1) = u^1$.

Для доказательства существования решения вида контрастной структуры был использован метод сращивания. Суть этого метода заключается в использовании теорем существования погранслойных решений краевых задач на каждом из отрезков $[0; \hat{x}]$ и $[\hat{x}; 1]$, [18] и доказательстве возможности их гладкого сшивания в точке \hat{x} , что приводит к образования контрастной структуры, являющейся решения задачи (1) на всем отрезке [0;1]. Этот метод является эффективным способом доказательства решения вида контрастной структуры для одномерных стационарных задач.

Исследование решений типа контрастных структур в уравнениях с адвективным слагаемым были продолжены в работах М.А. Давыдовой, где рассматривались задачи вида

$$\varepsilon^{2}\Delta u - f(\varepsilon \nabla u, u, x) = 0, x = (x_{1}, \dots, x_{N}) \in D \subset \mathbb{R}^{N}, u(x, \varepsilon) = g(x), x \in \partial D$$
(1.3)

В частности в работе [34] была рассмотрена одномерная задача, и для доказательства применялся метод сращивания. Обобщение на многомерный случай было проведено в работах [35], [36], [37], [38], [39].

Исследование автоволнового решения вида движущегося фронта подробно изложено в монографии [40], где было исследовано решение u(x,t) уравнения

$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + F(u), \quad -\infty < x < \infty, \quad t \ge 0,$$

$$u(x,0) = u^0(x), \quad \lim_{x \to \pm \infty} u(x,t) = w_{\pm}, \quad F(w_+) = F(w_-) = 0.$$
(1.4)

Движение многомерного волнового фронта за счет кривизны его поверхности изложено в монографии [41], а также в статье [42].

Одномерные автоволновые решения вида контрастных структур для сингулярно возмущенных параболических уравнений рассмотрены в работах [19], [25], [26], а имено, рассмотрены решения в виде фронта у задач

$$\varepsilon^2 \frac{\partial^2 u}{\partial x^2} - \varepsilon^i \frac{\partial u}{\partial t} = f(u, x, t, \varepsilon), \quad x \in (0, 1), \quad t \in T,$$

$$u(x, 0) = u_{init}(x), \quad u(0, t) = u^0, \quad u(1, t) = u^1.$$

(1.5)

В частности, в работе [19], [25] была исследована периодическая контрастная структура для случая i = 2 и $t \in \mathbb{R}$, в работе [26] – решение в виде движущегося фронта для случая i = 1 и $t \in [0, T]$.

Периодические во времени движения двумерного фронта рассматривалось в работе [43].

Параболические сингулярно возмущенные одномерные задачи вида

$$\varepsilon \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = A(u, x) \frac{\partial u}{\partial x} + B(u, x), \quad x \in (0, 1), \quad t \in (0, T],$$

$$u(0, t, \varepsilon) = u^0, \quad u(1, t, \varepsilon) = u^1, \quad t \in [0, T],$$

$$u(x, 0, \varepsilon) = u_{init}(x, \varepsilon), \quad x \in [0, 1]$$
(1.6)

с большим адвективным слагаемым и дополнительным условием (условие баланса адвекции)

$$\int_{\varphi^{(-)}(x)}^{\varphi^{(+)}(x)} A(u,x) du \equiv 0, \quad x \in [0;1]$$

были исследованы в работах [44], [32]. Работе [44] доказано существование решения типа контрастной структуры стационарной задачи, а также его асимптотическая устойчивость по Ляпунову. В работе [32] исследуется периодические изменяющееся во времени решение типа контрастной структуры.

Периодические контрастные структуры в параболических сингулярно возмущенных одномерных задачах с малой адвекцией рассматривались в работах [45], [46], а именно задача вида

$$\varepsilon^{2} \left(\frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial u}{\partial t} \right) - \varepsilon^{2} A(u, x, t, \varepsilon) \frac{\partial u}{\partial x} - F(u, x, t, \varepsilon) = 0,$$

$$(x, t) \in D := \{ (x, t) \in \mathbb{R}^{2} : 0 < x < 1, \quad t \in \mathbb{R} \},$$

$$\frac{\partial u}{\partial x}(0, t, \varepsilon) = u^{0}(t), \quad \frac{\partial u}{\partial x}(1, t, \varepsilon) = u^{1}(t), \quad t \in \mathbb{R},$$

$$u(x, t, \varepsilon) = u(x, t + T, \varepsilon), \quad (x, t) \in \bar{D}.$$

$$(1.7)$$

В параболических и многомерных эллиптических задачах для обоснования существования решения вида контрастной структуры используется асимптотический метод дифференциальных неравенств.

Использование метода дифференциальных неравенств для параболических задач

$$\frac{\partial u}{\partial t} - Lu = f(u, M, t), \quad M \in D, \quad 0 < t < T,$$

$$u(s, t) = h(s, t), \quad s \in \partial D, \quad u(M, 0) = u^0(M),$$
(1.8)

где L – эллиптический оператор общего вида в замкнутой области \overline{D} изложено в работах [47], [48], [49]. Суть метода заключается в построении функций $\alpha(M,t)$ и $\beta(M,t)$, $M \in \overline{D}$, 0 < t < T, удовлетворяющих специальной системе дифференциальных неравенств:

$$\begin{aligned} \alpha_t - L\alpha - f(\alpha, M, t) &\leq 0 \leq \beta_t - L\beta - f(\beta, M, t), & M \in D, \quad 0 < t < T. \\ \alpha(s, t) &\leq h(s, t) \leq \beta(s, t), \quad s \in \partial D, \quad 0 \leq t \leq T. \\ \alpha(M, 0) &\leq u(M, 0) \leq \beta(M, 0), & M \in \bar{D}. \\ \alpha(M, t) &\leq \beta(M, t), & M \in \bar{D}, \quad 0 \leq t \leq T. \end{aligned}$$

Функции α и β называются, соответственно, верхним и нижним решениями задачи (1.8).

Развитие метода дифференциальных неравенств применительно к сингулярно возмущенным задачам было предложено Н.Н. Нефедовым в работах [24], [19], [20], [21], [22], [23], в которых изложен алгоритм построения верхних и нижних решений как модификации формальных асимптотических приближений решений исходных задач. Этот метод получил название «асимптотический метод дифференциальных неравенств».

В настоящей работе продолжены исследования решений в виде движущегося фронта и проведено обобщение на двумерные области.

Глава 2

Решение вида движущегося фронта в уравнении реакция-диффузия-адвекция для одномерного случая

2.1 Постановка задачи

В настоящей главе исследуется вопрос о существовании и асимптотическом приближении решения с внутренним переходным слоем следующей задачи для уравнения реакция-адвекция-диффузия

$$\varepsilon \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = A(u, x) \frac{\partial u}{\partial x} + B(u, x), \quad x \in (0; 1), \quad t \in (0; T],$$

$$u(0, t, \varepsilon) = u^0, \quad u(1, t, \varepsilon) = u^1, \quad t \in [0; T],$$

$$u(x, 0, \varepsilon) = u_{init}(x, \varepsilon), \quad x \in [0; 1].$$
(2.1)

Здесь A(u, x) и B(u, x) – достаточно гладкие функции в области $(u, x) \in I_u \times [0; 1], I_u$ – некоторый промежуток изменения переменной $u, \varepsilon > 0$ – малый параметр, T > 0. Требуемый порядок гладкости функций A

и *В* связан, как обычно, с порядком строящейся асимптотики и легко устанавливается.

Решения с внутренними переходными слоями для уравнения реакциядиффузия-адвекция часто встречаются в приложениях, например, в экологии при математическом моделировании изменения температуры или концентрации газов в приповерхностных слоях атмосферы, а также в химической кинетике.

К задачам указанного типа также относится используемое для моделирование одномерных акустических волн уравнение Бюргерса.

Будем предполагать, что в начальный момент времени уже существует сформированный фронт, т.е. функция $u_{init}(x,\varepsilon)$ имеет внутренний переходный слой в окрестности некоторой точки x_{00} отрезка [0; 1]. Докажем существование решения в виде движущегося фронта, т.е. решения, имеющего внутренний переходный слой, который в каждый момент времени t локализован в окрестности точки $\hat{x}(t,\varepsilon) \in (0;1)$. Слева от указанной окрестности решение $u(x,t,\varepsilon)$ задачи (2.1) близко к решению дифференциального уравнения

$$A(u,x)\frac{du}{dx} + B(u,x) = 0$$
(2.2)

с начальным условием $u(0) = u^0$, а справа – близко к решению уравнения (2.2) с начальным условием $u(1) = u^1$. Существование этих решений обеспечивается следующим требованием.

Условие А1. Уравнение (2.2) с дополнительными условием $u(0) = u^0$ имеет на отрезке [0;1] решение $u = \varphi^{(-)}(x)$, а с дополнительным условием $u(1) = u^1$ – решение $u = \varphi^{(+)}(x)$, причем

$$\varphi^{(-)}(x) < \varphi^{(+)}(x), \quad x \in [0;1],$$

И

$$A\left(\varphi^{(-)}(x), x\right) > 0, \quad A\left(\varphi^{(+)}(x), x\right) < 0, \quad x \in [0; 1].$$

Точка (\hat{x}, t) описывает на плоскости (x, t) некоторую кривую $x = \hat{x}(t, \varepsilon)$, которая определяет положение внутреннего переходного слоя внутри интервала (0; 1) в момент времени $t \in (0; T]$. Кривую $x = \hat{x}(t, \varepsilon)$ определим равенством

$$u(\hat{x}(t,\varepsilon),\varepsilon) = \varphi(\hat{x}(t,\varepsilon)) := \frac{\varphi^{(-)}(\hat{x}(t,\varepsilon)) + \varphi^{(+)}(\hat{x}(t,\varepsilon))}{2}.$$
 (2.3)

Кривую $x = \hat{x}(t, \varepsilon)$ будем искать в виде разложения

$$\hat{x}(t,\varepsilon) = x_0(t) + \varepsilon x_1(t) + \dots, \qquad (2.4)$$

коэффициенты которого находятся при построение асимптотики.

Считаем, что в начальный момент времени t = 0 положение точки перехода известно

$$\hat{x}(0,\varepsilon) = x_{00},\tag{2.5}$$

причем $x_{00} \in (0; 1)$.

Разложение скорости движения точки перехода $v = \frac{d\hat{x}}{dt}$ имеет вид

$$v(t,\varepsilon) = v_0(t) + \varepsilon v_1(t) + \dots, \qquad (2.6)$$

где $v_i = rac{dx_i}{dt}, \, i = 0, 1 \dots$

Потребуем также выполнения следующего условия.

Рассмотрим присоединенную систему (см. [18]):

$$\frac{\partial \tilde{Q}}{\partial \xi} = \Phi, \quad \frac{\partial \Phi}{\partial \xi} = (A(\tilde{Q}, x(t)) - V)\Phi, \quad -\infty < \xi < +\infty.$$
(2.7)

Функция x(t) здесь является параметром, а $V = \frac{dx}{dt}$. Разделим второе уравнение системы (2.7) на первое, и придем к дифференциальному уравнению первого порядка относительно функции $\Phi(\tilde{Q}, x)$, которое определяет фазовые траектории этой системы на плоскости (Φ, ξ):

$$\frac{\partial \Phi}{\partial \tilde{Q}} = A(\tilde{Q}, x(t)) - V.$$
(2.8)

Точки ($\varphi^{(\mp)}, 0$) фазовой плоскости (\tilde{Q}, Φ) являются точками покоя системы (2.7), а так как функция $A(\tilde{Q}, x)$ непрерывна, то для каждого значения параметра V существуют фазовые траектории

$$\Phi^{(\mp)}(\tilde{Q}, x, V) = \int_{\varphi^{(\mp)}(x)}^{\tilde{Q}} (A(s, x) - V) ds, \quad \varphi^{(-)}(x) < \tilde{Q} < \varphi^{(+)}(x).$$
(2.9)

Потребуем выполнения следующего условия:

Условие А2. Пусть существует множество $X \subset (0;1)$ функций x(t), таких, что при $\varphi^{(-)}(x(t)) < \tilde{Q} < \varphi^{(+)}(x(t))$ выполняются неравенства

$$\int_{\varphi^{(\mp)}(x(t))}^{\tilde{Q}} (A(s, x(t)) - V) \, ds > 0, \qquad (2.10)$$

где $V = \frac{dx}{dt}.$

В силу условия (**A2**) функции $\Phi^{(\mp)}(\tilde{Q}, x, V)$ принимают положительные значения и лежат в верхней части фазовой плоскости, причем фазовая траектория $\Phi^{(-)}(\tilde{Q}, x, V)$ входит в точку покоя ($\varphi^{(-)}, 0$) при $\xi \to -\infty$, а фазовая траектория $\Phi^{(+)}(\tilde{Q}, x, V)$ входит в точку покоя ($\varphi^{(+)}, 0$) при $\xi \to +\infty$. Отметим, что условие (**A2**) обеспечивает отсутствие стационарных решений с внутренним переходным слоем у задачи (2.1) [33]. Условие (**A2**) окажется также условием разрешимости соответствующих задач для описания внутреннего переходного слоя (см. п. 2.2 ниже).

Расстояние между фазовыми траекториями $\Phi^{(-)}(\tilde{Q}, x^{(-)}, V^{(-)})$ и $\Phi^{(+)}(\tilde{Q}, x^{(+)}, V^{(+)})$, где $x^{(\mp)}(t) \in X, t \in [0; T]$ определяется как разность

$$\Phi^{(-)}(\tilde{Q}, x^{(-)}, V^{(-)}) - \Phi^{(+)}(\tilde{Q}, x^{(+)}, V^{(+)}).$$

Если существует такая функция $x_0(t) \in X$, что

$$\Phi^{(-)}(\tilde{Q}, x_0(t), v_0) - \Phi^{(+)}(\tilde{Q}, x_0(t), v_0) = 0,$$

где $v_0 = \frac{dx_0}{dt}$, то на фазовой плоскости (\tilde{Q}, Φ) образуется траектория, соединяющая точки покоя, а именно, выходящая из точки покоя $(\varphi^{(-)}, 0)$ и входящая в точку покоя $(\varphi^{(+)}, 0)$.

Использую явный вид (2.9) функций $\Phi^{(\mp)}$ сформулируем условие существования соединительной траектории в следующем виде.

Условие АЗ. Пусть задача Коши

$$\frac{dx_0}{dt} = \frac{\varphi^{(-)}(x_0)}{\varphi^{(-)}(x_0)} A(u, x_0) du \qquad (2.11)$$

имеет решение $x_0(t)$, такое что

$$x_0(t) \in (0; 1), \quad t \in [0; T].$$

2.2 Построение формальной асимптотики решения

Асимптотика решения задачи (2.1) строится методом пограничных функций (см. [18]) отдельно в каждой из областей $[0; \hat{x}] \times [0; T]$ и $[\hat{x}; 1] \times [0; T]$:

$$u = \begin{cases} u^{(-)}, & (x,t) \in [0;\hat{x}] \times [0;T], \\ u^{(+)}, & (x,t) \in [\hat{x};1] \times [0;T]. \end{cases}$$
(2.12)

Функции $u^{(-)}, u^{(+)}$ имеют вид:

$$u^{(-)} = \bar{u}(x,\varepsilon)^{(-)} + Q^{(-)}(\xi,t,\varepsilon), \quad u^{(+)} = \bar{u}^{(+)}(x,\varepsilon) + Q^{(+)}(\xi,t,\varepsilon). \quad (2.13)$$

здесь $\bar{u}^{(\mp)}(x,\varepsilon)$ – регулярные члены асимптотики; $Q^{(\mp)}(\xi,t,\varepsilon)$ – функции переходного слоя в окрестности кривой $x = \hat{x}(t,\varepsilon), \ \xi = \frac{x - \hat{x}(t,\varepsilon)}{\varepsilon}$ – переменная переходгого слоя: $\xi \leq 0$ для функций с верхним индексом (-), $\xi \geq 0$ для функций с верхним индексом (+).

Каждое слагаемое в (2.13) будем искать в виде разложения по степеням ε :

$$\bar{u}^{(\mp)}(x,\varepsilon) = \bar{u}_0^{(\mp)}(x) + \varepsilon \bar{u}_1^{(\mp)}(x) + \ldots + \varepsilon^n \bar{u}_n^{(\mp)}(x) + \ldots, \qquad (2.14)$$

$$Q^{(\mp)}(\xi, t, \varepsilon) = Q_0^{(\mp)}(\xi, t) + \varepsilon Q_1^{(\mp)}(\xi, t) + \dots + \varepsilon^n Q_n^{(\mp)}(\xi, t) + \dots$$
(2.15)

Для нахождения коэффициентов этих рядов применяется стандартная процедура (см. [18]). При этом асимптотические разложения $u^{(-)}$ и $u^{(+)}$ гладко сшиваются на кривой $x = \hat{x}(t, \varepsilon)$. Запишем условия непрерывности асимптотических разложений (см. [18], [33]):

$$\bar{u}^{(-)}(\hat{x}(t,\varepsilon),\varepsilon) + Q^{(-)}(0,t,\varepsilon) = \bar{u}^{(+)}(\hat{x}(t,\varepsilon),\varepsilon) + Q^{(+)}(0,t,\varepsilon) = \varphi(\hat{x}(t,\varepsilon)).$$
(2.16)

Функция $\varphi(\hat{x}(t,\varepsilon))$ определена в (2.3).

Условия непрерывности производных асимптотических разложений на кривой $x = \hat{x}(t, \varepsilon)$ запишем в виде:

$$\varepsilon \frac{d\bar{u}^{(-)}}{dx}(\hat{x}(t,\varepsilon),\varepsilon) + \frac{\partial Q^{(-)}}{\partial \xi}(0,t,\varepsilon) = \varepsilon \frac{d\bar{u}^{(+)}}{dx}(\hat{x}(t,\varepsilon),\varepsilon) + \frac{\partial Q^{(+)}}{\partial \xi}(0,t,\varepsilon).$$
(2.17)

2.2.1 Регулярная часть асимптотики

Подставляя разложения (2.14) в уравнение

$$\varepsilon \frac{d^2 \bar{u}^{(\mp)}}{dx^2} = A(\bar{u}^{(\mp)}(x,\varepsilon), x) \frac{d\bar{u}^{(\mp)}}{dx} + B(\bar{u}^{(\mp)}(x,\varepsilon), x)$$
(2.18)

стандартным способом, описанным в [18], [33], получаем дифференциальные уравнения для определения функций $\bar{u}_k^{(\mp)}(x), k = 0, 1, \ldots$

Главные регулярные члены асимптотики определяются условием (A1):

$$\bar{u}_0(x,t) = \begin{cases} \bar{u}_0^{(-)}(x) = \varphi^{(-)}(x), & 0 \leq x \leq \hat{x}(t,\varepsilon), \\ \bar{u}_0^{(+)}(x) = \varphi^{(+)}(x), & \hat{x}(t,\varepsilon) \leq x \leq 1. \end{cases}$$
(2.19)

Функции $\bar{u}_k^{(\mp)}(x)$ при $k \ge 1$ определяются из начальных задач:

$$\bar{A}^{(\mp)}(x)\frac{d\bar{u}_{k}^{(\mp)}}{dx} = -\left(\frac{\partial\bar{A}^{(\mp)}}{\partial u}(x)\frac{d\varphi^{(\mp)}}{dx}(x) + \frac{\partial\bar{B}^{(\mp)}}{\partial u}(x)\right)\bar{u}_{k}^{(\mp)} + \bar{f}_{k}^{(\mp)}(x),$$
$$\bar{u}_{k}^{(-)}(0) = 0, \quad \bar{u}_{k}^{(+)}(1) = 0;$$
(2.20)

здесь

$$\bar{A}^{(\mp)}(x) = A(\varphi^{(\mp)}(x), x), \quad \bar{B}^{(\mp)}(x) = B(\varphi^{(\mp)}(x), x), \qquad (2.21)$$

а $\bar{f}_k^{(\mp)}(x)$ – известные функции, в частности $\bar{f}_1^{(\mp)}(x) = \frac{d^2 \varphi^{(\mp)}}{dx^2}$. Решения этих задач можно выписать в явном виде:

$$\bar{u}_{k}^{(-)}(x) = \exp\left(-\int_{0}^{x} W^{(-)}(x')dx'\right)\int_{0}^{x} \left(\bar{A}^{(-)}(s)\right)^{-1}\bar{f}_{k}^{(-)}(s)\exp\left(\int_{0}^{s} W^{(-)}(s')ds'\right)ds,$$

$$\bar{u}_{k}^{(+)}(x) = \exp\left(-\int_{1}^{x} W^{(+)}(x')dx'\right)\int_{1}^{x} \left(\bar{A}^{(+)}(s)\right)^{-1}\bar{f}_{k}^{(+)}(s)\exp\left(\int_{1}^{s} W^{(+)}(s')ds'\right)ds,$$

где

$$W^{(\mp)}(x) = \frac{1}{\bar{A}^{(\mp)}(x)} \left(\frac{\partial \bar{A}^{(\mp)}}{\partial u}(x) \frac{d\varphi^{(\mp)}}{dx}(x) + \frac{\partial \bar{B}^{(\mp)}}{\partial u}(x) \right).$$
(2.22)

2.2.2 Функции переходного слоя

Для того, чтобы получить уравнения для функций $Q^{(\mp)}(\xi, t)$ следует переписать дифференциальные операторы в уравнении (2.1) в переменных ξ, t . Оператор $\varepsilon \frac{\partial^2}{\partial x^2} - \frac{\partial}{\partial t}$ принимает вид $\frac{1}{\varepsilon} \frac{\partial^2}{\partial \xi^2} + \frac{1}{\varepsilon} v(t, \varepsilon) \frac{\partial}{\partial \xi} - \frac{\partial}{\partial t},$

где $v(t,\varepsilon)$ разложение (2.6), а оператор $\frac{\partial}{\partial x}$ преобразуется в $\frac{1}{\varepsilon} \frac{\partial}{\partial \xi}$.

Уравнения для функций $Q_i^{(\mp)}u(\xi,t), i = 0, 1, \dots$ получаются стандартным способом (см. [18], [33]), путем приравнивания коэффициентов при одинаковых степенях ε в обеих частях равенств

$$\frac{1}{\varepsilon} \frac{\partial^2 Q^{(\mp)}}{\partial \xi^2} + \frac{1}{\varepsilon} v(t,\varepsilon) \frac{\partial Q^{(\mp)}}{\partial \xi} - \frac{\partial Q^{(\mp)}}{\partial t} = \\
= \frac{1}{\varepsilon} A \left(\bar{u}^{(\mp)}(\varepsilon\xi + \hat{x}(t,\varepsilon),\varepsilon) + Q^{(\mp)}(\xi,t,\varepsilon), \varepsilon\xi + \hat{x}(t,\varepsilon) \right) \frac{\partial Q^{(\mp)}}{\partial \xi} + (2.23) \\
+ Q A^{(\mp)}(\xi,t) \frac{d\bar{u}^{(\mp)}}{dx} + Q B^{(\mp)}(\xi,t),$$

где

$$QA^{(\mp)}(\xi,t) = A(\bar{u}^{(\mp)}(\varepsilon\xi + \hat{x}(t,\varepsilon),\varepsilon) + Q^{(\mp)}(\xi,t,\varepsilon), \varepsilon\xi + \hat{x}(t,\varepsilon)) - A(\bar{u}^{(\mp)}(\varepsilon\xi + \hat{x}(t,\varepsilon),\varepsilon), \varepsilon\xi + \hat{x}(t,\varepsilon)),$$
$$QB^{(\mp)}(\xi,t) = B(\bar{u}^{(\mp)}(\varepsilon\xi + \hat{x}(t,\varepsilon),\varepsilon) + Q^{(\mp)}(\xi,t,\varepsilon), \varepsilon\xi + \hat{x}(t,\varepsilon)) - B(\bar{u}^{(\mp)}(\varepsilon\xi + \hat{x}(t,\varepsilon),\varepsilon), \varepsilon\xi + \hat{x}(t,\varepsilon)).$$

Потребуем, чтобы функции переходного слоя удовлетворяли условиям

равенства нулю на бесконечности:

$$Q_i^{(-)}(\xi, t) \to 0 \text{ при } \xi \to -\infty, \quad Q_i^{(+)}(\xi, t) \to 0 \text{ при } \xi \to +\infty,$$

 $i = 0, 1, \dots, \quad t \in (0; T].$ (2.24)

Приравнивая коэффициенты при ε^{-1} в правой и левой частях равенства (2.23) получаем уравнения для функций $Q_0^{(-)}(\xi,t)$ при $\xi \leqslant 0$ и $Q_0^{(+)}(\xi,t)$ при $\xi \geqslant 0$:

$$\frac{\partial^2 Q_0^{(\mp)}}{\partial \xi^2} - \left(A \left(\varphi^{(\mp)}(\hat{x}(t,\varepsilon)) + Q_0^{(\mp)}, \hat{x}(t,\varepsilon) \right) - v(t,\varepsilon) \right) \frac{\partial Q_0^{(\mp)}}{\partial \xi} = 0. \quad (2.25)$$

Граничные условия для $Q_0^{(\mp)}$ при $\xi = 0$ получаются из (2.16) в нулевом порядке разложения по степеням ε , а условия на бесконечности из (2.24):

$$Q_0^{(-)}(0,t) + \varphi^{(-)}(\hat{x}(t,\varepsilon)) = Q_0^{(+)}(0,t) + \varphi^{(+)}(\hat{x}(t,\varepsilon)) = \varphi(\hat{x}(t,\varepsilon)),$$
$$Q_0^{(-)}(\xi,t) \to 0 \text{ при } \xi \to -\infty, \quad Q_0^{(+)}(\xi,t) \to 0 \text{ при } \xi \to +\infty, \quad t \in (0;T].$$
(2.26)

Введем обозначение

$$\tilde{Q}(\xi, \hat{x}(t,\varepsilon), v(t,\varepsilon)) = \begin{cases} \varphi^{(-)}(\hat{x}(t,\varepsilon)) + Q_0^{(-)}(\xi,t), & \xi \leq 0, \\ \varphi^{(+)}(\hat{x}(t,\varepsilon)) + Q_0^{(+)}(\xi,t), & \xi \geq 0. \end{cases}$$

С его помощью перепишем задачи (2.25), (2.26) в виде

$$\frac{\partial^2 \tilde{Q}}{\partial \xi^2} - \left(A(\tilde{Q}, \hat{x}(t, \varepsilon)) - v(t, \varepsilon) \right) \frac{\partial \tilde{Q}}{\partial \xi} = 0, \quad \xi \in (-\infty, +\infty),$$
$$\tilde{Q}(0, \hat{x}, v) = \varphi(\hat{x}(t, \varepsilon)),$$
$$\tilde{Q}(-\infty, \hat{x}, v) = \varphi^{(-)}(\hat{x}(t, \varepsilon)), \quad \tilde{Q}(+\infty, \hat{x}, v) = \varphi^{(+)}(\hat{x}(t, \varepsilon)), \quad t \in (0; T].$$
(2.27)

Уравнение (2.27) эквивалентно присоединенной системе (2.7), а значит

существуют функции

$$\begin{split} \Phi^{(-)}(Q(\xi), \hat{x}, v) &= \frac{\partial Q_0^{(-)}}{\partial \xi} = \int_{\varphi^{(-)}(\hat{x}, t, \varepsilon) + Q^{(-)}}^{\varphi^{(-)}(\hat{x}, t, \varepsilon) + Q^{(-)}} (A(u, \hat{x}(t, \varepsilon)) - v(t, \varepsilon)) \, du, \quad \xi \leqslant 0, \\ \Phi^{(+)}(Q(\xi), \hat{x}, v) &= \frac{\partial Q_0^{(+)}}{\partial \xi} = \int_{\varphi^{(+)}(\hat{x}, t, \varepsilon) + Q^{(+)}}^{\varphi^{(+)}(\hat{x}, t, \varepsilon) + Q^{(+)}} (A(u, \hat{x}(t, \varepsilon)) - v(t, \varepsilon)) \, du, \quad \xi \geqslant 0. \end{split}$$

где

$$\Phi^{(-)}(\xi, \hat{x}, v) := \Phi^{(-)}(Q(\xi), \hat{x}, v) = \frac{\partial \tilde{Q}}{\partial \xi}(\xi, \hat{x}, v), \quad \xi \leq 0,
\Phi^{(+)}(\xi, \hat{x}, v) := \Phi^{(+)}(Q(\xi), \hat{x}, v) = \frac{\partial \tilde{Q}}{\partial \xi}(\xi, \hat{x}, v), \quad \xi \geq 0.$$
(2.29)

Функции $Q_0^{(\mp)}(\xi, t)$ – решения начальных задач (2.28) с начальным условие вием (2.27) существуют для тех $\hat{x}(t, \varepsilon)$, для которых выполнено условие (**A2**), обеспечивающее существование на фазовой плоскости (\tilde{Q}, Φ) сепаратрис седловых точек не пересекающих ось $\Phi = 0$.

Для $Q_0^{(\mp)}(\xi,t)$ функций имеют место экспоненциальные оценки (см. на пример [33], [57])

$$|Q_0^{(-)}(\xi,t)| \le Ce^{\kappa\xi}, \quad \xi \le 0, \quad |Q_0^{(+)}(\xi,t)| \le Ce^{-\kappa\xi}, \quad \xi \ge 0, \quad 0 \le t \le T,$$
(2.30)

где C и κ – некоторые положительные числа.

Для краткости введем обозначения

$$\tilde{A}(\xi,t) = A\left(\tilde{Q}(\xi,\hat{x}(t,\varepsilon)),\hat{x}(t,\varepsilon)\right), \quad \tilde{B}(\xi,t) = B\left(\tilde{Q}(\xi,\hat{x}(t,\varepsilon)),\hat{x}(t,\varepsilon)\right).$$

Подставляя ряды (2.14) и (2.15) в (2.23) и приравнивая слагаемые при ε^{0} получаем уравнения для определения функций $Q_{1}^{(\mp)}(\xi,t)$: $\frac{\partial^{2}Q_{1}^{(\mp)}}{\partial\xi^{2}} + v(t,\varepsilon)\frac{\partial Q_{1}^{(\mp)}}{\partial\xi} - \tilde{A}(\xi,t)\frac{dQ_{1}^{(\mp)}}{d\xi} - \frac{\partial \tilde{A}}{\partial u}(\xi,t)\Phi^{(\mp)}(\xi,\hat{x},v) Q_{1}^{(\mp)} = f_{1}^{(\mp)}(\xi,t),$ где

$$\begin{split} f_1^{(\mp)}(\xi,t) &= \Phi^{(\mp)}(\xi,\hat{x},v) \left(\frac{\partial \tilde{A}}{\partial u}(\xi,t) \left(\bar{u}_1^{(\mp)}(\hat{x}(t,\varepsilon)) + \frac{d\varphi^{(\mp)}}{dx}(\hat{x}(t,\varepsilon)) \cdot \xi \right) + \frac{\partial \tilde{A}}{\partial x}(\xi,t) \cdot \xi \right) + \\ &\quad + \tilde{A}(\xi,t) \frac{d\varphi^{(\mp)}}{dx}(\hat{x}) + \tilde{B}(\xi,t). \end{split}$$

и введены обозначения

$$\frac{\partial \tilde{A}}{\partial u}(\xi,t) := \frac{\partial A}{\partial u}(\tilde{Q}(\xi,\hat{x},v),\hat{x}), \quad \frac{\partial \tilde{A}}{\partial x}(\xi,t) := \frac{\partial A}{\partial x}(\tilde{Q}(\xi,\hat{x},v),\hat{x}). \quad (2.31)$$

Далее в тексте аналогичным образом определены все частные производные функций \tilde{A} и \tilde{B} .

Граничные условия для $Q_1^{(\mp)}(\xi,t)$ следуют из (2.3) и (2.24):

 $Q_1^{(\mp)}(0,t) = -\bar{u}_1^{(\mp)}(\hat{x}(t,\varepsilon)), \quad Q_1^{(-)}(\xi,t) \to 0 \text{ при } \xi \to -\infty, \quad Q_1^{(+)}(\xi,t) \to 0 \text{ при } \xi \to +\infty.$

Функции $Q_1^{(\mp)}(\xi,t)$ можно найти в явном виде

$$\begin{split} Q_1^{(-)}(\xi,t) &= -\bar{u}_1^{(-)}(\hat{x}(t,\varepsilon)) \frac{\Phi^{(-)}(\xi,\hat{x},v)}{\Phi^{(-)}(0,\hat{x},v)} + \\ &+ \Phi^{(-)}(\xi,\hat{x},v) \int_0^{\xi} \frac{1}{\Phi^{(-)}(s,\hat{x},v)} \int_{-\infty}^{s} f_1^{(-)}(\eta,t) d\eta ds, \quad \xi \leqslant 0, \\ Q_1^{(+)}(\xi,t) &= -\bar{u}_1^{(+)}(\hat{x}(t,\varepsilon)) \frac{\Phi^{(+)}(\xi,\hat{x},v)}{\Phi^{(+)}(0,\hat{x},v)} + \\ &+ \Phi^{(+)}(\xi,\hat{x},v) \int_0^{\xi} \frac{1}{\Phi^{(+)}(s,t,\hat{x},v)} \int_{+\infty}^{s} f_1^{(+)}(\eta,t) d\eta ds, \quad \xi \geqslant 0. \end{split}$$

Для $Q_1^{(\mp)}$ справедливы экспоненциальные оценки типа (2.30).

Аналогично первому приближению можно определить функции переходного слоя для любого i = 2, 3, ..., считая, что они определены уже для номеров i = 0, 1, ..., k - 1 и имеют экспоненциальные оценки.

Приравнивая в (2.23) слагаемые при ε^{i-1} с учетом разложений (2.14)

и (2.15), получаем уравнения для определения функци
й $Q_i^{(\mp)}(\xi,t)$:

$$\frac{\partial^2 Q_i^{(\mp)}}{\partial \xi^2} + v(t,\varepsilon) \frac{\partial Q_i^{(\mp)}}{\partial \xi} - \tilde{A}(\xi,t) \frac{\partial Q_i^{(\mp)}}{\partial \xi} - \frac{\partial \tilde{A}}{\partial u}(\xi,t) \Phi^{(\mp)}(\xi,\hat{x},v), Q_i^{(\mp)} = f_i^{(\mp)}(\xi,t).$$
(2.32)

Граничные условия для $Q_i^{(\mp)}(\xi,t)$ следуют из (2.3) и (2.24):

$$Q_{i}^{(\mp)}(0,t) = -\bar{u}_{i}^{(\mp)}(\hat{x}(t,\varepsilon)), \quad Q_{i}^{(-)}(\xi,t) \to 0 \text{ при } \xi \to -\infty, \quad Q_{i}^{(+)}(\xi,t) \to 0 \text{ при } \xi \to +\infty,$$
(2.33)

а $f_i^{(\mp)}$ – известные на i-ом шаге функции.

2.3 Асимптотическое приближение положения фрон-

та

Введем функцию $H(\hat{x}, v, t, \varepsilon)$:

$$H(\hat{x},v,t,\varepsilon) := \varepsilon \left(\frac{du^{(-)}}{dx} - \frac{du^{(+)}}{dx} \right) = H_0(\hat{x},v,t) + \varepsilon H_1(\hat{x},v,t) + \varepsilon^2 H_2(\hat{x},v,t) + \dots,$$

где

$$H_0(\hat{x}, v, t) = \frac{\partial Q_0^{(-)}}{\partial \xi}(0, t) - \frac{\partial Q_0^{(+)}}{\partial \xi}(0, t).$$
(2.34)

$$H_1(\hat{x}, v, t) = \frac{d\varphi^{(-)}}{dx}(\hat{x}) - \frac{d\varphi^{(+)}}{dx}(\hat{x}) + \varepsilon \left(\frac{\partial Q_1^{(-)}}{\partial \xi}(0, t) - \frac{\partial Q_1^{(+)}}{\partial \xi}(0, t)\right). \quad (2.35)$$

и т.д.

Условие C_1 -сшивания (2.17) выражается равенством $H(\hat{x}, t, \varepsilon) = 0$. В порядке ε^0 дает равенство

$$H_0(\hat{x}, v, t) = 0. \tag{2.36}$$

Выпишем выражение для $H_0(\hat{x}, v, t)$ с учетом выражения (2.28):

$$H_0(\hat{x}, v, t) = \int_{\varphi^{(-)}}^{\varphi^{(+)}} A(u, \hat{x}) du - v(\varphi^{(+)}(\hat{x}) - \varphi^{(-)}(\hat{x})).$$
(2.37)

Согласно Условию (**A3**) существует $x_0(t)$ – решение уравнения (2.36) с начальным условием $x_0(0) = x_{00}$.

Запишем условие сшивания (2.17), с учетом разложений (2.4) и (2.6):

$$\left(\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t))\right) \cdot v_1 + \frac{\partial H_0}{\partial \hat{x}}(x_0, v_0, t) \cdot x_1 + H_1(x_0, v_0, t) = 0 \quad (2.38)$$

Учтем также, что $v_1 = \frac{dx_1}{dt}$ и перепишем уравнение (2.38) следующим образом:

$$\frac{dx_1}{dt} = -\frac{\partial H_0}{\partial \hat{x}}(x_0, v_0, t)(\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t)))^{-1}x_1 + G_1(x_0(t), t), \quad (2.39)$$

где $G_1(x_0(t), t)$ – известная функция.

Решая уравнение (2.39) с начальным условием $x_1(0) = 0$ (здесь учтено (2.5) и начальное условие задачи (2.11)), находим функцию $x_1(t)$ в явном виде.

Аналогично в порядке ε^{i} получаем уравнение для определения функции $x_{i}(t)$, которое можно записать в виде, аналогичном (2.39):

$$\frac{dx_i}{dt} = -\frac{\partial H_0}{\partial \hat{x}}(x_0, v_0, t) \cdot \left(\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t))\right)^{-1} \cdot x_i + G_i(x_0(t), t),$$
(2.40)

где $G_i(x_0(t), t)$ на каждом шаге – известные функции. Решая это уравнение с начальным условием $x_i(0) = 0$ находим функцию $x_i(t)$.

Определим члены рядов (2.14), (2.15) и (2.4) до номера *n* включительно, и положим

$$X_n(t) = \sum_{i=0}^n \varepsilon^i x_i, \quad \xi_n = \frac{x - X_n(t)}{\varepsilon}.$$

Кривая $X_n(t)$ разделяет область $\overline{D} : (x,t) \in [0;1] \times [0;T]$ на подобласти $\overline{D}_n^{(-)}$ и $\overline{D}_n^{(+)} \left\{ \overline{D}_n^{(-)} : (x,t) \in [0; X_n(t)] \times (0;T] \right\}$ и $\left\{ \overline{D}_n^{(+)} : (x,t) \in [X_n(t),1] \times (0;T] \right\}$. Составим суммы $U_n^{(-)}(x,t,\varepsilon) = \sum_{i=0}^n \varepsilon^i \left(\overline{u}_n^{(-)}(x) + Q_n^{(-)}(\xi,t) \right), \quad (x,t) \in \overline{D}_n^{(-)} \times [0;T],$ $U_n^{(+)}(x,t,\varepsilon) = \sum_{i=0}^n \varepsilon^i \left(\overline{u}_n^{(+)}(x) + Q_n^{(+)}(\xi,t) \right), \quad (x,t) \in \overline{D}_n^{(+)} \times [0;T].$ (2.41)

Ряды $\hat{x}(t,\varepsilon)$, входящие в выражения для *Q*-функций в выражениях (2.41), заменены на их частичные суммы $X_n(t)$. Положим

$$U_{n} = \begin{cases} U_{n}^{(-)}(x,t,\varepsilon), & (x,t) \in \bar{D}_{n}^{(-)} \times [0;T], \\ U_{n}^{(+)}(x,t,\varepsilon), & (x,t) \in \bar{D}_{n}^{(+)} \times [0;T]. \end{cases}$$
(2.42)

Функция $U_n(x, t, \varepsilon)$ по своему построению удовлетворяет уравнению и граничным условиям (2.1) с точностью $O(\varepsilon^{n+1})$ всюду в области \overline{D} , за исключением кривой $X_n(t)$, а на этой кривой она и её производная имеет разрывы (скачки). Можно провести сглаживание функций U_n , например, как это было сделано в работе [61], в результате чего они будут удовлетворять уравнениям (2.1) с точностью $O(\varepsilon^{n+1})$ всюду в области \overline{D} , включая кривую $X_n(t)$.

2.4 Обоснование асимптотики

Для доказательства существования решения с построенной асимптотикой и оценки ее точности используется асимптотический метод дифференциальных неравенств (см. [24], [47], [48], [49]). Для доказательства построим непрерывные функции $\alpha(x,t,\varepsilon), \beta(x,t,\varepsilon)$, называемые, соответственно, нижним и верхним решениями задачи (2.1), таким образом, чтобы они при достаточно малых ε удовлетворяли условиям:

(У1)
$$\alpha(x,t,\varepsilon) \leq \beta(x,t,\varepsilon)$$
 при $(x,t) \in \overline{D} \times [0;T].$

(Y2)

$$\begin{split} L[\alpha] &\equiv \varepsilon \frac{\partial^2 \alpha}{\partial x^2} - \frac{\partial \alpha}{\partial t} - \left(A(\alpha, x) \frac{\partial \alpha}{\partial x} + B(\alpha, x) \right) \geqslant 0, (x, t) \in \bar{D} \times [0; T], \varepsilon \in (0; \varepsilon_0]; \\ L[\beta] &\equiv \varepsilon \frac{\partial^2 \beta}{\partial x^2} - \frac{\partial \beta}{\partial t} - \left(A(\beta, x) \frac{\partial \beta}{\partial x} + B(\beta, x) \right) \leqslant 0, (x, t) \in \bar{D} \times [0; T], \varepsilon \in (0; \varepsilon_0]. \\ \end{split}$$
для почти всех точек $(x, t) \in \bar{D} \times [0, T]$, за исключением тех кривых $x(t)$,

на которых функции $\alpha(x,t,\varepsilon)$ и $\beta(x,t,\varepsilon)$ не являются гладкими.

(**У3**)
$$\alpha(0,t,\varepsilon) \leq u^0 \leq \beta(0,t,\varepsilon), \quad \alpha(1,t,\varepsilon) \leq u^1 \leq \beta(1,t,\varepsilon).$$

При этом мы предположим, что выполнено следующее условие.

(У4) Пусть начальная функция такова, что выполнено следующее неравенство: $\alpha(x, 0, \varepsilon) \leq u_{init}(x, \varepsilon) \leq \beta(x, 0, \varepsilon)$.

(Y5)

$$\frac{\partial \beta^{(-)}}{\partial x}\bigg|_{x=\bar{x}(t)} - \frac{\partial \beta^{(+)}}{\partial x}\bigg|_{x=\bar{x}(t)} \ge 0,$$

где $\bar{x}(t)$ – кривая, на которой верхнее решение не является гладким.

$$\frac{d\alpha^{(-)}}{dx}\bigg|_{x=\underline{x}(t)} - \frac{d\alpha^{(+)}}{dx}\bigg|_{x=\underline{x}(t)} \leqslant 0,$$

где $\underline{x}(t)$ – кривая, на которой нижнее решение не является гладким.

Известно (см., например, [47], [48], [49]), что при выполнение условий (У1)-(У4) существует решение задачи (2.1), $u(x,t,\varepsilon)$, для которого выполняются неравенства

 $\alpha(x,t,\varepsilon) \leqslant u(x,t,\varepsilon) \leqslant \beta(x,t,\varepsilon), \quad (x,t) \in \bar{D} \times [0;T].$

2.4.1 Построение верхнего и нижнего решений

Верхнее и нижнее решения будем строить как модификацию асимптотических рядов (2.41). Зададим кривую $\bar{x}(t)$ в виде

$$\bar{x}(t) = \sum_{i=0}^{n+1} \varepsilon^{i} x_{i}(t) - \varepsilon^{n+1} \delta(t) = X_{n+1}(t) - \varepsilon^{n+1} \delta(t), \qquad (2.43)$$

где $\delta(t)$ – положительная функция, которая будет определена ниже. Пусть

$$\bar{v}(t) = \frac{d\bar{x}}{dt} = \frac{dX_{n+1}}{dt} - \varepsilon^{n+1}\frac{d\delta}{dt}.$$
(2.44)

Верхнее решение задачи (2.1) будем строить отдельно в областях $\tilde{D}^{(-)}$ и $\tilde{D}^{(+)}$, на которые кривая $\bar{x}(t)$ делит область \bar{D} :

$$\beta(x,t,\varepsilon) = \begin{cases} \beta^{(-)}(x,t,\varepsilon), & (x,t) \in \tilde{D}^{(-)} \times [0;T], & \varepsilon \in (0,\varepsilon_0], \\ \beta^{(+)}(x,t,\varepsilon), & (x,t) \in \tilde{D}^{(+)} \times [0;T], & \varepsilon \in (0,\varepsilon_0]. \end{cases}$$
(2.45)

Функции $\beta^{(-)}(x,t,\varepsilon), \beta^{(+)}(x,t,\varepsilon)$ будем сшивать на кривой $\bar{x}(t)$ так, чтобы $\beta(x,t,\varepsilon)$ были непрерывны на этой кривой и выполнялись равенства:

$$\beta^{(-)}(\bar{x}(t), t, \varepsilon) = \beta^{(+)}(\bar{x}(t), t, \varepsilon) = \frac{\varphi^{(-)}(\bar{x}(t)) + \varphi^{(+)}(\bar{x}(t))}{2}.$$
 (2.46)

Функция $\beta(x, t, \varepsilon)$ не является гладкой. На кривой $\bar{x}(t)$ производная $\frac{\partial \beta}{\partial x}$ терпит разрыв (скачок). Выберем функцию $\delta(t)$ в разложении (2.43), таким образом, чтобы выполнялось условие (У5) для верхнего решения.

Введем растянутую переменную

$$\bar{\xi} = \frac{x - \bar{x}(t)}{\varepsilon}.$$
(2.47)

Функци
и $\beta^{(-)}, \, \beta^{(+)}$ будем строить как модификацию функци
й $U_{n+1}^{(-)},$

 $U_{n+1}^{(+)},$ задаваемых формулами типа (2.41): $\beta^{(-)} = U_{n+2}^{(-)} \Big|_{\bar{\xi}} + \varepsilon^{n+1} \left(\mu^{(-)}(x) + q_0^{(-)}(\bar{\xi}, \bar{x}(t), \bar{v}(t)) + \varepsilon q_1^{(-)}(\bar{\xi}, \bar{x}(t), \bar{v}(t)) \right),$ $\beta^{(+)} = U_{n+2}^{(+)} \Big|_{\bar{\xi}} + \varepsilon^{n+1} \left(\mu^{(+)}(x) + q_0^{(+)}(\bar{\xi}, \bar{x}(t), \bar{v}(t)) + \varepsilon q_1^{(+)}(\bar{\xi}, \bar{x}(t), \bar{v}(t)) \right).$ (2.48)

Здесь через $U_{n+1}^{(\mp)}$ обозначены функции (2.41), определенные до (n+1) порядка, в которых аргумент ξ функций Q заменен на $\bar{\xi}$, а функция $X_{n+1}(t)$ – на $\bar{x}(t)$.

Функции $\mu^{(\mp)}(x)$ выбираются далее так, чтобы выполнялись условия (У2) и (У3). Определим их как решения задач

$$\frac{d\mu^{(\mp)}}{dx} + W^{(\mp)}(x)\mu^{(\mp)}(x) = R \cdot \left(\bar{A}^{(\mp)}(x)\right)^{-1},$$

$$\mu^{(-)}(0) = R^{(-)}, \quad \mu^{(+)}(1) = R^{(+)},$$
(2.49)

где $R, R^{(-)}, R^{(+)}$ – некоторые положительные величины, а $W(x)^{(\mp)}(x)$ и $\bar{A}^{(\mp)}(x)$ – обозначения (2.21) и (2.22).

Выражения для функций $\mu^{(\mp)}(x)$ можно выписать в явном виде:

$$\mu^{(-)}(x) = R^{(-)}e^{-\int_{0}^{x}W^{(-)}(x')dx'} + R \cdot e^{-\int_{0}^{x}W^{(-)}(x')dx'} \int_{0}^{x} \left(\bar{A}^{(-)}(s)\right)^{-1}e^{-\int_{0}^{s}W^{(-)}(s')ds'}ds$$
$$\mu^{(+)}(x) = R^{(+)}e^{-\int_{1}^{x}W^{(+)}(x')dx'} + R \cdot e^{-\int_{1}^{x}W^{(+)}(x')dx'} \int_{1}^{x} \left(\bar{A}^{(+)}(s)\right)^{-1}e^{-\int_{1}^{s}W^{(+)}(s')ds'}ds$$
(2.50)

Согласно условию (A1) при всех $x \in [0; 1]$ выполняются неравенства $\bar{A}^{(-)}(x) > 0, \ \bar{A}^{(+)}(x) < 0$, поэтому функции $\mu^{(\mp)}(x)$ принимают положительные значения при $x \in [0; 1]$.

Функции $q_0^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v})$ устраняют невязки порядка ε^n в выражении $L[\beta]$ и невязки порядка ε^{n+1} в условии непрерывного сшивания верхнего ре-

шения (2.46), возникающие в результате модификации регулярной части – добавок $\mu^{(\mp)}(x)$. Определим их как решения уравнений

$$\frac{\partial^2 q_0^{(\mp)}}{\partial \bar{\xi}^2} + \bar{v}(t) \frac{\partial q_0^{(\mp)}}{\partial \bar{\xi}} - \tilde{A}(\bar{\xi}, t) \frac{\partial q_0^{(\mp)}}{\partial \bar{\xi}} - \frac{\partial \tilde{A}}{\partial u}(\bar{\xi}, t) \Phi^{(\mp)}(\bar{\xi}, \bar{x}, \bar{v}) q_0^{(\mp)} = \Phi^{(\mp)}(\bar{\xi}, \bar{x}, \bar{v}) \frac{\partial \tilde{A}}{\partial u}(\bar{\xi}, t) \mu^{(\mp)}(\bar{x}(t)) + \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \mu^{(\mp)}(\bar{x}(t)) + \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \mu^{(\mp)}(\bar{x}(t)) + \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar{\xi}, t) \frac{\partial \bar{A}}{\partial \bar{\xi}}(\bar$$

Граничные условия для $q_0^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v})$ при $\bar{\xi} = 0$ следуют из условия непрерывного сшивания верхнего решения (2.46) с учетом условий при $\bar{\xi} = 0$ для функций $Q_i^{(\mp)}(\bar{\xi}, t), i = 0, 1, \dots, n + 1$ (см. (2.26) и (2.40))

$$q_0^{(\mp)}(0,t) = -\mu^{(\mp)}(\bar{x}(t)), \quad t \in [0;T].$$

Потребуем ещё выполнения условий на бесконечности:

$$q_0^{(-)}(\bar{\xi}, \hat{x}, \bar{v}) \to 0 \text{ при } \bar{\xi} \to -\infty, \quad q_0^{(+)}(\bar{\xi}, \hat{x}, \bar{v}) \to 0 \text{ при } \bar{\xi} \to +\infty, \quad t \in [0; T].$$

Функции $q_0^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v})$ можно выписать в явном виде:

$$q_{0}^{(\mp)}(\bar{\xi},\hat{x},\bar{v}) = -\mu_{1}^{(\mp)}(\bar{x})\frac{\Phi^{(\mp)}(\bar{\xi},\hat{x},\bar{v})}{\Phi^{(\mp)}(0,\hat{x},\bar{v})} + \Phi(\bar{\xi},\hat{x},\bar{v})\int_{0}^{\bar{\xi}} \frac{1}{\Phi^{(\mp)}(s,\hat{x},\bar{v})} \int_{\mp\infty}^{s} \Phi^{(\mp)}(\eta,\bar{x},\bar{v})\frac{\partial\tilde{A}}{\partial u}(\eta,t)\mu^{(\mp)}(\bar{x})d\eta ds, \quad \bar{\xi} \leq 0,$$
(2.52)

Функции $q_1^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v})$ устраняют невязки порядка ε^{n+1} в выражении $L[\beta]$, возникающие в результате добавок $\mu^{(\mp)}(x)$ и $q_0^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v})$. Определим

их как решения задач

$$\begin{split} \frac{\partial^2 q_1^{(\mp)}}{\partial \bar{\xi}^2} + \bar{v}(t) \frac{\partial q_1^{(\mp)}}{\partial \bar{\xi}} &- \tilde{A}(\bar{\xi}, t) \frac{\partial q_1^{(\mp)}}{\partial \bar{\xi}} - \frac{\partial \tilde{A}}{\partial u}(\bar{\xi}, t) \Phi^{(\mp)}(\bar{\xi}, \bar{x}, \bar{v}) q_1^{(\mp)} = \\ &= \left(\frac{\partial \tilde{A}}{\partial u}(\bar{\xi}, t) \frac{d\mu^{(\mp)}}{dx}(\bar{x}) \bar{\xi} + \frac{\partial^2 \tilde{A}}{\partial u^2}(\bar{\xi}, t)(\mu^{(\mp)}(\bar{x}) + q_0^{(\mp)}(\bar{\xi}, t)) \left(\bar{u}_1^{(\mp)}(\bar{x}) + Q_1^{(\mp)}(\bar{\xi}, t) + \frac{d\varphi^{(\mp)}}{dx}(\bar{x}) \bar{\xi} \right) + \\ &+ \frac{\partial^2 \tilde{A}}{\partial u \partial x}(\bar{\xi}, t) \bar{\xi}(\mu^{(\mp)}(\bar{x}) + q_0^{(\mp)}(\bar{\xi}, t)) \right) \Phi^{(\mp)}(\bar{\xi}, \bar{x}, \bar{v}) + \\ &+ \frac{\partial \tilde{A}}{\partial u}(\bar{\xi}, t) \left(q_0^{(\mp)}(\bar{\xi}, t) \right) \left(\frac{\partial Q_1^{(\mp)}}{\partial \bar{\xi}}(\bar{\xi}, t) + \frac{d\varphi^{(\mp)}}{dx}(\bar{x}) \right) + \mu^{(\mp)}(\bar{x}) \frac{\partial Q_1^{(\mp)}}{\partial \bar{\xi}}(\bar{\xi}, t) + \\ &+ \frac{\partial q_0^{(\mp)}}{\partial \bar{\xi}}(\bar{\xi}, t) \left(\bar{u}_1^{(\mp)}(\bar{x}) + Q_1^{(\mp)}(\bar{\xi}, t) + \frac{d\varphi^{(\mp)}}{dx}(\bar{x}) \bar{\xi} \right) \right) + \frac{\partial \tilde{A}}{\partial x}(\bar{\xi}, t) \frac{\partial q_0^{(\mp)}}{\partial \bar{\xi}}(\bar{\xi}, t) \cdot \bar{\xi} + \\ &+ \frac{\partial \tilde{B}}{\partial u}(\bar{\xi}, t) q_0^{(\mp)}(\bar{\xi}, t) + Q_0 A^{(\mp)}(\bar{\xi}, t) \frac{d\mu^{(\mp)}}{dx}(\bar{x}) + \left(\frac{\partial Q_0 A^{(\mp)}}{\partial u}(\bar{\xi}, t) \frac{d\varphi^{(\mp)}}{dx}(\bar{x}) + \frac{\partial Q_0 B^{(\mp)}}{\partial u}(\bar{\xi}, t) \right) \mu^{(\mp)}(\bar{x}). \\ &q_1^{(-)}(0, \hat{x}, \bar{v}) = q_1^{(+)}(0, \hat{x}, \bar{v}) = 0, \quad q_1^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v}) = 0 \quad \text{при} \quad \bar{\xi} \to \mp\infty, t \in [0; T]. \quad (2.53) \end{split}$$

здесь

$$\begin{split} Q_0 A^{(\mp)}(\bar{\xi},t) &= A\left(\varphi^{(\mp)}(\bar{x}(t)) + Q_0(\bar{\xi},t),\bar{x}(t)\right) - A\left(\varphi^{(\mp)}(\bar{x}(t)),\bar{x}(t)\right),\\ \frac{\partial Q_0 A^{(\mp)}}{\partial u}(\bar{\xi},t) &= \frac{\partial A}{\partial u}\left(\varphi^{(\mp)}(\bar{x}(t)) + Q_0(\bar{\xi},t),\bar{x}(t)\right) - \frac{\partial A}{\partial u}\left(\varphi^{(\mp)}(\bar{x}(t)),\bar{x}(t)\right)\\ \text{и аналогичный смысл имеет обозначение } \frac{\partial Q_0 B^{(\mp)}}{\partial u}(\bar{\xi},t); \ \text{через } \frac{\partial \tilde{A}}{\partial u}(\bar{\xi},t)\\ \text{обозначена частная производная } \frac{\partial A}{\partial u}(\tilde{Q}(\bar{\xi},\hat{x},\bar{v})), \ \text{и в том же смысле сле-дует понимать остальные частные производные функций } \tilde{A} \ \text{и} \ \tilde{B}. \end{split}$$

Функции $q_0^{(\mp)}, q_1^{(\mp)}$ имеют экспоненциальные оценки типа (2.30).

Нижнее решение $\alpha(x, t, \varepsilon)$ задачи (2.1) построим аналогично верхнему. Зададим кривую перехода <u>x</u>(t) для нижнего решения в виде

$$\underline{x}(t) = \sum_{i=0}^{n+1} \varepsilon^i x_i(t) + \varepsilon^{n+1} \delta(t) = X_{n+1}(t) + \varepsilon^{n+1} \delta(t).$$
 (2.54)

где $\delta(t)$ - та же, что и в (2.43). Обозначим $\underline{v}(t) = \frac{d\underline{x}}{dt}$. Введем растянутую переменную

$$\underline{\xi} = \frac{x - \underline{x}(t)}{\varepsilon}.$$
(2.55)
Нижнее решение задачи (2.1) будем строить отдельно в областях $\tilde{K}^{(-)}$ и $\tilde{K}^{(+)}$, на которые кривая $\underline{x}(t)$ разделяет область \bar{D} :

$$\alpha(x,t,\varepsilon) = \begin{cases} \alpha^{(-)}(x,t,\varepsilon), & (x,t) \in \tilde{K}^{(-)} \times [0;T], \\ \alpha^{(+)}(x,t,\varepsilon), & (x,t) \in \tilde{K}^{(+)} \times [0;T], & \varepsilon \in (0,\varepsilon_0]. \end{cases}$$
(2.56)

Функции $\alpha^{(-)}(x,t,\varepsilon), \ \alpha^{(+)}(x,t,\varepsilon)$ будем сшивать на кривой <u>x(t)</u>, так чтобы выполнялись равенства

$$\alpha^{(-)}(\underline{x}(t), t, \varepsilon) = \alpha^{(+)}(\underline{x}(t), t, \varepsilon) = \frac{\varphi^{(-)}(\underline{x}(t)) + \varphi^{(+)}(\underline{x}(t))}{2}.$$
 (2.57)

Нижнее решение будем строить таким образом, чтобы при том же самом $\delta(t)$, что и для верхнего решения, выполнялось условие (У5) для нижнего решения.

Функции $\alpha^{(-)}$, $\alpha^{(+)}$ будем строить как модификацию рядов из (2.41), определенных до (n+1)-го порядка:

$$\alpha^{(-)} = U_{n+1}^{(-)}\Big|_{\underline{\xi}} - \varepsilon^{n+1} \left(\mu^{(-)}(x) + q_0^{(-)}(\underline{\xi}, \underline{x}(t), \underline{v}(t)) + \varepsilon q_1^{(-)}(\underline{\xi}, \underline{x}(t), \underline{v}(t)) \right),$$

$$\alpha^{(+)} = U_{n+1}^{(+)}\Big|_{\underline{\xi}} - \varepsilon^{n+1} \left(\mu^{(+)}(x) + q_0^{(+)}(\underline{\xi}, \underline{x}(t), \underline{v}(t)) + \varepsilon q_1^{(+)}(\underline{\xi}, \underline{x}(t), \underline{v}(t)) \right).$$
(2.58)

Здесь функции $\mu^{(\mp)}(x)$ - те же, что и в выражениях для верхнего решения, а $q_0^{(\mp)}(\underline{\xi}, \underline{x}, \underline{v}), q_1^{(\mp)}(\underline{\xi}, \underline{x}, \underline{v})$ определяются из тех же задач, что и для верхнего решения, в которых переменные $\overline{\xi}, \overline{x}(t), \overline{v}(t)$ заменены на $\xi, \underline{x}(t), \underline{v}(t).$

Лемма. Функции $\beta(x,t,\varepsilon)$ и $\alpha(x,t,\varepsilon)$ определенные (2.48) и (2.58) удовлетворяют условиям (У1)-(У6), т.е являются верхним и нижним решениями задачи (2.1). Доказательство леммы состоит в проверке условий (У1)-(У5) определения нижнего и верхнего решений.

Условие (У1) упорядочености верхнего и нижнего решений проверяется так же как в работах [26], [52].

Из самого способа построения верхнего и нижнего решений следуют неравенства (см. [26])

$$L[\beta] = -\varepsilon^{n+1}R + O(\varepsilon^{n+2}) < 0, \quad L[\alpha] = \varepsilon^{n+1}R + O(\varepsilon^{n+2}) > 0,$$

где R > 0 – постоянная в правой части задачи (2.49).

Условия (УЗ) оказываются выполненными при выборе достаточно больших положительных величин $R^{(-)}$ и $R^{(+)}$ в начальных условиях задачи (2.49).

Проверим выполнение неравества (У5) для верхнего решения. Разложим величину

$$\varepsilon \left(\frac{\partial \beta^{(-)}}{\partial x} - \frac{\partial \beta^{(+)}}{\partial x} \right) \bigg|_{x = \bar{x}(t)}$$

в ряд по степеням ε . В силу проведенного сшивания формальных асимптотик (а именно, в силу равенств (2.34) и (2.35) и аналогичных для $i = 2, \ldots, n + 1$) коэффициенты при ε^i для $i = 1, \ldots, n$ равны нулю, а коэффициент при ε^{n+1} включает только те слагаемые, которые возникают в результате модификации асимптотики:

$$\varepsilon \left(\frac{d\beta^{(-)}}{dx} - \frac{d\beta^{(+)}}{dx} \right) \bigg|_{x=\bar{x}(t)} = -\varepsilon^{n+1} \left(\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t)) \right) \frac{d\delta(t)}{dt} - \varepsilon^{n+1} \frac{\partial H_0}{\partial \hat{x}}(x_0, v_0, t) \cdot \delta(t) + \varepsilon^{n+1} \left(\frac{\partial q_0^{(-)}}{\partial \bar{\xi}}(0, x_0(t), v_0(t)) - \frac{\partial q_0^{(+)}}{\partial \bar{\xi}}(0, x_0(t), v_0(t)) \right) + O(\varepsilon^{n+2}),$$
$$t \in [0; T], \quad (2.59)$$

здесь $\Phi^{(-)}$ и $\Phi^{(+)}$ – определены в (2.29), а $x_0(t)$ и $v_0(t)$ – первые члены разложений (2.4) и (2.6).

Вычислим выражение в скобках в последнем слагаемом, использовав явный вид функции $q_0^{(\mp)}(\bar{\xi}, \hat{x}, \bar{v})$ (см. (2.52)), уравнение (2.27) и обозначения (2.29):

$$\frac{\partial q_0^{(-)}}{\partial \bar{\xi}}(0, x_0, v_0) - \frac{\partial q_0^{(+)}}{\partial \bar{\xi}}(0, x_0, v_0) = (v_0 - \bar{A}^{(-)}(x_0))\mu^{(-)}(x_0) - (v_0 - \bar{A}^{(+)}(x_0))\mu^{(+)}(x_0),$$

где $\bar{A}^{(\mp)}(x)$ – обозначения (2.21).

Определим функцию $\delta(t)$ как решение начальной задачи

$$\frac{d\delta}{dt} = -\frac{\partial H_0}{\partial \hat{x}}(x_0, v_0, t) \cdot \left(\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t))\right)^{-1} \cdot \delta + F(t) + \sigma, \quad t \in (0; T],$$
$$\delta(0) = \delta^0,$$

где

$$F(t) = \left((v_0(t) - \bar{A}^{(-)}(x_0(t)))\mu^{(-)}(x_0(t)) - (v_0(t) - \bar{A}^{(+)}(x_0(t)))\mu^{(+)}(x_0(t)) \right) \times (\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t)))^{-1},$$

 $\delta^0 > 0$, а σ – положительная величина, которая выбирается таким образом, чтобы функция $\delta(t)$ принимала положительные значения при всех $t \in [0; T]$, т.е. из условия

$$\max_{0 \leqslant t \leqslant T} |F(t)| + \sigma > 0, \quad 0 \leqslant t \leqslant T.$$

При таком выборе $\delta(t)$ из (2.59) получаем:

$$\varepsilon \left(\frac{d\beta^{(-)}}{dx} - \frac{d\beta^{(+)}}{dx} \right) \Big|_{x=\bar{x}(t)} = -\varepsilon^{n+1} \left(\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t)) \right) \sigma + O(\varepsilon^{n+2}) > 0.$$

Последнее неравенство выполняется при достаточно малых ε , поскольку $\sigma > 0$ и в силу неравенства $\varphi^{(-)}(x_0(t)) - \varphi^{(+)}(x_0(t)) < 0$ (см. условие (A1)).

При том же выборе функции $\delta(t)$ выполнено неравенство условия (У5) для нижнего решения.

Построенные верхнее и нижнее решения гарантируют существование решения $u(x, t, \varepsilon)$ задачи (2.1), удовлетворяющего неравенствам (см. [47], [48]):

$$\alpha(x,t,\varepsilon) \leqslant u(x,t,\varepsilon) \leqslant \beta(x,t,\varepsilon), \quad (x,t) \in \bar{D} \times [0;T], \quad \varepsilon \in (0;\varepsilon_0].$$

Поскольку $\beta(x,t,\varepsilon) - \alpha(x,t,\varepsilon) = O(\varepsilon^n)$ то

$$u(x,t,\varepsilon) = \alpha(x,t,\varepsilon) + O(\varepsilon^n) = U_{n+1}(x,t,\varepsilon) + O(\varepsilon^n) = U_{n-1}(x,t,\varepsilon) + O(\varepsilon^n).$$

Основной результат настоящей работы – следующая

Теорема. При выполнении условий (**A1**)-(**A2**) для любой достаточно гладкой начальной функции $u_{init}(x, \varepsilon)$, лежащей между верхним и нижним решениями:

$$\alpha(x,0,\varepsilon) \leqslant u_{init}(x,\varepsilon) \leqslant \beta(x,0,\varepsilon),$$

существует решение $u(x, t, \varepsilon)$ задачи (2.1), которое при любом $t \in [0; T]$ заключено между этими верхним и нижним решениями, и для которого функция $U_n(x, t, \varepsilon)$ является равномерными при $(x, t) \in [0; 1] \times [0; T]$ асимптотическим приближением с точностью $O(\varepsilon^{n+1})$.

2.5 Пример

Рассмотрим задачу для варианта уравнения Бюргерса

$$\varepsilon \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} + u, \quad x \in [0; 1/3], \quad t \in (0; T],$$
$$u(0, t, \varepsilon) = -2, \quad u(1/3, t, \varepsilon) = 4/3, \quad t \in [0; T]$$
$$u(x, 0, \varepsilon) = u_{init}(x, \varepsilon), \quad x \in [0; 1/3].$$
(2.60)

Уравнение (2.2) приводится к виду

$$\frac{du}{dx} = 1$$

Решения $\varphi^{(-)}$ и $\varphi^{(+)}$ имеют вид

$$\varphi^{(-)}(x) = x - 2, \quad \varphi^{(+)}(x) = x + 1$$

И удовлетворяют условию $\varphi^{(-)} < \varphi^{(+)}, x \in [0; 1/3]$. Имеем также $A(\varphi^{(-)}(x), x) = -(x-2) > 0, A(\varphi^{(+)}(x), x) = -(x+1) < 0$ при $x \in [0; 1/3]$. Таким образом, условие (A1) выполнено.

Задача (2.11) для определения главного члена асимптотического описания фронта $x_0(t)$ принимает вид

$$\frac{dx_0}{dt} = \frac{\int\limits_{\varphi^{(-)}(x_0)}^{\varphi^{(+)}(x_0)} A(u, x_0) du}{\varphi^{(+)}(x_0) - \varphi^{(-)}(x_0)} := -x_0 + \frac{1}{2},$$
$$x_0(0) = x_{00}, \quad x_{00} \in (0; 1).$$

Решение этой задачи имеет вид

$$x_0(t) = e^{-t} \left(x_{00} - \frac{1}{2} \right) + \frac{1}{2}.$$

Проверим условие (А2). Имеем

$$\int_{\varphi^{(\mp)}(x)}^{s} (A(u,x) - V(x)) du = \frac{(\varphi^{(\mp)}(x) + s + 2v) \cdot (\varphi^{(\mp)}(x) - s)}{2} > 0$$

при
$$s \in (\varphi^{(-)}(x), \varphi^{(+)}(x)), \quad x \in \left[0; \frac{1}{3}\right].$$

Таким образом, все условия сформулированной выше теоремы выполнены, и рассмотренное уравнение Бюргерса имеет решение с переходным движущимся слоем, локализованным вблизи $X_0(t)$, явно выражение для которого получено выше.

Использовав явные представления решения задач (2.20), (2.25) и (2.32), (2.40), можно получить явные представления для членов асимптотики. Использовав найденные члены асимптотики, можно показать, что уравнение (2.39) для определения важной для приложений поправки $x_1(t)$ приводится к виду

$$\frac{dx_1}{dt} = x_1$$

Учитывая нулевое дополнительное условие $x_1(0) = 0$, получаем $x_1(t) = 0$.

Глава 3

Движение двумерного фронта в задаче реакция-диффузия

3.1 Постановка задачи

Рассмотрим начально-краевую задачу для уравнения реакция-диффузия.

$$\varepsilon^{2}\Delta u - \varepsilon \frac{\partial u}{\partial t} = f(u, x, y, \varepsilon), \quad x \in \mathbb{R}, \quad y \in (0, a), \quad t \in (0, T],$$

$$u_{y}(x, 0, t, \varepsilon) = u_{y}(x, a, t, \varepsilon) = 0, \quad x \in \mathbb{R}, \quad t \in [0, T],$$

$$u(x, y, t, \varepsilon) = u(x + L, y, t, \varepsilon), \quad x \in \mathbb{R}, \quad y \in [0, a], \quad t \in [0, T],$$

$$u(x, y, 0, \varepsilon) = u_{init}(x, y, \varepsilon), \quad x \in \mathbb{R}, \quad y \in [0, a].$$
(3.1)

Здесь $\varepsilon \in (0; \varepsilon_0]$ – малый параметр. Будем считать, что функция $f(u, x, y, \varepsilon)$ – L - периодическая по переменной x, достаточно гладкая в области $I_u \times \overline{D}$, где I_u – допустимый интервал значений $u, \overline{D} = \{(x, y) : \mathbb{R} \times [0, a]\},$ $u_{init}(x, y, \varepsilon)$ - непрерывная функция в \overline{D} , L - периодическая по переменной x.

Будем рассматривать задачу в постановке (3.1), считая что выполнен ряд условий.

Условие С1.

Пусть функция $f(u, x, y, \varepsilon)$ такова, что вырожденное уравнение f(u, x, y, 0) = 0 имеет в области \bar{D} три изолированных L - периодических по переменной x корня $u = \varphi^{(\mp)}(x, y), u = \varphi^{(0)}(x, y)$, причем всюду в области \bar{D} выполняются неравенства $\varphi^{(-)}(x, y) < \varphi^0(x, y) < \varphi^{(+)}(x, y)$ и $f_u(\varphi^{(\mp)}(x, y), x, y, 0) > 0, f_u(\varphi^0(x, y), x, y, 0) < 0.$

Мы будем исследовать решение задачи (3.1), которое имеет вид движущегося фронта, а именно, такое решение, которое в каждый момент времени при $0 \leq y \leq h(x,t)$ близко к поверхности $\varphi^{(-)}(x,y)$, а при $h(x,t) \leq y \leq a$ близко к поверхности $\varphi^{(+)}(x,y)$ и резко изменяется от значений на поверхности $\varphi^{(-)}(x,y)$ до значений на поверхности $\varphi^{(+)}(x,y)$ в окрестности некоторой кривой y = h(x,t). В этом случае говорят, что решение задачи (3.1) содержит внутренний переходный слой в окрестности этой кривой.

Будем считать, что y = h(x,t) – это та кривая, на которой решение $u(x,y,t,\varepsilon)$ задачи (3.1) в каждый момент времени принимает значение, равное $\varphi^0(x,y)$.

Кривая y = h(x, t) в каждый момент времени делит область \overline{D} на две части: $\overline{D}^{(-)} = \{(x, y) : \mathbb{R} \cup [0; h(x, t)]\}$ и $\overline{D}^{(+)} = \{(x, y) : \mathbb{R} \cup [h(x, t); a]\}.$

Для детального описания переходного слоя перейдем в окрестности этой кривой к локальным координатам (l, r) с помощью соотношений

$$x = l - r\sin\alpha \quad y = h(l, t) + r\cos\alpha, \tag{3.2}$$

где

$$\sin \alpha = \frac{h_x}{\sqrt{1+h_x^2}}, \quad \cos \alpha = \frac{1}{\sqrt{1+h_x^2}},$$
 (3.3)

 α – угол между осью y и нормалью к кривой y = h(x, t), проведенной в область y > h(x, t) в каждый момент времени t, r – расстояние от этой кривой по нормали к ней. Будем считать что r > 0 в области $D^{(+)}, r < 0$ в области $D^{(-)}, r = 0$ на кривой y = h(x, t), l - x-координата точки на этой кривой, из которой нормаль проводится; производные функций h(x, t) в выражении (3.3) берутся при x = l.

Перепишем дифференциальные операторы, входящие в уравнение (3.1), в переменных r, l, t.

$$\nabla = \left\{ -\frac{h_x}{\sqrt{1+h_x^2}} \frac{\partial}{\partial r} - \frac{\sqrt{1+h_x^2}}{rh_{xx} - (1+h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial l}; \frac{1}{\sqrt{1+h_x^2}} \frac{\partial}{\partial r} - \frac{h_x\sqrt{1+h_x^2}}{rh_{xx} - (1+h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial l} \right\};$$
(3.4)

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + (\mathbf{v}, \nabla) = \frac{\partial}{\partial t} + r \frac{h_{xt}}{(1+h_x^2)^{\frac{3}{2}}} \left(\frac{h_x}{\sqrt{1+h_x^2}} \frac{\partial}{\partial r} + \frac{\sqrt{1+h_x^2}}{rh_{xx} - (1+h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial l} \right) + \left(h_t - r \frac{h_x h_{xt}}{(1+h_x^2)^{\frac{3}{2}}} \right) \left(\frac{1}{\sqrt{1+h_x^2}} \frac{\partial}{\partial r} - \frac{h_x \sqrt{1+h_x^2}}{rh_{xx} - (1+h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial l} \right) = \\
= \frac{\partial}{\partial t} + \frac{h_t}{\sqrt{1+h_x^2}} \frac{\partial}{\partial r} + \frac{1}{rh_{xx} - (1+h_x^2)^{\frac{3}{2}}} \left(rh_{xt} - h_t h_x \sqrt{1+h_x^2} \right) \frac{\partial}{\partial l};$$
(3.5)

$$\begin{split} \Delta &= \frac{\partial^2}{\partial r^2} + \frac{h_{xx}}{rh_{xx} - (1 + h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial r} + \\ &+ \frac{1 + h_x^2}{\left(rh_{xx} - (1 + h_x^2)^{\frac{3}{2}}\right)^3} \left(2rh_x h_{xx}^2 + h_x h_{xx} \left(1 + h_x^2\right)^{\frac{3}{2}} - rh_{xxx} \left(1 + h_x^2\right)\right) \frac{\partial}{\partial l} + \\ &+ \frac{\left(1 + h_x^2\right)^2}{\left(rh_{xx} - (1 + h_x^2)^{\frac{3}{2}}\right)^2} \frac{\partial^2}{\partial l^2}. \end{split}$$

(3.6)

Производные функции h(x,t), входящие в выражения (3.4)-(3.6), берутся при x = l.

Введем растянутую переменную

$$\xi = \frac{r}{\varepsilon}.\tag{3.7}$$

В переменных ξ, l, t дифференциальный оператор в уравнении (3.1) принимает вид

$$\varepsilon^{2}\Delta - \varepsilon \frac{\partial}{\partial t} = \frac{\partial^{2}}{\partial \xi^{2}} - \frac{h_{t}}{\sqrt{1 + h_{x}^{2}}} \frac{\partial}{\partial \xi} - \varepsilon \left(\frac{\partial}{\partial t} + \frac{h_{xx}}{(1 + h_{x}^{2})^{\frac{3}{2}}} \frac{\partial}{\partial \xi} + \frac{h_{t}h_{x}}{1 + h_{x}^{2}} \frac{\partial}{\partial l} \right) + \sum_{i=2}^{n} \varepsilon^{i} L_{i} + O(\varepsilon^{n+1}), \quad (3.8)$$

где L_i – дифференциальные операторы первого или второго порядка по переменным ξ , l и x.

3.1.1 Присоединенные системы

Запишем так называемое присоединенное уравнение для функции $\tilde{u}(\xi, h(x, t))$:

$$\frac{\partial^2 \tilde{u}}{\partial \xi^2} - \frac{h_t}{\sqrt{1 + h_x^2}} \frac{\partial \tilde{u}}{\partial \xi} = f(\tilde{u}, x, h(x, t), 0),$$

которое будем рассматривать отдельно на каждой из полупрямых $\xi \leq 0$ и $\xi \geq 0$, считая переменные x и t, а также функцию h(x,t) параметрами. В каждом случае можно свести это уравнение к соответствующей присоединенной системе уравнений:

$$\frac{\partial \tilde{u}}{\partial \xi} = \Phi, \quad \frac{\partial \Phi}{\partial \xi} = W\Phi + f(\tilde{u}, x, h(x, t), 0), \tag{3.9}$$

где через W обозначено следующее выражение:

$$W = \frac{h_t}{\sqrt{1 + h_x^2}}.\tag{3.10}$$

Точка ($\varphi^{(-)}, 0$) и ($\varphi^{(+)}, 0$) на фазовой плоскости (\tilde{u}, Φ) являются точками покоя типа седла системы (3.9) в силу неравенства $f_u(\varphi^{(\mp)}(x, y), x, y, 0) > 0$ из условия **С2**.

Разделив второе уравнение системы (3.9) на первое, а затем домножив обе части полученного равенства на $\Phi(\tilde{u}, h(x, t), W)$, получим дифференциальное уравнение первого порядка относительно функции $\Phi(\tilde{u}, h(x, t), W)$.

При всех $(x,t) \in \mathbb{R} \times [0,T]$ рассмотрим следующие задачи Коши:

$$\begin{split} \Phi^{(-)} \frac{\partial \Phi^{(-)}}{\partial \tilde{u}} &= W \Phi^{(-)} + f(\tilde{u}, x, h(x, t), 0), \quad \varphi^{(-)}(x, h(x, t)) < \tilde{u} \leqslant \varphi^{0}(x, h(x, t)), \\ \Phi^{(-)}(\varphi^{(-)}(x, h(x, t)), h(x, t), W) &= 0 \end{split}$$

и

$$\Phi^{(+)}\frac{\partial \Phi^{(+)}}{\partial \tilde{u}} = W\Phi^{(+)} + f(\tilde{u}, x, h(x, t), 0), \quad \varphi^{0}(x, h(x, t)) \leqslant \tilde{u} < \varphi^{(+)}(x, h(x, t)),$$

$$\Phi^{(+)}(\varphi^{(+)}(x, h(x, t)), h(x, t), W) = 0.$$
(3.12)

Условие С2.

Пусть при всех $(x,t) \in \mathbb{R} \times [0,T]$ существует такое семейство кривых h(x,t), что определены решения задач Коши (3.11) и (3.12), где через W обозначено выражение (3.10), причем выполняются неравенства:

$$\Phi^{(-)}(\tilde{u}, h(x, t), W) > 0, \quad \varphi^{(-)}(x, h(x, t)) < \tilde{u} \leqslant \varphi^{0}(x, h(x, t));
\Phi^{(+)}(\tilde{u}, h(x, t), W) > 0, \quad \varphi^{0}(x, h(x, t)) \leqslant \tilde{u} < \varphi^{(+)}(x, h(x, t)).$$
(3.13)

Условия существования решения задач, типа (3.11) и (3.12) сформулированы в [40].

Условие **C2** гарантирует существование на фазовой плоскости (\tilde{u}, Φ)

сепаратрисы $\Phi^{(-)}(\tilde{u}, h(x, t), W)$, входящей в седло ($\varphi^{(-)}, 0$) при $\xi \to -\infty$ и сепаратрисы $\Phi^{(+)}(\tilde{u}, h(x, t), W)$, входящей в седло ($\varphi^{(+)}, 0$) при $\xi \to +\infty$.

Введем функцию

$$H_0(h(x,t),t,W) = \Phi^{(-)}(\varphi^0(x,t),h(x,t),W) - \Phi^{(+)}(\varphi^0(x,t),h(x,t),W).$$

Для каждого набора параметров x, t, h(x,t) и W величина $H_0(h(x,t),t,W)$ равна расстоянию между сепаратрисами $\Phi^{(-)}(\tilde{u},h(x,t),W)$ и $\Phi^{(+)}(\tilde{u},h(x,t),W)$ на фазовой плоскости (\tilde{u},Φ) .

Условие СЗ. Пусть для всех значений $(x,t) \in \mathbb{R} \times [0,T]$ существует функция $h_0(x,t)$ и величина W_0 – решения уравнения

$$H_0(l, h_0(x, t), t) := \Phi^{(-)}(\varphi^0, h_0(x, t), W) - \Phi^{(+)}(\varphi^0, h_0(x, t), W) = 0,$$
(3.14)

с условиями

$$h_0(x,0) = h_{00}(x), x \in \mathbb{R}; \quad h_0(x+L,t) = h_0(x,t), t \in [0,T], x \in \mathbb{R}$$

где величина W_0 равна

$$W_0 = \frac{h_{0t}}{\sqrt{1 + h_{0x}^2}}$$

Условие **C3** означает, что при $h(x,t) = h_0(x,t)$ и $W = W_0$ выполняется равенство $\Phi^{(-)} = \Phi^{(+)}$.

Условие С4. Пусть выполняется неравенство

$$\frac{\partial H_0}{\partial h_t}(x, h_0(x, t), t) > 0.$$

3.2 Построение асимптотического приближения решения

Асимптотическое приближение $U(x, y, t, \varepsilon)$ решения задачи (3.1) будем строить отдельно в каждой из областей $\bar{D}^{(-)}$ и $\bar{D}^{(+)}$:

$$U = \begin{cases} U^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}^{(-)} \times [0, T], \\ U^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}^{(+)} \times [0, T]. \end{cases}$$
(3.15)

Каждую из функций $U^{(-)}$ и $U^{(+)}$ будем представлять в виде в виде сумм трех слагаемых

$$U^{(\mp)} = \bar{u}^{(\mp)}(x, y, \varepsilon) + Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon) + \Pi^{(\mp)}(x, \eta^{(\mp)}, \varepsilon).$$
(3.16)

Здесь $\bar{u}^{(\mp)}(x,y,\varepsilon)$ – регулярная часть асимптотического представления,

 $Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon)$ – функции, описывающие переходный слой, ξ – растянутая переменная вблизи кривой локализации переходного слоя, определенная равенством (3.7), $\Pi^{(\mp)}(x, \eta^{(\mp)}, \varepsilon)$ – функции, описывающие поведение решения вблизи границ y = 0 и y = a, соответственно. Здесь $\eta^{(-)} = \frac{y}{\varepsilon}, \ \eta^{(+)} = \frac{y-a}{\varepsilon}$. Каждое слагаемое в (3.16) представляет собой разложение по степеням малого параметра ε , в частности:

$$\bar{u}^{(\mp)}(x,y,\varepsilon) = \bar{u}_0^{(\mp)}(x,y) + \varepsilon \bar{u}_1^{(\mp)}(x,y) + \dots , \qquad (3.17)$$

$$Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon) = Q_0^{(\mp)}(\xi, l, h(l, t), t) + \varepsilon Q_1^{(\mp)}(\xi, l, h(l, t), t) + \dots$$
(3.18)

Кривую y = h(x, t) также будем искать в виде разложения по степе-

ням параметра ε :

$$h(x,t) = h_0(x,t) + \varepsilon h_1(x,t) + \varepsilon^2 h_2(x,t) + \dots$$
 (3.19)

Функции $U^{(-)}(x, y, t, \varepsilon)$ и $U^{(+)}(x, y, t, \varepsilon)$ и их производные по направлению нормали к кривой y = h(x, t) будем непрерывно сшивать на этой кривой в каждый момент времени t:

$$U^{(-)}(x, h(x, t), t, \varepsilon) = U^{(+)}(x, h(x, t), t, \varepsilon) = \varphi^{0}(x, h(x, t)), \qquad (3.20)$$

$$\frac{\partial U^{(-)}}{\partial n}(x,h(x,t),t,\varepsilon) = \frac{\partial U^{(+)}}{\partial n}(x,h(x,t),t,\varepsilon).$$
(3.21)

3.2.1 Регулярная часть асимптотики

Представляя разложения (3.17) в равенство

$$\varepsilon^2 \left(\frac{\partial^2 \bar{u}^{(\mp)}}{\partial x^2} + \frac{\partial^2 \bar{u}^{(\mp)}}{\partial y^2} \right) = f(\bar{u}^{(\mp)}, x, y, \varepsilon), \qquad (3.22)$$

раскладывая функции в правой части по формуле Тейлора по степеням малого параметра и приравнивая коэффициенты при одинаковых степенях ε , будем получать уравнения для функций $\bar{u}_i^{(\mp)}(x,y)$, i = 0, 1...

В порядке ε^0 получим вырожденное уравнение

$$f(\bar{u}_0^{(\mp)}, x, y, 0) = 0.$$

Согласно условию **C1** это уравнение разрешимо, и функции $\varphi^{(-)}(x,y)$ и $\varphi^{(+)}(x,y)$ являются *L*-периодическими по переменной *x* решениями этого уравнения.

Положим

$$\bar{u}_{0}^{(-)}(x,y) = \varphi^{(-)}(x,y), (x,y) \in \bar{D}^{(-)}, \quad \bar{u}_{0}^{(+)}(x,y) = \varphi^{(+)}(x,y), (x,y) \in \bar{D}^{(+)}.$$
(3.23)

Далее для сокращения записей введем обозначение

$$\bar{f}_u^{(\mp)}(x,y) := f_u(\varphi^{(\mp)}(x,y), x, y, 0), \qquad (3.24)$$

а также обозначение $\bar{f}_{\varepsilon}^{(\mp)}(x,y)$, имеющее аналогичный смысл. Функции $\bar{u}_i, i = 1, 2...$ определяются как решения уравнений

$$\bar{f}_{u}^{(\mp)}(x,y)\bar{u}_{i}^{(\mp)} = \bar{f}_{i}^{(\mp)}(x,y), \qquad (3.25)$$

где $\bar{f}_i^{(\mp)}(x,y)$ – известные функции. В частности, $\bar{f}_1^{(\mp)}(x,y) = -\bar{f}_{\varepsilon}^{(\mp)}(x,y)$.

3.2.2 Функции переходного слоя

Уравнения для функций переходного слоя $Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon)$ определяются из равенств

$$\left(\frac{\partial^2}{\partial\xi^2} - \frac{h_t}{\sqrt{1+h_x^2}}\frac{\partial}{\partial\xi} - \varepsilon \left(\frac{\partial}{\partial t} + \frac{h_{xx}}{(1+h_x^2)^{\frac{3}{2}}}\frac{\partial}{\partial\xi} + \frac{h_th_x}{1+h_x^2}\frac{\partial}{\partial l}\right) + \sum_{i=2}\varepsilon^i L_i\right)Q^{(\mp)} = \\
= f(\bar{u}(l-\varepsilon\xi\sin\alpha,h(l,t) + \varepsilon\xi\cos\alpha) + Q^{(\mp)}, l-\varepsilon\xi\sin\alpha,h(l,t) + \varepsilon\xi\cos\alpha,\varepsilon) - \\
- f(\bar{u}(l-\varepsilon\xi\sin\alpha,h(l,t) + \varepsilon\xi\cos\alpha), l-\varepsilon\xi\sin\alpha,h(l,t) + \varepsilon\xi\cos\alpha,\varepsilon).$$
(3.26)

Подставляя в эти равенства суммы (3.17) и (3.18), раскладывая входящие в эти равенства функции по формуле Тейлора по степеням малого параметра и приравнивая коэффициенты при одинаковых степенях ε , будем получать уравнения для функций $Q_i^{(\mp)}(\xi, l, h(l, t), t), \quad i = 0, 1, ...$ В качестве дополнительных условий потребуем убывания на бесконечности

$$Q_i^{(\mp)}(\mp\infty, l, h(l, t), t) = 0, \qquad (3.27)$$

а также выполнение условий при $\xi = 0$, которые следуют из равенства (3.20). Заметим, что в силу достаточной удаленности кривой h(x,t)от границ y = 0 и y = a, пограничные функции в окрестности этой кривой и, в частности, при $\xi = 0$ принимают значения меньшие любой степени ε и не влияют на условия непрерывного сшивания. Подставим в равенство (3.20) суммы (3.17) и (3.18), перепишем их в следующем виде:

$$\begin{split} \bar{u}_{0}^{(-)}(l,h(l,t)) &+ \varepsilon \bar{u}_{1}^{(-)}(l,h(l,t)) + \ldots + Q_{0}^{(-)}(0,l,h(l,t),t) + \varepsilon Q_{1}^{(-)}(0,l,h(l,t),t) + \ldots = \\ &= \bar{u}_{0}^{(+)}(l,h(l,t)) + \varepsilon \bar{u}_{1}^{(+)}(l,h(l,t)) + \ldots + Q_{0}^{(+)}(0,l,h(l,t),t) + \varepsilon Q_{1}^{(+)}(0,l,h(l,t),t) + \ldots = \\ &= \varphi^{0}(l,h(l,t)). \end{split}$$

(3.28)

Функции переходного слоя нулевого порядка

Приравнивая коэффициенты при ε^0 в равенствах (3.26) и (3.28) с учетом условия (3.27), получим следующие задачи для функций $Q_0^{(\mp)}(\xi, l, h(l, t), t)$:

$$\frac{\partial^2 Q_0^{(\mp)}}{\partial \xi^2} - W \frac{\partial Q_0^{(\mp)}}{\partial \xi} = f(\varphi^{(\mp)}(l, h(l, t)) + Q_0^{(\mp)}, l, h(l, t), 0),$$

$$\varphi^{(\mp)}(l, h(l, t)) + Q_0^{(\mp)}(0, l, h(l, t), t) = \varphi^0(l, h(l, t)),$$

$$Q_0^{(\mp)}(\mp \infty, l, h(l, t), t) = 0,$$
(3.29)

где использовано обозначение (3.1.1).

Задачу для функци
и $Q_0^{(-)}$ будем рассматривать при $\xi\leqslant 0,$ а для функци
и $Q_0^{(+)}$ – при $\xi\geqslant 0.$

Введем обозначение

$$\tilde{u}(\xi, h(l, t)) := \begin{cases} \varphi^{(-)}(l, h(l, t)) + Q_0^{(-)}(\xi, l, h(l, t), t), & \xi \leq 0, \\ \varphi^{(+)}(l, h(l, t)) + Q_0^{(+)}(\xi, l, h(l, t), t), & \xi \geq 0; \end{cases}$$
(3.30)

Перепишем уравнение и условия при $\xi = 0$ задач (3.29), используя это обозначение:

$$\frac{\partial^2 \tilde{u}}{\partial \xi^2} - W \frac{\partial \tilde{u}}{\partial \xi} = f(\tilde{u}, l, h(l, t), 0), \quad \tilde{u}(0, h(l, t)) = \varphi^0(l, h(l, t)). \quad (3.31)$$

Уравнение (3.31) будем решать отдельно на полупрямой $\xi < 0$ с условием

$$\tilde{u}(-\infty, h(l, t)) = \varphi^{(-)}(l, h(l, t))$$
 (3.32)

и на полупрямой $\xi > 0$ с условием

$$\tilde{u}(+\infty, h(l, t)) = \varphi^{(+)}(l, h(l, t)).$$
 (3.33)

От дифференциальных уравнений второго порядка в задачах (3.31), (3.32) и (3.31), (3.33) перейдем к эквивалентным системам уравнений второго порядка, которые совпадают с системами (3.9), от которых тем же способом, что и в пункте 3.1.1 придем к дифференциальным уравнениям первого порядка относительно функций $\Phi^{(-)}$ и $\Phi^{(+)}$. Эти функции мы определим как

$$\Phi^{(-)}(\tilde{u}(\xi, h(l, t)), h(l, t), W) = \frac{\partial \tilde{u}}{\partial \xi}, \quad \xi \leq 0,$$

$$\Phi^{(+)}(\tilde{u}(\xi, h(l, t)), h(l, t), W) = \frac{\partial \tilde{u}}{\partial \xi}, \quad \xi \geq 0.$$
(3.34)

Уравнения для функций $\Phi^{(\mp)}(\tilde{u}(\xi, h(l, t)), h(l, t), W)$ совпадают с уравнениями из задач Коши (3.11) и (3.12), соответственно. Определим эти функции как решения указанных задач Коши.

Из существования функций $\Phi^{(\mp)}(\tilde{u}(\xi, h(l, t)), h(l, t), W)$ вытекает существование решений начальных задач

$$\begin{aligned} \frac{\partial \tilde{u}}{\partial \xi} &= \Phi^{(-)}(\tilde{u}, h(l, t), W), \quad \xi < 0, \quad \tilde{u}(0, h(l, t)) = \varphi^0(l, h(l, t)), \\ \frac{\partial \tilde{u}}{\partial \xi} &= \Phi^{(+)}(\tilde{u}, h(l, t), W), \quad \xi > 0, \quad \tilde{u}(0, h(l, t)) = \varphi^0(l, h(l, t)), \end{aligned}$$

для которых справедливы предельные равенства.

$$\lim_{\xi \to \mp \infty} \left| \tilde{u}(\xi, h(l, t)) - \varphi^{(\mp)}(l, h(l, t)) \right| = 0.$$
(3.35)

По аналогии со статьей [6] можно доказать справедливость следующих оценок:

$$\left|\tilde{u}(\xi, h(l, t)) - \varphi^{(\mp)}(l, h(l, t))\right| < Ce^{-\varkappa_0|\xi|}$$
(3.36)

где C, \varkappa_0 – положительные константы.

Для функций $Q_0^{(\mp)}(\xi,l,h(l,t),t)$ (см. (3.30)) справедливы оценки

$$\left|Q_{0}^{(\mp)}(\xi, l, h(l, t), t)\right| < Ce^{-\varkappa_{0}|\xi|}$$
(3.37)

и аналогичные оценки имеют место для функций $\Phi^{(\mp)}(\tilde{u}(\xi, h(l, t)), h(l, t), W).$

Далее для краткости будем использовать обозначение

$$\Phi^{(\mp)}(\xi, h(l, t), W) := \Phi^{(\mp)}(\tilde{u}(\xi, h(l, t)), h(l, t), W).$$

Функции переходного слоя первого порядка

Приравнивая слагаемые при ε^1 в равенствах (3.26) получим следующие уравнения для функций $Q_1^{(\mp)}(\xi, l, h(l, t), t)$:

$$\frac{\partial^2 Q_1^{(\mp)}}{\partial \xi^2} - W \frac{\partial Q_1^{(\mp)}}{\partial \xi} - \tilde{f}_u(\xi, l, t) Q_1^{(\mp)} = \tilde{f}_1^{(\mp)}(\xi, l, t), \qquad (3.38)$$

где введены обозначения

$$\tilde{f}_u(\xi, l, t) = f_u(\tilde{u}(\xi, h(l, t)), l, h(l, t), 0)$$
(3.39)

И

$$\begin{split} \tilde{f}_{1}^{(\mp)}(\xi,l,t) &= \frac{\partial Q_{0}^{(\mp)}}{\partial t} + \frac{h_{xx}}{(1+h_{x}^{2})^{\frac{3}{2}}} \frac{\partial Q_{0}^{(\mp)}}{\partial \xi} + \frac{h_{t}h_{x}}{1+h_{x}^{2}} \frac{\partial Q_{0}^{(\mp)}}{\partial l} + \tilde{f}_{u}(\xi,l,t)\bar{u}_{1}^{(\mp)}(l,h(l,t)) + \\ &+ \left(\tilde{f}_{u}(\xi,l,t) - \bar{f}_{u}^{(\mp)}(l,h(l,t))\right) \left(-\varphi_{x}^{(\mp)}(l,h(l,t))\xi\sin\alpha + \varphi_{y}^{(\mp)}(l,h(l,t))\xi\cos\alpha\right) - \\ &- \left(\tilde{f}_{x}(\xi,l,t) - \bar{f}_{x}^{(\mp)}(l,h(l,t))\right)\xi\sin\alpha + \left(\tilde{f}_{y}(\xi,l,t) - \bar{f}_{y}^{(\mp)}(l,h(l,t))\right)\xi\cos\alpha + \tilde{f}_{\varepsilon}(\xi,l,t), \end{split}$$

обозначения $\tilde{f}_x(\xi, l, t), \tilde{f}_y(\xi, l, t), \tilde{f}_{\varepsilon}(\xi, l, t),$ имеют смысл аналогичный (3.39), а $\bar{f}_x(l, h(l, t)), \bar{f}_y(l, h(l, t))$ – смысл, аналогичный (3.24).

Из равенства (3.28) в порядке ε^1 следуют краевые условия

$$Q_1^{(\mp)}(0,l,h(l,t),t) + \bar{u}_1^{(\mp)}(l,h(l,t)) = 0.$$
(3.40)

Добавим также условия на бесконечности

$$Q_1^{(\mp)}(\mp\infty, l, h(l, t), t) = 0.$$
(3.41)

Решения задач (3.38)-(3.41) можно найти в явном виде. Для начала заметим, что функции $\Phi^{(\mp)}(\xi, h(l, t), W)$ являются решениями соответствующих однородных уравнений. В этом не трудно убедиться, продифференцировав уравнение

$$\frac{\partial^2 \tilde{u}}{\partial \xi^2} - W \frac{\partial \tilde{u}}{\partial \xi} = f(\tilde{u}, l, h(l, t), 0).$$

В результате дифференцирования получим

$$\frac{\partial^{3}\tilde{u}}{\partial\xi^{3}} - W\frac{\partial^{2}\tilde{u}}{\partial\xi^{2}} = \tilde{f}_{u}(\xi, l, t)\frac{\partial\tilde{u}}{\partial\xi} \quad \text{или} \quad \frac{\partial^{2}\Phi^{(\mp)}}{\partial\xi^{2}} - W\frac{\partial\Phi^{(\mp)}}{\partial\xi} = \tilde{f}_{u}(\xi, l, t)\Phi^{(\mp)}.$$
(3.42)

Далее, для решения уравнения (3.38) воспользуемся методом понижения порядка [53].

Будем искать каждую из функций $Q_1^{(\mp)}$ в виде

$$Q_1^{(\mp)} = \Phi^{(\mp)}(\xi, h(l, t), W) \int_0^{\xi} z(s) ds, \qquad (3.43)$$

Тогда

$$\begin{aligned} \frac{\partial Q_1^{(\mp)}}{\partial \xi} &= \frac{\partial \Phi^{(\mp)}}{\partial \xi} \cdot \int_0^{\xi} z(s) ds + \Phi^{(\mp)} z, \\ \frac{\partial^2 Q_1^{(\mp)}}{\partial \xi^2} &= \frac{\partial^2 \Phi^{(\mp)}}{\partial \xi^2} \cdot \int_0^{\xi} z(s) ds + 2 \frac{\partial \Phi^{(\mp)}}{\partial \xi} z + \Phi^{(\mp)} \frac{\partial z}{\partial \xi}. \end{aligned}$$

Подставим в уравнение (3.38)

$$\left(\frac{\partial^2 \Phi^{(\mp)}}{\partial \xi^2} - W \frac{\partial \Phi^{(\mp)}}{\partial \xi} - \tilde{f}_u(\xi, l, t) \cdot \Phi^{(\mp)}\right) \int_0^{\xi} z(s) ds + 2 \frac{\partial \Phi^{(\mp)}}{\partial \xi} z + \Phi^{(\mp)} \frac{\partial z}{\partial \xi} - W \Phi^{(\mp)} z = \tilde{f}_1(\xi, l, t)$$

Сумма в скобках обращается в нуль в силу уравнений (3.42). Для функции $z(\xi)$ получаем линейное уравнение первого порядка

$$\frac{\partial z}{\partial \xi} = \left(W - \frac{2}{\Phi^{(\mp)}(\xi, h(l, t), W)} \frac{\partial \Phi^{(\mp)}}{\partial \xi}(\xi, h(l, t), W)\right) z + \frac{1}{\Phi^{(\mp)}(\xi, h(l, t), W)} \tilde{f}_1(\xi, l, t).$$

Решая это уравнение отдельно при
 $\xi>0$ и $\xi<0$ с дополнительными условиям
и $z(\mp\infty)=0,$ получим

$$z = \int_{\mp\infty}^{\xi} e_s^{\int \left(W - \frac{2}{\Phi^{(\mp)}(\xi',h(l,t),W)} \cdot \frac{\partial \Phi^{(\mp)}}{\partial \xi}(\xi',h(l,t),W)\right) d\xi'} \frac{1}{\Phi^{(\mp)}(s,h(l,t),W)} \tilde{f}_1(s,l,t) ds.$$

Вычисляя интеграл в показателе экспоненты, придем к выражению

$$z = \frac{\mathrm{e}^{W\xi}}{(\Phi^{(\mp)}(\xi, h(l, t), W))^2} \int_{\mp\infty}^{\xi} \mathrm{e}^{-Ws} \cdot \Phi^{(\mp)}(s, h(l, t), W) \tilde{f}_1(s, l, t) ds.$$

Подставляя это выражение в (3.43), для $Q_1^{(\mp)}$ получаем выражение

$$Q_{1}^{(\mp)}(\xi,l,h(l,t),t) = -\bar{u}_{1}^{(\mp)}(l,h) \frac{\Phi^{(\mp)}(\xi,h(l,t),W)}{\Phi^{(\mp)}(0,h(l,t),W)} + \Phi^{(\mp)}(\xi,h(l,t),W) \int_{0}^{\xi} \frac{e^{Ws} ds}{(\Phi^{(\mp)}(s,h(l,t),W))^{2}} \int_{\pm\infty}^{s} e^{-W\eta} \Phi(\eta,h(l,t),W) \tilde{f}_{1}^{(\mp)}(\eta,l,t) d\eta.$$
(3.44)

Функции переходного слоя произвольного порядка

Функции переходного слоя произвольного порядка $k = 2, 3, \ldots$ определяются как решения задач

$$\frac{\partial^2 Q_k^{(\mp)}}{\partial \xi^2} - W \frac{\partial Q_k^{(\mp)}}{\partial \xi} - \tilde{f}_u(\xi, l, t) Q_k^{(\mp)} = \tilde{f}_k^{(\mp)}(\xi, l, t),$$

$$Q_k^{(\mp)}(0, l, h(l, t), t) + \bar{u}_k^{(\mp)}(l, h(l, t)) = 0, \quad Q_k^{(\mp)}(\mp \infty, l, h(l, t), t) = 0.$$
(3.45)

где $\tilde{f}_k(\xi, l, t)$ – известные функции. Решая задачи для функций с верхним индексом «(-)» на полупрямой $\xi \leq 0$, и задачи с верхним индексом «(+)» на полупрямой $\xi \geq 0$, можно получить явные выражения для функций $Q_k^{(\mp)}$, аналогичные (3.44).

3.2.3 Асимптотическое приближение положения фронта

Неизвестные коэффициенты $h_i(l,t), i = 0, 1, ...$ разложения (3.19) будем определять из условий сшивания (3.21) производных по направлению нормали к кривой h(x,t). Оператор дифференцирования по направлению нормали имеет вид

$$\frac{\partial}{\partial n} = (\mathbf{n}, \nabla) = -\sin\alpha \frac{\partial}{\partial x} + \cos\alpha \frac{\partial}{\partial y},$$

где $\mathbf{n} = \{-\sin \alpha, \cos \alpha\}, (\text{см. } (3.3)).$

Запишем этот оператор в переменных r, l, t и ξ, l, t , учитывая выражение (3.4) для оператора ∇ в этих координатах:

$$\frac{\partial}{\partial n} = \frac{\partial}{\partial r} = \frac{1}{\varepsilon} \frac{\partial}{\partial \xi}.$$

С учетом последнего выражения и разложений (3.17), (3.18) перепишем условия сшивания производных (3.21) в следующем виде

$$-\sin\alpha \frac{\partial \varphi^{(-)}}{\partial x}(l,h(l,t)) + \cos\alpha \frac{\partial \varphi^{(-)}}{\partial y}(l,h(l,t)) - \varepsilon \sin\alpha \frac{\partial \bar{u}_{1}^{(-)}}{\partial x}(l,h(l,t)) + \\ + \cos\alpha \frac{\partial \bar{u}_{1}^{(-)}}{\partial y}(l,h(l,t)) + \ldots + \frac{1}{\varepsilon} \frac{\partial Q_{0}^{(-)}}{\partial \xi}(0,l,h(l,t),t) + \frac{\partial Q_{1}^{(-)}}{\partial \xi}(0,l,h(l,t),t) + \ldots = \\ -\sin\alpha \frac{\partial \varphi^{(+)}}{\partial x}(l,h(l,t)) + \cos\alpha \frac{\partial \varphi^{(+)}}{\partial y}(l,h(l,t)) - \varepsilon \sin\alpha \frac{\partial \bar{u}_{1}^{(+)}}{\partial x}(l,h(l,t)) + \\ + \cos\alpha \frac{\partial \bar{u}_{1}^{(+)}}{\partial y}(l,h(l,t)) + \ldots + \frac{1}{\varepsilon} \frac{\partial Q_{0}^{(+)}}{\partial \xi}(0,l,h(l,t),t) + \frac{\partial Q_{1}^{(+)}}{\partial \xi}(0,l,h(l,t),t) + \ldots$$

$$(3.46)$$

Введем функцию $H(l, h(l, t), t, \varepsilon)$:

$$H(l, h(l, t), t, \varepsilon) := \varepsilon \frac{\partial U^{(-)}}{\partial n} (l, h(l, t), t, \varepsilon) - \varepsilon \frac{\partial U^{(+)}}{\partial n} (l, h(l, t), t, \varepsilon) =$$

= $H_0(l, h(l, t), t) + \varepsilon H_1(l, h(l, t), t) + \varepsilon^2 H_2(l, h(l, t), t) + \dots$ (3.47)

где

$$H_{0}(l, h(l, t), t) = \frac{\partial Q_{0}^{(-)}}{\partial \xi}(0, l, h(l, t), t) - \frac{\partial Q_{0}^{(+)}}{\partial \xi}(0, l, h(l, t), t),$$

$$H_{1}(l, h(l, t), t) = -\sin\alpha \frac{\partial \varphi^{(-)}}{\partial x}(l, h(l, t)) + \cos\alpha \frac{\partial \varphi^{(-)}}{\partial y}(l, h(l, t)) + \frac{\partial Q_{1}^{(-)}}{\partial \xi}(0, l, h(l, t), t) - \left(-\sin\alpha \frac{\partial \varphi^{(+)}}{\partial x}(l, h(l, t)) + \cos\alpha \frac{\partial \varphi^{(+)}}{\partial y}(l, h(l, t)) + \frac{\partial Q_{1}^{(+)}}{\partial \xi}(0, l, h(l, t), t)\right)$$

$$(3.48)$$

и т.д.

Условие сшивания (3.46) выражается равенством

$$H(l, h(l, t), t, \varepsilon) = 0.$$
(3.49)

В порядке ε^0 с учетом обозначений (3.30) и (3.34) это условие дает равенство

$$H_0(l, h(l, t), t) = \Phi^{(-)}(\varphi^0(l, h(l, t)), h(l, t), W) - \Phi^{(+)}(\varphi^0(l, h(l, t)), h(l, t), W) = 0$$
(3.50)

Согласно условию **C3** существует функция $h_0(l, t)$ – решение этого уравнения. Будем считать, что функция $h_0(x, t)$, определенная условием **C3**, является первым слагаемым в разложении (3.19).

Запишем условия сшивания (3.48) в порядке ε^1 с учетом разложения (3.19):

$$h_{1t}(l,t)\frac{\partial H_0}{\partial h_t}(l,h_0(l,t),t) + h_{1x}(l,t)\frac{\partial H_0}{\partial h_x}(l,h_0(l,t),t) + h_1(l,t)\frac{\partial H_0}{\partial h}(l,h_0(l,t),t) + H_1(l,h_0(l,t),t) = 0. \quad (3.51)$$

Здесь была учтена зависимость функций H_0 от h_t и h_x входящих в выражение для W, (см. (3.10)).

Определим функцию $h_1(x,t)$ как решение уравнения (3.51) с дополнительными условиями

$$h_1(x,t) = h_1(x+L,t); \quad h_1(x,0) = 0.$$
 (3.52)

Задача (3.51)-(3.52) разрешима в силу выполнения условия С4 (см. [54]).

Уравнения для коэффициентов $h_k(x,t)$ разложения (3.19) получаются из условий гладкого сшивания (3.46). Функции $h_k(x,t)$ определяются как решения задач

$$\frac{\partial h_k}{\partial t} \frac{\partial H_0}{\partial h_t} (x, h_0(x, t), t) + \frac{\partial h_k}{\partial x} \frac{\partial H_0}{\partial h_x} (x, h_0(x, t), t) + h_k \frac{\partial H_0}{\partial h} (x, h_0(x, t), t) + G_k(x, h_0(x, t), t) = 0,$$

$$h_k(x, t) = h_k(x + L, t); \quad h_k(x, 0) = 0,$$

где $G_k(x, h_0(x, t), t)$ – известные функции.

3.2.4 Функции пограничных слоев

Функции $\Pi^{(-)}(x,\eta^{(-)},\varepsilon)$ пограничного слоя в окрестности прямой y=0 и $\Pi^{(+)}(x,\eta^{(+)},\varepsilon)$ пограничного слоя в окрестности прямой y=a строятся

стандартным образом [18] в виде разложения по степеням ε . Эти разложения не содержат членов нулевого порядка, что характерно для задачи Неймана. Функции $\Pi_i^{(-)}(x,\eta^{(-)}), i = 1, 2, ...$ экспоненциально убывают, при $\eta^{(-)} \to +\infty$, а функции $\Pi_i^{(+)}(x,\eta^{(+)}), i = 1, 2, ...$ экспоненциально убывают, при $\eta^{(+)} \to -\infty$.

3.2.5 Асимптотическое представление решения

Определим члены рядов (3.17)-(3.18), а также функци
и $\Pi_i^{(\mp)}$ до номераkвключительно и положим

$$\hat{h}_k(x,t) = \sum_{i=0}^k \varepsilon^i h_i(x,t).$$
(3.53)

В окрестности кривой $\hat{h}_k(x,t)$ перейдем к локальным координатам (l,\hat{r}) с помощью соотношений, аналогичных (3.2), и введем растянутую переменную $\hat{\xi} = \frac{\hat{r}}{\varepsilon}$. Кривая $\hat{h}_k(x,t)$ разделяет область \bar{D} на подобласти $\bar{D}_k^{(-)}: \left\{ (x,y,t) \in \mathbb{R} \times [0; \hat{h}_k(x,t)] \times [0;T] \right\}$ и $\bar{D}_k^{(+)}: \left\{ (x,y,t) \in \mathbb{R} \times [\hat{h}_k(x,t), a] \times [0;T] \right\}.$

Составим суммы

$$U_{k}^{(-)}(x,y,t,\varepsilon) = \sum_{i=0}^{k} \varepsilon^{i} \left(\bar{u}_{i}^{(-)}(x,y) + Q_{i}^{(-)} \left(\hat{\xi}, l, \hat{h}_{k}(l,t), t \right) + \Pi_{i}^{(-)} \left(x, \eta^{(-)} \right) \right),$$
$$(x,y,t) \in \bar{D}_{k}^{(-)} \times [0,T],$$

$$U_{k}^{(+)}(x,y,t,\varepsilon) = \sum_{i=0}^{k} \varepsilon^{i} \left(\bar{u}_{i}^{(+)}(x,y) + Q_{i}^{(+)} \left(\hat{\xi}, l, \hat{h}_{k}(l,t), t \right) + \Pi_{i}^{(+)} \left(x, \eta^{(+)} \right) \right),$$
$$(x,y,t) \in \bar{D}_{k}^{(+)} \times [0,T]. \quad (3.54)$$

Положим

$$U_{k} = \begin{cases} U_{k}^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{k}^{(-)} \times [0, T], \\ U_{k}^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{k}^{(+)} \times [0, T]. \end{cases}$$
(3.55)

Функция $U_k(x, y, t, \varepsilon)$ по своему построению удовлетворяет уравнению и граничным условиям задачи (3.1) с точностью $O(\varepsilon^{k+1})$ всюду в области \overline{D} , за исключением кривой h(x, t), на которой она и её производная претерпевают разрывы – скачки порядков $O(\varepsilon^{k+1})$ и $O(\varepsilon^k)$, соответственно.

3.3 Обоснование асимптотики

Для доказательства существования решения задачи (3.1) и оценки точности его асимптотического приближения используется асимптотический метод дифференциальных неравенств (см. [24]). Согласно этому методу решение задачи (3.1) существует, если существуют непрерывные функции $\alpha(x, y, t, \varepsilon)$ и $\beta(x, y, t, \varepsilon)$, называемые соответственно нижним и верхним решениями задачи (3.1), для которых выполняется следующая система неравенств: [49], [47], [48]

(У1) Условие упорядоченности нижнего и верхнего решений.

$$\alpha(x, y, t, \varepsilon) \leqslant \beta(x, y, t, \varepsilon), \quad (x, y, t) \in D \times [0, T], \ \varepsilon \in (0, \varepsilon_0].$$

(У2) Действие дифференциального оператора уравнения (3.1) на нижнее и верхнее решения.

$$L[\beta] := \varepsilon^2 \Delta \beta - \varepsilon \frac{\partial \beta}{\partial t} + f(\beta, x, y, \varepsilon) \leqslant 0 \leqslant L[\alpha]$$

для почти всех точек $(x, y, t) \in \overline{D} \times [0, T]$, за исключением тех подмножеств нулевой меры, на которых функции $\alpha(x, y, t, \varepsilon)$ и $\beta(x, y, t, \varepsilon)$ не являются гладкими.

(УЗ) Условия на границах области D:

$$\begin{split} \frac{\partial\beta}{\partial y}(x,0,t,\varepsilon) \leqslant 0 \leqslant \frac{\partial\alpha}{\partial y}(x,0,t,\varepsilon), \quad \frac{\partial\alpha}{\partial y}(x,a,t,\varepsilon) \leqslant 0 \leqslant \frac{\partial\beta}{\partial y}(x,a,t,\varepsilon), \\ & x \in \mathbb{R}, \ t \in [0,T], \ \varepsilon \in (0,\varepsilon_0], \end{split}$$

$$\begin{aligned} \alpha(x,y,t,\varepsilon) &= \alpha(x+L,y,t,\varepsilon), \quad \beta(x,y,t,\varepsilon) = \beta(x+L,y,t,\varepsilon), \\ (x,y,t) &\in \bar{D} \times [0,T], \; \varepsilon \in (0,\varepsilon_0]. \end{aligned}$$

(У4) Условия в начальный момент времени.

Пусть функция $u_{init}(x, y, \varepsilon)$ в начальном условии задачи (3.1) такова, что выполнены следующие неравенства:

$$\alpha(x, y, 0, \varepsilon) \leqslant u_{init}(x, y, \varepsilon) \leqslant \beta(x, y, 0, \varepsilon), \ (x, y) \in D, \ \varepsilon \in (0, \varepsilon_0].$$

(У5) Условия скачка производных нижнего и верхнего решений по направлению нормали к кривым, на которых эти решения не являются гладкими.

$$\frac{\partial\beta}{\partial n}\left(x,h_{\beta}(x,t)-0,t,\varepsilon\right)-\frac{\partial\beta}{\partial n}\left(x,h_{\beta}(x,t)+0,t,\varepsilon\right) \ge 0,$$

где $h_{\beta}(x,t)$ – кривая, на которой верхнее решение не является гладким,

$$\frac{\partial \alpha}{\partial n} \left(x, h_{\alpha}(x,t) + 0, t, \varepsilon \right) - \frac{\partial \alpha}{\partial n} \left(x, h_{\alpha}(x,t) - 0, t, \varepsilon \right) \ge 0,$$

где $h_{\alpha}(x,t)$ – кривая, на которой нижнее решение не является гладким.

Известно (см. [47],[48]), что при выполнение условий (**У1**)-(**У5**) существует функция $u(x, y, t, \varepsilon)$ – решение задачи (3.1) – для которой выполняются неравенства

$$\alpha(x, y, t, \varepsilon) \leqslant u(x, y, t, \varepsilon) \leqslant \beta(x, y, t, \varepsilon), \quad (x, y, t) \in \overline{D} \times [0, T].$$

3.3.1 Построение верхнего и нижнего решений

Верхнее и нижнее решения будем строить как модификацию асимптотических представлений (3.54). Будем считать, что кривая $h_{\beta}(x,t)$, определяющая положение внутреннего переходного слоя для верхнего решения, задается следующим образом:

$$h_{\beta}(x,t) = \hat{h}_{n+1}(x,t) - \varepsilon^{n+1}\delta(x,t), \qquad (3.56)$$

где $\hat{h}_{n+1}(x,t)$ – сумма (3.53) при k = n + 1, $\delta(x,t)$ – положительная функция, которая выбирается таким образом, чтобы выполнялось условие (**У5**) для верхнего решения.

В окрестности кривой $h_{\beta}(x,t)$ перейдем к локальным координатам (l,r_{β}) согласно следующим равенствам:

$$x = l - r_{\beta} \sin \alpha_{\beta},$$

$$y = h_{\beta}(l, t) + r_{\beta} \cos \alpha_{\beta} = \hat{h}_{n+1}(l, t) + r_{\beta} \cos \alpha_{\beta} - \varepsilon^{n+1} \delta(l, t),$$
(3.57)

где r_{β} – расстояние от кривой $h_{\beta}(x,t)$ вдоль нормали к ней, l – координата точки на оси x, из которой эта нормаль проводится, $\cos \alpha_{\beta} = \frac{1}{\sqrt{1 + (h_{\beta})_x^2}},$ $\sin \alpha_{\beta} = \frac{(h_{\beta})_x}{\sqrt{1 + (h_{\beta})_x^2}}$, а производные функции h_{β} в каждый момент времени t берутся в точке (l, t).

Верхнее решение задачи (3.1) будем строить отдельно в каждой из областей $\bar{D}_{\beta}^{(-)}$: $\left\{ (x, y, t) \in \mathbb{R} \times [0; \hat{h}_{\beta}(x, t)] \times [0; T] \right\}$ и $\bar{D}_{\beta}^{(+)}$: $\left\{ (x, y, t) \in \mathbb{R} \times [\hat{h}_{\beta}(x, t), a] \times [0; T] \right\}$, на которые кривая $h_{\beta}(x, t)$ делит область \bar{D} :

$$\beta(x, y, t, \varepsilon) = \begin{cases} \beta^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\beta}^{(-)} \times [0, T], \\ \beta^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\beta}^{(+)} \times [0, T]. \end{cases}$$
(3.58)

Функции $\beta^{(-)}(x, y, t, \varepsilon)$ и $\beta^{(+)}(x, y, t, \varepsilon)$ будем сшивать на кривой $h_{\beta}(x, t)$, так чтобы функция $\beta(x, y, t, \varepsilon)$ была непрерывна на этой кривой и принимала значение, равное $\varphi^0(l, h_{\beta}(l, t))$:

$$\beta^{(-)}(l,h_{\beta}(l,t),t,\varepsilon) = \beta^{(+)}(l,h_{\beta}(l,t),t,\varepsilon) = \varphi^{0}(l,h_{\beta}(l,t)).$$
(3.59)

В окрестности кривой $h_{\beta}(x,t)$ введем растянутую переменную $\xi_{\beta} = \frac{r_{\beta}}{\varepsilon}$.

Функции $\beta^{(-)}$ и $\beta^{(+)}$ будем строить как модификации асимптотических представлений (3.54).

$$\beta^{(-)} = U_{n+1}^{(-)} \Big|_{\xi_{\beta}} + \varepsilon^{n+1} \left(\mu^{(-)} + q^{(-)}(\xi_{\beta}, t) \right) + \varepsilon^{n+2} \Pi_{\beta}^{(-)} \left(x, \eta^{(-)} \right),$$

$$(x, y, t) \in \bar{D}_{\beta}^{(-)} \times [0, T], \ \xi_{\beta} \leq 0, \ \eta^{(-)} \geq 0;$$

$$\beta^{(+)} = U_{n+1}^{(+)} \Big|_{\xi_{\beta}} + \varepsilon^{n+1} \left(\mu^{(+)} + q^{(+)}(\xi_{\beta}, t) \right) + \varepsilon^{n+2} \Pi_{\beta}^{(+)} \left(x, \eta^{(+)} \right),$$

$$(x, y, t) \in \bar{D}_{\beta}^{(+)} \times [0, T], \ \xi_{\beta} \geq 0, \ \eta^{(+)} \leq 0.$$
(3.60)

Здесь через $U_{n+1}^{(\mp)}$ обозначены функции (3.54) при k = n + 1, в которых аргумент ξ Q-функций заменен на ξ_{β} , а функция $\hat{h}_{n+1}(x,t)$ – на $h_{\beta}(x,t)$.

Величины $\mu^{(\mp)}$ выбираются далее таким образом, чтобы выполнялись условия (**У1**) и (**У2**).

Функции $\Pi_{\beta}^{(\mp)}(x,\eta^{(\mp)})$ определяются из тех же уравнений, что и $\Pi_{i}^{(\mp)}(x,\eta^{(\mp)})$. Краевые условия при $\eta^{(\mp)} = 0$ выбираются таким образом, чтобы выполнялись равенства в условиях (**УЗ**).

Функции $q^{(\mp)}(\xi_{\beta}, t)$ устраняют невязки порядка ε^{n+1} в выражении $L[\beta]$ и в условии непрерывного сшивания верхнего решения (3.59), возникшие в результате модификации регулярной части – добавок $\mu^{(\mp)}$. Определим их как решения уравнений

$$\frac{\partial^2 q^{(\mp)}}{\partial \xi_{\beta}^2} - \frac{(h_{\beta})_t}{\sqrt{1 + (h_{\beta})_x^2}} \frac{\partial q^{(\mp)}}{\partial \xi_{\beta}} - \tilde{f}_u(\xi_{\beta}, l, t)q^{(\mp)} = \left(\tilde{f}_u(\xi_{\beta}, l, t) - \bar{f}_u^{(\mp)}(l, h_{\beta}(l, t))\right)\mu^{(\mp)}$$
(3.61)

где производные функции h_{β} в каждый момент времени t берутся в точке (l,t).

Граничные условия для $q^{(\mp)}(\xi_{\beta}, t)$ при $\xi_{\beta} = 0$ следуют из условия непрерывного сшивания верхнего решения (3.59) с учетом условий при $\xi_{\beta} = 0$ для функций $Q_i^{(\mp)}(\xi_{\beta}, l, h(l, t)), i = 0, 1, ..., n + 1$ (см. (3.28)):

$$q^{(\mp)}(0,t) = -\mu^{(\mp)}, \quad t \in [0;T].$$
 (3.62)

Потребуем еще выполнения условий на бесконечности:

$$q^{(\mp)}(\xi_{\beta}, t) \to 0 \text{ при } \xi_{\beta} \to \mp \infty, \quad t \in [0; T].$$
(3.63)

Выражения для функций $q^{(\mp)}(\xi_{\beta},t)$ можно получить в явном виде по

аналогии (3.44)

$$q^{(\mp)}(\xi_{\beta},t) = -\mu^{(\mp)} \frac{\Phi^{(\mp)}(\xi_{\beta},h(l,t),W)}{\Phi^{(\mp)}(0,h(l,t),W)} + \Phi^{(\mp)}(\xi_{\beta},h(l,t),W) \times \\ \times \int_{0}^{\xi_{\beta}} \frac{\mathrm{e}^{Ws} ds}{(\Phi^{(\mp)}(s,h(l,t),W))^{2}} \int_{\mp\infty}^{s} \mathrm{e}^{-W\eta} \Phi(\eta,h(l,t),W) \left(\tilde{f}_{u}(\eta,l,t) - \bar{f}_{u}^{(\mp)}(l,h_{\beta}(l,t))\right) \mu^{(\mp)} d\eta.$$
(3.64)

Функции $q^{(\mp)}(\xi_{\beta}, t)$, имеют экспоненциальные оценки, типа (3.37)

Нижние решение $\alpha(x, y, t, \varepsilon)$ задачи (3.1) построим аналогично верхнему. Зададим кривую $h_{\alpha}(x, t)$, определяющую положение внутреннего переходного слоя для нижнего решения, следующим образом:

$$h_{\alpha}(x,t) = \hat{h}_{n+1}(x,t) + \varepsilon^{n+1}\delta(x,t)$$
(3.65)

где $\delta(x,t)$ – та же функция, что и в (3.56).

В окрестности кривой $h_{\alpha}(x,t)$ перейдем к локальным координатам $(l,r_{\alpha}),$ согласно равенствам

$$x = l - r_{\alpha} \sin \alpha_{\alpha}$$

$$y = h_{\alpha}(l, t) + r_{\alpha} \cos \alpha_{\alpha} = \hat{h}_{n+1}(l, t) + r_{\alpha} \cos \alpha_{\alpha} + \varepsilon^{n+1} \delta(l, t),$$
(3.66)

где величины $\sin \alpha_{\alpha}$ и $\cos \alpha_{\alpha}$ определяются по аналогии с такими же величинами для верхнего решения.

Нижнее решение задачи (3.1) будем строить отдельно в областях $\bar{D}_{\alpha}^{(-)}$ и $\bar{D}_{\alpha}^{(+)}$, на которые кривая $h_{\alpha}(x,t)$ делит область \bar{D} .

$$\alpha(x, y, t, \varepsilon) = \begin{cases} \alpha^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\alpha}^{(-)} \times [0, T], \\ \alpha^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\alpha}^{(+)} \times [0, T]. \end{cases}$$
(3.67)

Функции $\alpha^{(-)}(x, y, t, \varepsilon)$ и $\alpha^{(+)}(x, y, t, \varepsilon)$ будем сшивать на кривой $h_{\alpha}(x, t)$, так чтобы функция $\alpha(x, y, t, \varepsilon)$ была непрерывна на этой кривой и при-

нимала значение, равное $\varphi^0(l, h_\alpha(l, t))$:

$$\alpha^{(-)}(l,h_{\alpha}(l,t),t,\varepsilon) = \alpha^{(+)}(l,h_{\alpha}(l,t),t,\varepsilon) = \varphi^{0}(l,h_{\alpha}(l,t)).$$
(3.68)

Нижнее решение будем строить таким образом, чтобы при том же самом $\delta(x,t)$, что и для верхнего решения, выполнялось условие (У5) для нижнего решения.

Функции $\alpha^{(-)}$, $\alpha^{(+)}$ будем строить как модификацию сумм из (3.54), при k = (n+1):

$$\begin{aligned} \alpha^{(-)} &= U_{n+1}^{(-)} \Big|_{\xi_{\alpha}} - \varepsilon^{n+1} \left(\mu^{(-)} + q^{(-)}(\xi_{\alpha}, t) \right) + \varepsilon^{n+2} \Pi_{\alpha}^{(-)} \left(x, \eta^{(-)} \right), \\ &\qquad (x, y, t) \in \bar{D}_{\alpha}^{(-)} \times [0, T], \ \xi_{\alpha} \leqslant 0, \ \eta^{(-)} \geqslant 0; \\ \alpha^{(+)} &= U_{n+1}^{(+)} \Big|_{\xi_{\alpha}} - \varepsilon^{n+1} \left(\mu^{(+)} + q^{(+)}(\xi_{\alpha}, t) \right) + \varepsilon^{n+2} \Pi_{\alpha}^{(+)} \left(x, \eta^{(+)} \right), \\ &\qquad (x, y, t) \in \bar{D}_{\alpha}^{(+)} \times [0, T], \ \xi_{\alpha} \geqslant 0, \ \eta^{(+)} \leqslant 0. \end{aligned}$$
(3.69)

Здесь $\mu^{(\mp)}$ – те же величины, что и в выражениях для верхнего решения, а $q^{(\mp)}(\xi_{\alpha}, t)$ определяются из таких же задач, что и для верхнего решения, в которых переменная ξ_{β} заменена на переменную $\xi_{\alpha} = \frac{r_{\alpha}}{c}$.

Функции $\Pi_{\alpha}^{(\mp)}(x,\eta^{(\mp)})$ определяются из тех же уравнений, что и $\Pi_{i}^{(\mp)}(x,\eta^{(\mp)})$. Краевые условия при $\eta^{(\mp)} = 0$ выбираются таким образом, чтобы выполнялись равенства в условиях (**УЗ**).

3.3.2 Проверка дифференциальных неравенств

Лемма. Функции $\alpha(x, y, t, \varepsilon)$ и $\beta(x, y, t, \varepsilon)$ удовлетворяют условиям (**У1**)-(**У5**), то есть являются верхним и нижним решениями задачи (3.1).

Для доказательства леммы следует проверить выполнение для функций $\alpha(x, y, t, \varepsilon)$ и $\beta(x, y, t, \varepsilon)$ условий (**У1**)-(**У5**). Проверим выполнение условия (**У1**) упорядоченности нижнего и верхнего решения. Установим связь между параметрами, от которых зависят функции $\alpha(x, y, t, \varepsilon)$ и $\beta(x, y, t, \varepsilon)$.

Из равенств

$$y = h_{\beta}(l, t) + r_{\beta} \cos \alpha_{\beta} = h_{\alpha}(l, t) + r_{\alpha} \cos \alpha_{\alpha} =$$
$$= \hat{h}_{n+1}(l, t) - \varepsilon^{n+1}\delta(l, t) + r_{\beta} \cos \alpha_{\beta} = \hat{h}_{n+1}(l, t) + \varepsilon^{n+1}\delta(l, t) + r_{\alpha} \cos \alpha_{\alpha},$$

справедливых в окрестности кривой h(x, y), а также из оценок

$$\cos \alpha_{\alpha} = \frac{1}{\sqrt{1 + (\hat{h}_{n+1})_x^2}} + O\left(\varepsilon^{n+1}\right), \quad \cos \alpha_{\beta} = \frac{1}{\sqrt{1 + (\hat{h}_{n+1})_x^2}} + O\left(\varepsilon^{n+1}\right),$$

которые вытекают из определения кривых $h_{\alpha}(x,t)$ и $h_{\beta}(x,t)$ и величин $\cos \alpha_{\alpha}$ и $\cos \alpha_{\beta}$, с учетом определения растянутых переменных ξ_{α} и ξ_{β} следует равенство

$$\xi_{\beta} - \xi_{\alpha} = 2\varepsilon^n \delta(l,t) \sqrt{1 + (\hat{h}_{n+1})_x^2} + O(\varepsilon^{n+1}).$$

В каждый момент времени рассмотрим три области, где разность верхнего и нижнего решений выражается различным образом:

$$\beta - \alpha = \begin{cases} \beta^{(-)} - \alpha^{(-)}, & x \in \mathbb{R}, 0 \leq y < h_{\beta}(x, t), t \in [0, T] \\ \beta^{(+)} - \alpha^{(-)}, & x \in \mathbb{R}, h_{\beta}(x, t) \leq y \leq h_{\alpha}(x, t), t \in [0, T] \\ \beta^{(+)} - \alpha^{(+)}, & x \in \mathbb{R}, h_{\alpha}(x, t) < y \leq a, t \in [0, T]. \end{cases}$$
(3.70)

Рассмотрим область $h_{\beta}(x,t) \leqslant y \leqslant h_{\alpha}(x,t), t \in [0,T], x \in \mathbb{R}$. В этой области

$$0 \leqslant \xi_{\beta} \leqslant 2\varepsilon^{n}\delta(l,t)\sqrt{1 + (\hat{h}_{n+1})_{x}^{2}}, \quad -2\varepsilon^{n}\delta(l,t)\sqrt{1 + (\hat{h}_{n+1})_{x}^{2}} \leqslant \xi_{\alpha} \leqslant 0,$$
(3.71)

а для разности верхнего и нижнего решений можно записать выражение:

$$\beta^{(+)} - \alpha^{(-)} = \sum_{i=0}^{n} \varepsilon^{i} \left(\bar{u}_{i}^{(+)}(x, y) + Q_{i}^{(+)}(\xi_{\beta}, l, h_{\beta}(l, t), t) \right) - \sum_{i=0}^{n} \varepsilon^{i} \left(\bar{u}_{i}^{(-)}(x, y) + Q_{i}^{(-)}(\xi_{\alpha}, l, h_{\alpha}(l, t), t) \right) + O(\varepsilon^{n+1}).$$
(3.72)

На рассматриваемом множестве старшие слагаемые в (3.72) можно преобразовать следующим образом:

$$\varphi^{(\mp)}(x,y) + Q_0^{(\mp)}(\xi_{\alpha,\beta},l,h_{\alpha,\beta}(l,t),t) =$$

$$= \varphi^{(\mp)}(l,\hat{h}_{n+1}(l,t)) + Q_0^{(\mp)}(0,l,\hat{h}_{n+1}(l,t),t) + \frac{\partial Q_0^{(\mp)}}{\partial \xi}(0,l,\hat{h}_{n+1}(l,t),t) \cdot \xi_{\alpha,\beta} + O(\varepsilon^{n+1}) =$$

$$= \varphi^0(l,\hat{h}_{n+1}(l,t)) + \frac{\partial Q_0^{(\mp)}}{\partial \xi}(0,l,\hat{h}_{n+1}(l,t),t) \cdot \xi_{\alpha,\beta} + O(\varepsilon^{n+1}).$$
(3.73)

Учитывая, что в рассматриваемой области $\xi_{\beta} = O(\varepsilon^n), \xi_{\alpha} = O(\varepsilon^n),$ а также условие (3.40) и условия при $\xi = 0$ задач (3.45), для остальных слагаемых из (3.72) можно получить следующие оценки:

$$\bar{u}_{i}^{(\mp)}(x,y) + Q_{i}^{(\mp)}(\xi_{\alpha,\beta},l,h_{\alpha,\beta}(l,t),t) =$$

= $\bar{u}_{i}^{(\mp)}(l,\hat{h}_{n+1}(l,t)) + Q_{i}^{(\mp)}(0,l,\hat{h}_{n+1}(l,t),t) + O(\varepsilon^{n}) = O(\varepsilon^{n}), \quad i = 1, 2, \dots$

Подставляя полученные оценки в выражение (3.72), для разности верхнего и нижнего решений в рассматриваемой области получим выражение:

$$\beta^{(+)} - \alpha^{(-)} = \frac{\partial Q_0^{(+)}}{\partial \xi} (0, l, \hat{h}_{n+1}(l, t), t) \cdot \xi_\beta - \frac{\partial Q_0^{(-)}}{\partial \xi} (0, l, \hat{h}_{n+1}(l, t), t) \cdot \xi_\alpha + O(\varepsilon^{n+1}) =$$

= $\Phi(0, h_0(l, t), W_0)(\xi_\beta - \xi_\alpha) + O(\varepsilon^{n+1}) =$
= $2\varepsilon^n \delta(l, t) \sqrt{1 + (\hat{h}_{n+1})_x^2} \cdot \Phi(0, h_0(l, t), W_0) + O(\varepsilon^{n+1}).$
(3.74)

Здесь использовано обозначение (3.34), равенство (3.50), а также учтено, что в рассматриваемой области $\xi_{\beta} = O(\varepsilon^n), \, \xi_{\alpha} = O(\varepsilon^n).$ Согласно условию **C2** выполнено неравенство $\Phi^{(+)}(0, h_0(l, t), W_0) > 0$, поэтому при положительных значениях δ и для достаточно малых ε выполняется неравенство

$$\beta - \alpha > 0, \quad x \in \mathbb{R}, h_{\beta}(l,t) \leq y \leq h_{\alpha}(l,t), t \in [0,T].$$

Рассмотрим теперь разность верхнего и нижнего решений при $h_{\alpha} \leq y \leq a, t \in [0,T], x \in \mathbb{R}$, где $\xi_{\alpha} \ge 0, \xi_{\beta} = \xi_{\alpha} + 2\varepsilon \delta(l,t) \sqrt{1 + (\hat{h}_{n+1})_x^2}$.

$$\beta - \alpha = \beta^{(+)} - \alpha^{(+)} = 2\varepsilon^{n+1}\mu^{(+)} + \sum_{i=0}^{n} \varepsilon^{i} \left(Q_{i}^{(+)}(\xi_{\beta}, l, h_{\beta}, t) - Q_{i}^{(+)}(\xi_{\alpha}, l, h_{\alpha}, t) \right) + \varepsilon^{n+1} \left(q^{(+)}(\xi_{\beta}, t) - q^{(+)}(\xi_{\alpha}, t) \right) + O(\varepsilon^{n+2}) = 2\varepsilon^{n+1}\mu^{(+)} + \frac{\partial Q_{0}^{(+)}}{\partial \xi} (\xi_{\alpha}, l, h_{\alpha}, t)(\xi_{\beta} - \xi_{\alpha}) + O(\varepsilon^{n+1}) \exp(-\varkappa_{1}\xi_{\alpha}) + O(\varepsilon^{n+2}),$$

$$(3.75)$$

где $\varkappa_1 > 0$ – некоторое число. Здесь мы учли экспоненциальные оценки функций $Q_i^{(+)}, i = 1, 2, \dots$ и $q^{(+)}$.

Отсюда, учитывая оценку (3.37) и равенство $\xi_{\beta} - \xi_{\alpha} = O(\varepsilon^n)$, получаем следующую оценку для разности верхнего и нижнего решений в рассматриваемой области:

$$\beta - \alpha \leqslant 2\varepsilon^{n+1}\mu^{(+)} + \left\{ C_0\varepsilon^n \exp(-\varkappa_0\xi_\alpha) - C_1\varepsilon^{n+1}\exp(-\varkappa_1\xi_\alpha) \right\} + O(\varepsilon^{n+2})$$
(3.76)

где $C_0 > 0$ и $C_1 > 0$ – некоторые числа.

Если $\varkappa_0 \ge \varkappa_1$, то выражение, стоящее в фигурных скобках в (3.76) положительно, так как $C_0 > C_1 \varepsilon$ для достаточно малых ε . Следовательно, $\beta - \alpha > 0$.

Пусть $\varkappa_0 > \varkappa_1$. Рассмотрим область $h_\alpha \leq y \leq h_\alpha + N\varepsilon \cos \alpha_\alpha, t \in [0; T],$ $x \in \mathbb{R}$, где N > 0. В этой области величина r_α изменяется на отрезке $[0; N\varepsilon]$ и выполняется неравенство $\exp(-\varkappa_0\xi_{\alpha}) \ge \exp(-\varkappa_0 N)$, поэтому выражение в фигурных скобках в (3.76) положительно при достаточно малых ε за счет слагаемого $C_0\varepsilon^n \exp(-\varkappa_0\xi_{\alpha})$. Следовательно, в этой области $\beta - \alpha > 0$.

Выберем теперь число N настолько большим, чтобы выполнялось неравенство $C_1 \exp(-\varkappa_1 N) < 2\mu^{(+)}$.

При $h_{\alpha} + N\varepsilon \cos \alpha_{\alpha} \leqslant y \leqslant a$ выполняется неравенство

$$2\varepsilon^{n+1}\mu^{(+)} - C_1\varepsilon^{n+1}\exp(-\varkappa_1\xi_\alpha) \ge \varepsilon^{n+1}\left(2\mu^{(+)} - C_1\exp(-\varkappa_1N)\right) > 0$$
(3.77)

благодаря выбору числа N. Значит, в области $h_{\alpha} + N\varepsilon \cos \alpha_{\alpha} \leq y \leq a, t \in [0; T], x \in \mathbb{R}$, также имеет место неравенство $\beta(x, y, t, \varepsilon) - \alpha(x, y, t, \varepsilon) > 0$. Итак, $\beta(x, y, t, \varepsilon) - \alpha(x, y, t, \varepsilon) > 0$ всюду при $h_{\alpha} \leq y \leq a$.

Доказательство справедливости неравенства $\beta(x, y, t, \varepsilon) - \alpha(x, y, t, \varepsilon) > 0$ при $0 \leq y \leq h_{\beta}$ проводится так же, как и при $h_{\alpha} \leq y \leq a$.

В выполнении условия (**У2**) можно убедиться, подставив нижнее и верхнее решение в уравнения (3.1). Исходя из самого способа построения верхнего и нижнего решений, получим равенства

$$L[\alpha^{(\mp)}] = \varepsilon^{n+1} \bar{f}_u^{(\mp)}(l, h_\alpha(l, t)) \mu^{(\mp)} + O(\varepsilon^{n+2}), \quad L[\beta^{(\mp)}] = -\varepsilon^{n+1} \bar{f}_u^{(\mp)}(l, h_\beta(l, t)) \mu^{(\mp)} + O(\varepsilon^{n+2}).$$

Необходимый знак в дифференциальных неравенствах условия (**У2**) обеспечивается за счет выбора достаточно больших положительных величин $\mu^{(\mp)}$.

Условия (**У3**) оказываются выполненными при выбранном способе построения функций $\Pi_{\alpha,\beta}^{(\mp)}(x,\eta^{(\mp)}).$

Проверим выполнение неравенства (У5) для верхнего решения. Раз-

ложим разность

$$\frac{\partial \beta^{(-)}}{\partial n} \left(x, h_{\beta}(x,t), t, \varepsilon \right) - \frac{\partial \beta^{(+)}}{\partial n} \left(x, h_{\beta}(x,t), t, \varepsilon \right)$$

по формуле Тейлора по степеням ε с центром $(l, h_0(x, t), l, 0)$. В силу проведенного сшивания формальных асимптотик (а именно, в силу равенства (3.46)) коэффициенты при ε^i для $i = 0, \ldots, n-1$ равны нулю, а коэффициент при ε^n включает только те слагаемые, которые возникают в результате модификации асимптотики.

$$\frac{\partial \beta^{(-)}}{\partial n} (x, h_{\beta}(x, t), t, \varepsilon) - \frac{\partial \beta^{(+)}}{\partial n} (x, h_{\beta}(x, t), t, \varepsilon) = \varepsilon^{n} \frac{\partial H_{0}}{\partial h_{t}} \delta_{t}(l, t) + \varepsilon^{n} \delta_{x}(l, t) \frac{\partial H_{0}}{\partial h_{x}} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, h_{0}(l, t), t) + \varepsilon^{n} \delta(l, t) \frac{\partial H_{0}}{\partial h} (l, t) \frac{$$

Определим функцию $\delta(x,t)$ как решение начальной задачи

$$\frac{\partial H_0}{\partial h_t}(x, h_0(x, t), t) \cdot \frac{\partial \delta}{\partial t} + \frac{\partial H_0}{\partial h_x}(x, h_0(x, t), t) \cdot \frac{\partial \delta}{\partial x} + \frac{\partial H_0}{\partial h}(x, h_0(x, t), t) \cdot \delta = \sigma - F(x, t),$$

$$x \in \mathbb{R}, \quad t \in (0; T], \quad \delta(x, 0) = \delta^0(x), \quad \delta(x + L, t) = \delta(x, t),$$
(3.79)

где σ – достаточно большая положительная величина, $\delta^0(x)$ – функция принимающая положительные значения для всех $x \in \mathbb{R}$, а

$$F(x,t) = rac{\partial q^{(-)}}{\partial \xi_eta}(0,t) - rac{\partial q^{(+)}}{\partial \xi_eta}(0,t).$$

Вычислим производные для $q^{(\mp)}(\xi_{\beta},t)$ при $\xi_{\beta}=0, \ h_{\beta}(l,t)=h_0(l,t)$
используя выражения (3.64):

$$\begin{aligned} \frac{\partial q^{(\mp)}}{\partial \xi}(0,t) &= -\mu^{(\mp)} \frac{\frac{\partial \Phi^{(\mp)}}{\partial \xi}(0,h_0,W_0)}{\Phi^{(\mp)}(0,h_0,W_0)} + \frac{\mu^{(\mp)}}{\Phi^{(\mp)}(0,h_0,W_0)} \int_{\mp\infty}^{0} e^{-W_0\xi} \Phi^{(\mp)} \tilde{f}_u(\xi,l,t) d\xi - \\ &- \frac{\mu^{(\mp)} \bar{f}_u^{(\mp)}(l,h_0(l,t))}{\Phi^{(\mp)}(0,h_0,W_0)} \int_{\mp\infty}^{0} e^{-W_0\xi} \Phi^{(\mp)} d\xi. \end{aligned}$$

Первое слагаемое преобразуем с помощью выражений (3.9) для производной $\frac{\partial \Phi^{(\mp)}}{\partial \xi}$ при $\xi = 0$ и $h = h_0(l, t)$: $\frac{\partial \Phi^{(\mp)}}{\partial \xi}(0, h_0(l, t), W_0) = \frac{h_{0t}}{\sqrt{1 + (h_{0x})^2}} \Phi^{(\mp)}(0, h_0(l, t), W_0),$

где учтено, что $f(\tilde{u}(0, h(l, t)), l, h(l, t), 0) = f(\varphi^0(l, h(l, t)), l, h(l, t), 0) = 0.$

Вычислим интеграл во втором слагаемом. Сначала преобразуем уравнения (3.64)

$$\frac{\partial}{\partial\xi} \left(e^{-W\xi} \frac{\partial \Phi^{(\mp)}}{\partial\xi} \right) = \tilde{f}_u(\xi, l, t) \Phi^{(\mp)} e^{-W\xi}.$$

Тогда

$$\int_{\mp\infty}^{0} \frac{\partial}{\partial\xi} \left(e^{-W_0\xi} \frac{\partial \Phi^{(\mp)}}{\partial\xi} \right) d\xi = e^{-W_0\xi} \frac{\partial \Phi^{(\mp)}}{\partial\xi} \Big|_{\mp\infty}^{0} = \frac{h_{0t}}{\sqrt{1 + (h_{0x})^2}} \Phi^{(\mp)}(0, h_0(l, t), W_0).$$

С учетом проведенных преобразований

$$F(x,t) = -\frac{\mu^{(-)}\bar{f}_{u}^{(-)}(x,h_{0}(x,t))}{\Phi^{(-)}(0,h_{0}(x,t),W_{0})} \int_{-\infty}^{0} e^{-W_{0}\xi} \Phi^{(-)}(\xi,h_{0}(x,t),W_{0})d\xi - \frac{\mu^{(+)}\bar{f}_{u}^{(+)}(x,h_{0}(x,t),W_{0})}{\Phi^{(+)}(0,h_{0}(x,t),W_{0})} \int_{0}^{+\infty} e^{-W_{0}\xi} \Phi^{(+)}(\xi,h_{0}(x,t),W_{0})d\xi.$$
(3.80)

В силу условий **C1**, **C2** и выбора констант $\mu^{(\mp)}$ выражение в правой части последнего равенства строго отрицательно.

Уравнение (3.79) – линейное не однородное в частных производных. Покажем, что решение задачи (3.79) существует и принимает положительные значения при $\delta^0(x) > 0, x \in \mathbb{R}$ и достаточно большом положительном значении σ .

Уравнения характеристик, отвечающие уравнению (3.79)

$$\frac{\partial H_0}{\partial h_x}(x, h_0(x, t), t)dt = \frac{\partial H_0}{\partial h_t}(x, h_0(x, t), t)dx$$
(3.81)

$$\left(\sigma - F(x,t) - \frac{\partial H_0}{\partial h}\delta\right)dt = \frac{\partial H_0}{\partial h_t}(x,h_0(x,t),t)d\delta$$
(3.82)

Пусть

$$\Psi(x,t) = C_1 \tag{3.83}$$

первый интеграл уравнения (3.81). В силу выполнения условия (C4) при $t \in (0,T]$ существует функция $x = X(t,C_1)$ – решение этого уравнения.

Выражая с её помощью переменную *x* в уравнении (3.82), придем к уравнению

$$\frac{d\delta}{dt} = -\frac{\partial H_0/\partial h}{\partial H_0/\partial h_t}\delta + \frac{\sigma - F(x,t)}{\partial H_0/\partial h_t}.$$
(3.84)

Решив это уравнение с начальным условием при t = 0 задачи (3.79), получим выражение

$$\delta = \delta_0 \exp\left(-\int_0^t \frac{\partial H_0}{\partial h}(X(C_1,t),h(X(C_1,t),s),s)\left(\frac{\partial H_0}{\partial h_t}(X(C_1,t),h(X(C_1,t),s),s)\right)^{-1}ds\right) + \int_0^t \exp\left(-\int_{t'}^t \frac{\partial H_0}{\partial h}(X(C_1,t),h(X(C_1,t),s),s)\left(\frac{\partial H_0}{\partial h_t}(X(C_1,t),h(X(C_1,t),s),s)\right)^{-1}ds\right) \times (\sigma - F(X(C_1,t),t'))\left(\frac{\partial H_0}{\partial h_t}(X(C_1,t),h(x,t'),t')\right)^{-1}dt'$$

$$(3.85)$$

Функция $\delta(x,t)$ – решение задачи (3.79) – будет определятся выражением (3.85), в которое вместо C_1 подставлены левые части выражений (3.83). Если $\delta_0 > 0$ и выполнено условие **С4**, то функция δ строго положительна при $\sigma > 0$ (напомним, что F(x,t) отрицательна при $x \in \mathbb{R}$, $t \in [0,T]$, см. (3.80)).

При указанном выборе функци
и $\delta(x,t)$ равенство (3.78) преобразуется к виду

$$\frac{\partial \beta^{(-)}}{\partial n}(x,h_{\beta}(x,t),t,\varepsilon) - \frac{\partial \beta^{(+)}}{\partial n}(x,h_{\beta}(x,t),t,\varepsilon) = \varepsilon^{n}\sigma + O(\varepsilon^{n+1}).$$

Выражение в правой части положительно при достаточно малых ε , поскольку $\sigma > 0$.

При том же выборе функции $\delta(x,t)$ выполнено неравенство условия (**У5**) для нижнего решения.

Основным результатом настоящей работы является следующая теорема.

Теорема. При выполнении условий (**C1**)-(**C4**) для любой достаточно гладкой начальной функции $u_{init}(x, y, \varepsilon)$, лежащей между верхним и нижним решениями:

$$\alpha(x, y, 0, \varepsilon) \leqslant u_{init}(x, y, \varepsilon) \leqslant \beta(x, y, 0, \varepsilon),$$

существует решение $u(x, y, t, \varepsilon)$ задачи (3.1), которое при любом $t \in [0; T]$ заключено между этими верхним и нижним решениями, и для которого функция $U_n(x, y, t, \varepsilon)$ является равномерным в области \overline{D} асимптотическим приближением с точностью $O(\varepsilon^{n+1})$.

Построенные верхнее и нижнее решения гарантируют существование решения $u(x, y, t, \varepsilon)$ задачи (3.1), удовлетворяющего неравенствам (см. [24], [51]):

$$\alpha(x, y, t, \varepsilon) \leqslant u(x, y, t, \varepsilon) \leqslant \beta(x, y, t, \varepsilon), \quad (x, y, t) \in \bar{D} \times t \in [0, T], \quad \varepsilon \in (0; \varepsilon_0].$$

Поскольку $\beta(x, y, t, \varepsilon) - \alpha(x, y, t, \varepsilon) = O(\varepsilon^n)$ (см. (3.74)) то

$$u(x, y, t, \varepsilon) = \alpha(x, y, t, \varepsilon) + O(\varepsilon^n) = U_{n+1}(x, y, t, \varepsilon) + O(\varepsilon^n) = U_{n-1}(x, y, t, \varepsilon) + O(\varepsilon^n)$$

заменив в этом равенстве n на n+1 получаем результат теоремы.

3.4 Пример

Рассмотрим задачу

$$\varepsilon^{2}\Delta u - \varepsilon \frac{\partial u}{\partial t} = (u - \varphi^{0}(x, y)) \cdot (u - \varphi^{(-)}(x, y)) \cdot (u - \varphi^{(+)}(x, y)),$$

$$x \in \mathbb{R}, \quad y \in (0, 1), \quad t \in (0, T],$$

$$u_{y}(x, 0, t, \varepsilon) = u_{y}(x, 1, t, \varepsilon) = 0, \quad x \in \mathbb{R}, \quad t \in [0, T],$$

$$u(x, y, t, \varepsilon) = u(x + L, y, t, \varepsilon), \quad x \in \mathbb{R}, \quad y \in [0, 1], \quad t \in [0, T],$$

$$u(x, y, 0, \varepsilon) = u_{init}(x, y, \varepsilon), \quad x \in \mathbb{R}, \quad y \in [0, 1].$$
(3.86)

Будем считать, что при всех $(x,y) \in \mathbb{R} \times [0,1]$ выполнены неравенства

$$\varphi^{(-)}(x,y) \leqslant \varphi^0(x,y) \leqslant \varphi^{(+)}(x,y).$$

Не трудно проверить, что в этом случае выполняется условие С1.

Правая часть уравнения (3.86) представляет собой кубический многочлен. В этом случае существует такая кривая $h_0(x, y)$, что разрешимы одновременно обе задачи (3.11) и (3.12), то есть существует функция

$$\Phi(\tilde{u}, h_0(x, t), W_0) = \Phi^{(-)}(\tilde{u}, h_0(x, t), W_0) = \Phi^{(+)}(\tilde{u}, h_0(x, t), W_0)$$

удовлетворяющая уравнению

$$\frac{\partial \Phi}{\partial \tilde{u}} \Phi = W_0 \Phi + f(\tilde{u}, x, h_0(x, t), 0)$$
(3.87)

и краевым условиям

$$\Phi^{(\mp)}\left(\varphi^{(\mp)}(x,h_0(x,t)),h_0(x,t),W_0\right) = 0.$$

Это функцию можно найти в виде параболы:

$$\Phi = C\left(u - \varphi^{(-)}(x, h_0(x, t))\right)\left(u - \varphi^{(+)}(x, h_0(x, t))\right).$$

Подставив Ф в таком виде в уравнение (3.87) и сократив одинаковые множители $\left(u - \varphi^{(-)}(x, h_0(x, t))\right) \left(u - \varphi^{(+)}(x, h_0(x, t))\right)$ в каждом слагаемом, получим равенство

$$C^{2}\left(2\tilde{u}-\varphi^{(-)}(x,h_{0}(x,t))-\varphi^{(+)}(x,h_{0}(x,t))\right) = W_{0}C + \left(\tilde{u}-\varphi^{0}(x,h_{0}(x,t))\right)$$
(3.88)

Приравнивая слагаемые содержащие \tilde{u} , получим $2C^2 = 1$. Решению уравнения (3.87), удовлетворяющему условию (3.13) соответствует $C = -\frac{1}{\sqrt{2}}$.

$$\sqrt{2}$$

Приравнивая слагаемые в (3.88) не содержащие \tilde{u} , получим уравнение, из которого найдем W_0 .

$$W_0 = \sqrt{2} \left(\varphi^{(+)}(x, h_0(x, t)) + \varphi^{(-)}(x, h_0(x, t)) - \varphi^0(x, h_0(x, t)) \right).$$

С учетом выражения (3.9), получим уравнение для функции $h_0(x,t)$:

$$\frac{h_{0t}}{\sqrt{1+h_{0x}^2}} = \sqrt{2} \left(\varphi^{(+)}(x,h_0(x,t)) + \varphi^{(-)}(x,h_0(x,t)) - \varphi^0(x,h_0(x,t)) \right).$$

Глава 4

Движение двумерного фронта в задаче реакция-диффузия-адвекция

4.1 Постановка задачи

Рассмотрим начально-краевую задачу

$$\begin{split} \varepsilon \Delta u &- \frac{\partial u}{\partial t} = (\mathbf{A}(u, x, y), \nabla) \, u + B(u, x, y), \quad x \in \mathbb{R}, \ y \in (0, a), \ t \in (0, T], \\ u(x, 0, t, \varepsilon) &= u^0(x), \ u(x, a, t, \varepsilon) = u^1(x), \ x \in \mathbb{R}, \ t \in [0, T], \\ u(x, y, t, \varepsilon) &= u(x + L, y, t, \varepsilon), \ x \in \mathbb{R}, \ y \in [0, a], \ t \in [0, T], \\ u(x, y, 0, \varepsilon) &= u_{init}(x, y, \varepsilon), \ x \in \mathbb{R}, \ y \in [0, a]. \end{split}$$

Здесь $\mathbf{A}(u, x, y) = \{A_1(u, x, y), A_2(u, x, y)\}, \varepsilon \in (0; \varepsilon_0]$ - малый параметр. Будем считать, что функции $A_i(u, x, y), i = 1, 2$ и B(u, x, y) - Lпериодические по переменной x, достаточно гладкие в области $I_u \times \overline{D} \times [0, T]$, где I_u – допустимый интервал значений $u, \overline{D} = \{(x, y) : \mathbb{R} \times [0, a]\};$ функции $u^0(x), u^1(x) - L$ -периодические, непрерывные при $x \in \mathbb{R}; u_{init}(x, y, \varepsilon)$ - непрерывная функция в \overline{D}, L – периодическая по переменной x.

(4.1)

Будем рассматривать задачу (4.1), считая что выполнен ряд условий.

Условие А1.

Пусть дифференциальное уравнение в частных производных первого порядка

$$(\mathbf{A}(u, x, y), \nabla) u + B(u, x, y) = 0$$
(4.2)

с дополнительным условием $u(x,0) = u^0(x)$ имеет решение $\varphi^{(-)}(x,y)$, а с дополнительным условием $u(x,a) = u^1(x)$ — решение $\varphi^{(+)}(x,y)$, где $\varphi^{(\mp)}(x,y)$ — достаточно гладкие в \bar{D} *L*-периодические по переменной xфункции, причем

$$\varphi^{(-)}(x,y) < \varphi^{(+)}(x,y) \quad \text{при} \quad (x,y) \in \overline{D}.$$

$$(4.3)$$

Условие А2. Пусть функции $F^{(\mp)}(x,y) := \frac{A_1(\varphi^{(\mp)}(x,y),x,y)}{A_2(\varphi^{(\mp)}(x,y),x,y)}$ удовлетворяет условию Липшица по переменной x в полосе $\Pi : \{0 \leq y \leq a; x \in \mathbb{R}\}$.

Условие А3. Пусть всюду в области \overline{D} выполняются неравенства:

$$A_2(\varphi^{(-)}(x,y),x,y) > 0; \quad A_2(\varphi^{(+)}(x,y),x,y) < 0$$
(4.4)

Мы будем исследовать решение задачи (4.1), которое имеет вид движущегося фронта, а именно, такое решение, которое в каждый момент времени при $0 \leq y \leq h(x,t)$ близко к поверхности $\varphi^{(-)}(x,y)$, а при $h(x,t) \leq y \leq a$ близко к поверхности $\varphi^{(+)}(x,y)$ и резко изменяется от значений на поверхности $\varphi^{(-)}(x,y)$ до значений на поверхности $\varphi^{(+)}(x,y)$ в окрестности некоторой кривой y = h(x,t). В этом случае говорят, что решение задачи (4.1) содержит внутренний переходный слой в окрестности этой кривой. Будем считать, что y = h(x,t) — это та кривая, на которой решение $u(x,y,t,\varepsilon)$ задачи (4.1) в каждый момент времени принимает значение, равное полусумме функций $\varphi^{(-)}(x,y)$ и $\varphi^{(+)}(x,y)$:

$$u(x, h(x, t), t, \varepsilon) = \varphi^*(x, h(x, t)) := \frac{1}{2} \left(\varphi^{(-)}(x, h(x, t)) + \varphi^{(+)}(x, h(x, t)) \right).$$
(4.5)

Кривая y = h(x, t) в каждый момент времени делит область \overline{D} на две части: $\overline{D}^{(-)} = \{(x, y) : \mathbb{R} \times [0; h(x, t)]\}$ и $\overline{D}^{(+)} = \{(x, y) : \mathbb{R} \times [h(x, t); a]\}.$

Для детального описания переходного слоя перейдем в окрестности этой кривой к локальным координатам (l, r) с помощью соотношений

$$x = l - r\sin\alpha, \quad y = h(l, t) + r\cos\alpha, \tag{4.6}$$

где

$$\sin \alpha = \frac{h_x}{\sqrt{1+h_x^2}}, \quad \cos \alpha = \frac{1}{\sqrt{1+h_x^2}},$$
 (4.7)

 α – угол между осью y и нормалью к кривой y = h(x,t), проведенной в область y > h(x,t) в каждый момент времени t, отложенный против часовой стрелки, l - x-координата точки на этой кривой, из которой нормаль проводится; r – расстояние от кривой по нормали к ней. Будем считать что r > 0 в области $D^{(+)}$, r < 0 в области $D^{(-)}$, r = 0 при y = h(x,t), производные функций h(x,t) в выражении (4.7) берутся при x = l.

В окрестности кривой y = h(x,t) перейдем к растянутой переменной

$$\xi = \frac{r}{\varepsilon}.\tag{4.8}$$

В переменных ξ , l, t дифференциальный оператор в уравнении (4.1) принимает вид (см. (3.4)-(3.6)):

$$\varepsilon\Delta - \frac{\partial}{\partial t} - (\mathbf{A}(u, x, y), \nabla) =$$

$$= \frac{1}{\varepsilon} \left(\frac{\partial^2}{\partial \xi^2} - \frac{1}{\sqrt{1 + h_x^2}} \left(h_t - h_x A_1(u, l, h(l, t)) + A_2(u, l, h(l, t)) \right) \frac{\partial}{\partial \xi} \right) - \frac{\partial}{\partial t} - \frac{h_{xx}}{(1 + h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial \xi} - \frac{1}{1 + h_x^2} \left(h_t h_x + A_1(u, l, h(l, t)) + h_x A_2(u, l, h(l, t)) \right) \frac{\partial}{\partial l} + \sum_{i=1} \varepsilon^i L_i,$$

$$(4.9)$$

где L_i – дифференциальные операторы первого или второго порядка по переменным ξ и l, а производные функции h(x,t) берутся при x = l.

4.2 Присоединенное уравнение

Обозначим

$$P(u, h(x, t)) = \frac{1}{\sqrt{1 + h_x^2(x, t)}} \left(h_t(x, t) - h_x(x, t) A_1(u, x, h(x, t)) + A_2(u, x, h(x, t)) \right).$$
(4.10)

При $\xi \in \mathbb{R}$ рассмотрим так называемое присоединенное уравнение для функции $\tilde{u}(\xi, h(x, t))$:

$$\frac{\partial^2 \tilde{u}}{\partial \xi^2} - P(\tilde{u}, h(x, t)) \frac{\partial \tilde{u}}{\partial \xi} = 0, \qquad (4.11)$$

где переменные x и t, а также функция h(x,t) играют роль параметров. Это уравнение можно свести к присоединенной системе уравнений

$$\frac{\partial \tilde{u}}{\partial \xi} = \Phi; \quad \frac{\partial \Phi}{\partial \xi} = P\left(\tilde{u}, h(x, t)\right) \Phi. \tag{4.12}$$

Разделив второе уравнение (4.12) на первое, получим дифференциальное уравнение первого порядка относительно функции $\Phi(\tilde{u}, h(x, t))$, которое определяет фазовые траектории присоединенной системы на плоскости (\tilde{u}, Φ) :

$$\frac{\partial \Phi}{\partial \tilde{u}} = P\left(\tilde{u}, h(x, t)\right). \tag{4.13}$$

Точки ($\varphi^{(\mp)}(x, h(x, t)), 0$) фазовой плоскости (\tilde{u}, Φ) являются точками покоя системы (4.12), а функция $P(\tilde{u}, h(x, t))$ непрерывна при $\varphi^{(-)}(x, h(x, t)) \leq \tilde{u} \leq \varphi^{(+)}(x, h(x, t))$, поэтому существует множество непрерывных функций h(x, t), для которых определены фазовые траектории $\Phi^{(-)}(\tilde{u}, h(x, t))$, выходящие из точки ($\varphi^{(-)}, 0$) при $\xi \to -\infty$, и фазовые траектории $\Phi^{(+)}(\tilde{u}, h(x, t))$, выходящие из точки ($\varphi^{(+)}, 0$) при $\xi \to +\infty$. Эти траектории определяются равенствами

$$\Phi^{(\mp)}(\tilde{u}, h(x, t)) = \int_{\varphi^{(\mp)}(x, h(x, t))}^{\tilde{u}} P(u, h(x, t)) du, \quad \varphi^{(-)}(x, h(x, t)) \leqslant \tilde{u} \leqslant \varphi^{(+)}(x, h(x, t)).$$
(4.14)

Условие А4 Пусть существует множество функций y = h(x, t), для которых выполняются неравенства

$$\int_{\varphi^{(\mp)}(x,h(x,t))}^{\tilde{u}} P(u,h(x,t))du > 0, \quad (x,t) \in \mathbb{R} \times [0,T],$$
(4.15)

если $\varphi^{(-)}(x, h(x, t)) < \tilde{u} < \varphi^{(+)}(x, h(x, t)).$

Условие **А4** означает, что фазовые траектории $\Phi^{(\mp)}(\tilde{u}, h(x, t))$ не пересекают ось $\Phi = 0$ на фазовой плоскости (\tilde{u}, Φ) ни в какой внутренней точке интервала $\tilde{u} \in (\varphi^{(-)}; \varphi^{(+)}).$

Расстояние между фазовыми траекториями $\Phi^{(-)}(\tilde{u}, h(x, t))$ и $\Phi^{(+)}(\tilde{u}, h(x, t))$ на фазовой плоскости (\tilde{u}, Φ) для каждой пары параметров x и t определяется как разность

$$\Phi^{(-)}(\tilde{u}, h(x, t)) - \Phi^{(+)}(\tilde{u}, h(x, t)).$$

Если существует гладкая кривая $y = h_0(x, t)$, для которой выполняется равенство

$$\Phi^{(-)}(\tilde{u}, h_0(x, t)) - \Phi^{(+)}(\tilde{u}, h_0(x, t)) = 0, \qquad (4.16)$$

то на фазовой плоскости (\tilde{u}, Φ) при $h = h_0$ образуется фазовая траектория, соединяющая точки покоя, а именно, входящая в точку покоя $(\varphi^{(-)}, 0)$ при $\xi \to -\infty$ и входящая в точку покоя $(\varphi^{(+)}, 0)$ при $\xi \to +\infty$.

Используя явный вид (4.14) функций $\Phi^{(\mp)}$, а также учитывая выражение (4.10), сформулируем условие существования соединительной фазовой траектории в следующем виде:

Условие А5 Пусть существует гладкая кривая $y = h_0(x, t)$, являющаяся решением уравнения

$$\frac{\partial h_0}{\partial t} = (\varphi^{(+)}(x, h_0) - \varphi^{(-)}(x, h_0))^{-1} \int_{\varphi^{(-)}(x, h_0)}^{\varphi^{(+)}(x, h_0)} \left(A_1(u, x, h_0) \frac{\partial h_0}{\partial x} - A_2(u, x, h_0) \right) du,$$

с условиями

$$h_0(x,t) = h_0(x+L,t), \quad h_0(x,0) = h_{00}(x),$$

где $h_{00}(x)$ — функция, которая определяется из уравнения

$$u_{init}(x, h_{00}(x), \varepsilon) = \frac{1}{2}(\varphi^{(-)}(x, h_{00}(x)) + \varphi^{(+)}(x, h_{00}(x))).$$
(4.17)

4.3 Асимптотическое представление решения

Асимптотическое приближение $U(x, y, t, \varepsilon)$ решения задачи (4.1) будем строить отдельно в каждой из областей $\bar{D}^{(-)} \times [0, T]$ и $\bar{D}^{(+)} \times [0, T]$:

$$U(x, y, t, \varepsilon) = \begin{cases} U^{(-)}(x, y, t, \varepsilon), & (x, y) \in \bar{D}^{(-)} \times [0, T], \\ U^{(+)}(x, y, t, \varepsilon), & (x, y) \in \bar{D}^{(+)} \times [0, T] \end{cases}$$
(4.18)

в виде сумм двух слагаемых

$$U^{(\mp)} = \bar{u}^{(\mp)}(x, y, \varepsilon) + Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon).$$
(4.19)

Здесь $\bar{u}^{(\mp)}(x, y, \varepsilon)$ – регулярная часть асимптотического представления, $Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon)$ – функции, описывающие переходный слой, ξ – растянутая переменная вблизи кривой локализации переходного слоя, определенная равенством (4.8). Каждое слагаемое в (4.19) будем представлять как разложение по степеням малого параметра ε :

$$\bar{u}^{(\mp)}(x,y,\varepsilon) = \bar{u}_0^{(\mp)}(x,y) + \varepsilon \bar{u}_1^{(\mp)}(x,y) + \dots ,$$
 (4.20)

$$Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon) = Q_0^{(\mp)}(\xi, l, h(l, t), t) + \varepsilon Q_1^{(\mp)}(\xi, l, h(l, t), t) + \dots$$
(4.21)

Кривую y = h(x, t) также будем искать в виде разложения по степеням малого параметра:

$$h(x,t) = h_0(x,t) + \varepsilon h_1(x,t) + \varepsilon^2 h_2(x,t) + \dots$$
 (4.22)

Функции $U^{(-)}(x, y, t, \varepsilon)$ и $U^{(+)}(x, y, t, \varepsilon)$ и их производные по направлению нормали к кривой y = h(x, t) будем непрерывно сшивать на кривой h(x,t) в каждый момент времени t:

$$U^{(-)}(l, h(l, t), t, \varepsilon) = U^{(+)}(l, h(l, t), t, \varepsilon) = \varphi^*(l, h(l, t)),$$
(4.23)

$$\frac{\partial U^{(-)}}{\partial n}(l,h(l,t),t,\varepsilon) = \frac{\partial U^{(+)}}{\partial n}(l,h(l,t),t,\varepsilon), \qquad (4.24)$$

где функция $\varphi^*(x, h(x, t))$ определена в (4.5).

4.3.1 Регулярная часть асимптотики

Подставляя разложения (4.20) в равенства

$$\varepsilon \left(\frac{\partial^2 \bar{u}^{(\mp)}}{\partial x^2} + \frac{\partial^2 \bar{u}^{(\mp)}}{\partial y^2} \right) = A_1(\bar{u}^{(\mp)}, x, y) \frac{\partial \bar{u}^{(\mp)}}{\partial x} + A_2(\bar{u}^{(\mp)}, x, y) \frac{\partial \bar{u}^{(\mp)}}{\partial y} + B(\bar{u}^{(\mp)}, x) \frac{\partial \bar{u}^{(\mp)}}{\partial y} + B(\bar$$

раскладывая функции в правой части по формуле Тейлора по степеням малого параметра и приравнивая коэффициенты при одинаковых степенях ε , получим дифференциальные уравнения в частных производных первого порядка для функций $\bar{u}_i(x, y), i = 0, 1...$ Будем решать эти уравнения в каждой из областей $D^{(-)}$ и $D^{(+)}$ с условием периодичности по переменной x. Дополнительные условия при y = 0 и y = a будем определять из краевых условий задачи (4.1).

Приравнивая в (4.25) коэффициенты при ε^0 , получим следующее уравнение

$$A_1(\bar{u}_0^{(\mp)}, x, y) \frac{\partial \bar{u}_0^{(\mp)}}{\partial x} + A_2(\bar{u}_0^{(\mp)}, x, y) \frac{\partial \bar{u}_0^{(\mp)}}{\partial y} + B(\bar{u}_0^{(\mp)}, x, y) = 0, \qquad (4.26)$$

которое совпадает с уравнением (4.2).

Согласно условию **A1** функции $\varphi^{(-)}(x,y)$ и $\varphi^{(+)}(x,y)$ являются *L*периодическими по переменной *x* решениями этого уравнения, соответственно, с условиями

$$\varphi^{(-)}(x,0) = u^0(x); \quad \varphi^{(+)}(x,a) = u^1(x).$$

Положим

$$\bar{u}_0^{(-)}(x,y) = \varphi^{(-)}(x,y), \quad \bar{u}_0^{(+)}(x,y) = \varphi^{(+)}(x,y).$$

Далее для краткости будем использовать следующие обозначения

$$\bar{A}_{i}^{(\mp)}(x,y) := A_{i}(\varphi^{(\mp)}(x,y), x, y), \quad i = 1, 2,$$

$$\bar{B}^{(\mp)}(x,y) := B(\varphi^{(\mp)}(x,y), x, y)$$
(4.27)

и аналогичные обозначения для производных функций A_i и B.

Функции $ar{u}_i^{(\mp)}, i=1,2\dots$ определяются как решения задач

$$\bar{A}_{1}^{(\mp)}(x,y)\frac{\partial\bar{u}_{i}^{(\mp)}}{\partial x} + \bar{A}_{2}^{(\mp)}(x,y)\frac{\partial\bar{u}_{i}^{(\mp)}}{\partial y} + W^{(\mp)}(x,y)\bar{u}_{i}^{(\mp)} = \bar{f}_{i}^{(\mp)}(x,y),$$

$$\bar{u}_{i}^{(-)}(x,0) = 0, \quad \bar{u}_{i}^{(+)}(x,a) = 0, \quad \bar{u}_{i}^{(-)}(x,y) = \bar{u}_{i}^{(+)}(x+L,y),$$
(4.28)

где

$$W^{(\mp)}(x,y) = \frac{\partial \bar{A}_1^{(\mp)}}{\partial u}(x,y) \frac{\partial \varphi^{(\mp)}}{\partial x}(x,y) + \frac{\partial \bar{A}_2^{(\mp)}}{\partial u}(x,y) \frac{\partial \varphi^{(\mp)}}{\partial y}(x,y) + \frac{\partial \bar{B}^{(\mp)}}{\partial u}(x,y),$$
(4.29)

 $\bar{f}_i^{(\mp)}(x,y)$ — известные функции. В частности, $\bar{f}_1^{(\mp)}(x,y) = \frac{\partial^2 \varphi^{(\mp)}}{\partial x^2} + \frac{\partial^2 \varphi^{(\mp)}}{\partial y^2}.$

Уравнения (4.28) являются линейными дифференциальными уравнениями в частных производных первого порядка. Запишем их уравнения характеристик:

$$\frac{dx}{dy} = \frac{\bar{A}_1^{(\mp)}(x,y)}{\bar{A}_2^{(\mp)}(x,y)},\tag{4.30}$$

$$\left(\bar{f}_i^{(\mp)}(x,y) - W^{(\mp)}(x,y)\bar{u}_i^{(\mp)}\right)dy = \bar{A}_2^{(\mp)}(x,y)d\bar{u}_i^{(\mp)}.$$
(4.31)

В силу выполнения условия А2 существуют первые интегралы

$$\Psi^{(\mp)}(x,y) = C_1^{(\mp)} \tag{4.32}$$

каждого из уравнений (4.30) и на отрезке $y \in [0, a]$ существуют функции $x = X^{(\mp)} \left(y, C_1^{(\mp)} \right)$ — решения каждого из этих уравнений [54].

Решая уравнения

$$\frac{d\bar{u}_{i}^{(\mp)}}{dy} = \frac{\bar{f}_{i}^{(\mp)}\left(X^{(\mp)}(y, C_{1}^{(\mp)}), y\right) - W^{(\mp)}\left(X^{(\mp)}(y, C_{1}^{(\mp)}), y\right)\bar{u}_{i}^{(\mp)}}{\bar{A}_{2}^{(\mp)}\left(X^{(\mp)}(y, C_{1}^{(\mp)}), y\right)} \tag{4.33}$$

с условиями $\bar{u}_i^{(-)}(x,0) = 0, \bar{u}_i^{(+)}(x,a) = 0$, получаем выражения для $\bar{u}_i^{(\mp)}(x,y)$:

$$\bar{u}_{i}^{(\mp)}(C_{1}^{(\mp)},y) = \int_{0,a}^{y} \exp\left(-\int_{y_{1}}^{y} \frac{W^{(\mp)}\left(X^{(\mp)}(y_{2},C_{1}),y_{2}\right)}{\bar{A}_{2}^{(\mp)}\left(X^{(\mp)}(y_{2},C_{1}),y_{2}\right)}dy_{2}\right) \frac{\bar{f}_{i}^{(\mp)}\left(X^{(\mp)}(y_{1},C_{1}),y_{1}\right)}{\bar{A}_{2}^{(\mp)}\left(X^{(\mp)}(y_{1},C_{1}),y_{1}\right)}dy_{1}.$$

$$(4.34)$$

Функции $\bar{u}_i^{(\mp)}(x,y)$ – решения задач (4.28) – будут определятся выражением (4.34), в которое вместо $C_1^{(\mp)}$ подставлены левые части выражений (4.32).

4.3.2 Функции переходного слоя

Уравнения для функций переходного слоя $Q^{(\mp)}(\xi, l, h(l, t), t, \varepsilon)$ определяются из равенств

$$\left(\varepsilon\Delta - \frac{\partial}{\partial t} - (\mathbf{A}(\xi, l, t, \varepsilon), \nabla)\right) Q^{(\mp)} =$$

= $(\mathbf{Q}\mathbf{A}(\xi, l, t, \varepsilon), \nabla) \bar{u}^{(\mp)} (l - \varepsilon\xi\sin\alpha, h(l, t) + \varepsilon\xi\cos\alpha) + QB(\xi, l, t, \varepsilon),$
(4.35)

где обозначено

$$\mathbf{A}(\xi, l, t, \varepsilon) := \mathbf{A} \left(\bar{u}^{(\mp)} (l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha) + Q^{(\mp)}, l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha \right),$$

$$\mathbf{Q}\mathbf{A}(\xi, l, t, \varepsilon) := \mathbf{A}(\bar{u}^{(\mp)} (l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha) + Q^{(\mp)}, l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha) - \mathbf{A}(\bar{u}^{(\mp)} (l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha), l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha),$$

$$QB(\xi, l, t, \varepsilon) := B(\bar{u}^{(\mp)} (l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha) + Q^{(\mp)}, l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha) - B(\bar{u}^{(\mp)} (l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha), l - \varepsilon \xi \sin \alpha, h(l, t) + \varepsilon \xi \cos \alpha).$$

$$(4.36)$$

а функции $\sin \alpha$ и $\cos \alpha$ определяются выражениями (4.7).

Оператор $\varepsilon \Delta - \frac{\partial}{\partial t} - (\mathbf{A}(\xi, l, t, \varepsilon), \nabla)$ имеет вид (4.9). Оператор ∇ в переменных l, ξ, t принимает следующий вид:

$$\nabla = \left\{ -\frac{1}{\varepsilon} \frac{h_x}{\sqrt{1+h_x^2}} \frac{\partial}{\partial \xi} - \frac{\sqrt{1+h_x^2}}{\varepsilon \xi h_{xx} - (1+h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial l}; \frac{1}{\varepsilon} \frac{1}{\sqrt{1+h_x^2}} \frac{\partial}{\partial \xi} - \frac{h_x \sqrt{1+h_x^2}}{\varepsilon \xi h_{xx} - (1+h_x^2)^{\frac{3}{2}}} \frac{\partial}{\partial l} \right\}.$$
(4.37)

Подставляя в равенства (4.35) суммы (4.20) и (4.21), раскладывая входящие в правые части (4.35) функции по формуле Тейлора по степеням малого параметра и приравнивая коэффициенты при одинаковых степенях ε , будем получать уравнения для функций $Q_i^{(\mp)}(\xi, l, h(l, t), t), i = 0, 1, ...$

В качестве дополнительных условий потребуем убывания на бесконечности

$$Q_i^{(\mp)}(\mp\infty, l, h(l, t), t) = 0, \qquad (4.38)$$

а также выполнения условий при $\xi = 0$, которые следуют из равен-

ства (4.23). Перепишем (4.23) с учетом разложений (4.20) и (4.21):

$$\bar{u}_0^{(-)}(l,h(l,t)) + \varepsilon \bar{u}_1^{(-)}(l,h(l,t)) + \ldots + Q_0^{(-)}(0,l,h(l,t),t) + \varepsilon Q_1^{(-)}(0,l,h(l,t),t) + \ldots =$$

$$= \bar{u}_0^{(+)}(l,h(l,t)) + \varepsilon \bar{u}_1^{(+)}(l,h(l,t)) + \ldots + Q_0^{(+)}(0,l,h(l,t),t) + \varepsilon Q_1^{(+)}(0,l,h(l,t),t) + \ldots =$$

$$= \varphi^*(l,h(l,t)).$$

(4.39)

Функции переходного слоя нулевого порядка

Приравнивая коэффициенты при ε^{-1} в равенствах (4.35) и при ε^{0} в равенствах (4.39) и принимая во внимание условие (4.38), получим следующие задачи для функций $Q_{0}^{(\mp)}(\xi, l, h(l, t), t)$:

$$\frac{\partial^2 Q_0^{(\mp)}}{\partial \xi^2} - P\left(\varphi^{(\mp)}(l,h(l,t)) + Q_0^{(\mp)},h(l,t)\right) \frac{\partial Q_0^{(\mp)}}{\partial \xi} = 0,$$

$$\varphi^{(\mp)}(l,h(l,t)) + Q_0^{(\mp)}(0,l,h(l,t),t) = \varphi^*(l,h(l,t)),$$

$$Q_0^{(\mp)}(\mp\infty,l,h(l,t),t) = 0.$$
(4.40)

Задачу для $Q_0^{(-)}$ будем рассматривать пр
и $\xi\leqslant 0,$ а для $Q_0^{(+)}$ – пр
и $\xi\geqslant 0.$

Введем обозначения

$$\tilde{u}(\xi, h(l, t)) = \begin{cases} \varphi^{(-)}(l, h(l, t)) + Q_0^{(-)}(\xi, l, h(l, t), t), & \xi \leq 0, \\ \varphi^{(+)}(l, h(l, t)) + Q_0^{(+)}(\xi, l, h(l, t), t), & \xi \geq 0, \end{cases}$$
(4.41)

$$\tilde{A}_{i}(\xi, l, t) := A_{i}(\tilde{u}(\xi, h(l, t)), l, h(l, t)), \quad i = 1, 2,$$

$$\tilde{B}(\xi, l, t) := B(\tilde{u}(\xi, h(l, t)), l, h(l, t)).$$
(4.42)

Каждое из уравнений (4.40), записанное в этих обозначениях, принимает вид (4.11). Уравнение (4.11) эквивалентно системе уравнений (4.12) и, как показано в пункте (4.2), существуют производные функции $\tilde{u}(\xi, h(l, t))$, при $\xi \leq 0$ и $\xi \geq 0$:

$$\Phi^{(-)}(\xi, h(l, t)) := \Phi^{(-)}(\tilde{u}(\xi, h(l, t)), h(l, t)) = \frac{\partial \tilde{u}}{\partial \xi}, \quad \xi \leq 0,$$

$$\Phi^{(+)}(\xi, h(l, t)) := \Phi^{(+)}(\tilde{u}(\xi, h(l, t)), h(l, t)) = \frac{\partial \tilde{u}}{\partial \xi}, \quad \xi \geq 0,$$

$$(4.43)$$

для которых имеют место выражения (4.14).

Функцию $\tilde{u}(\xi, h(l, t))$ можно определить, решая каждое из уравнений

$$\begin{aligned} \frac{\partial \tilde{u}}{\partial \xi} &= \int_{\varphi^{(-)}(l,h(l,t))}^{\tilde{u}} P(u,h(l,t)) du, \quad \text{при} \quad \xi < 0, \\ \frac{\partial \tilde{u}}{\partial \xi} &= \int_{\varphi^{(+)}(l,h(l,t))}^{\tilde{u}} P(u,h(l,t)) du, \quad \text{при} \quad \xi > 0. \end{aligned}$$
(4.44)

с начальными условиями

$$\tilde{u}(0, h(l, t)) = \varphi^*(l, h(l, t)).$$

Можно показать [6], [64], что при всех $l \in \mathbb{R}$ и $t \in \mathbb{R}^+$ справедливы следующие экспоненциальные оценки

$$\left|\tilde{u}(\xi, h(l, t)) - \varphi^{(\mp)}(l, h(l, t))\right| < Ce^{-\varkappa|\xi|},\tag{4.45}$$

 \varkappa, C - положительные константы, не зависящая от $\varepsilon.$

Из (4.45), учитывая обозначение (4.41), можно получить оценки для функций $Q_0^{(\mp)}(\xi,l,h(l,t),t)$:

$$\left|Q_0^{(\mp)}(\xi, l, h(l, t), t)\right| < Ce^{-\varkappa|\xi|}.$$
 (4.46)

Функции переходного слоя первого порядка

Приравнивая слагаемые при ε^0 в равенствах (4.35), получим следующие уравнения для функций $Q_1^{(\mp)}(\xi, l, h(l, t), t)$:

$$\frac{\partial^2 Q_1^{(\mp)}}{\partial \xi^2} - P(\tilde{u}(\xi, h(l, t)), h(l, t)) \frac{\partial Q_1^{(\mp)}}{\partial \xi} - \frac{\partial P}{\partial u} (\tilde{u}(\xi, h(l, t)), h(l, t)) \Phi^{(\mp)}(\xi, h(l, t)) Q_1 = f_1^{(\mp)}(\xi, l, h(l, t)), \quad (4.47)$$

где

$$\begin{split} f_1^{(\mp)}(\xi,l,t) &= \frac{\partial Q_0^{(\mp)}}{\partial t}(\xi,l,h(l,t),t) + \frac{h_{xx}}{(1+h_x^2)^{\frac{3}{2}}} \Phi^{(\mp)}(\xi,h(l,t)) + \\ &+ \frac{1}{1+h_x^2} \left(h_t h_x + A_1(\tilde{u},l,h(l,t)) + h_x A_2(\tilde{u},l,h(l,t))\right) \frac{\partial Q_0^{(\mp)}}{\partial l}(\xi,l,h(l,t),t) + \\ &+ \frac{\partial P}{\partial u}(\tilde{u}(\xi,h(l,t)),h(l,t)) \times \left(\bar{u}_1^{(\mp)}(l,h(l,t)) - \frac{h_x}{\sqrt{1+h_x^2}} \frac{\partial \varphi^{(\mp)}}{\partial x}(l,h(l,t))\xi + \\ &+ \frac{1}{\sqrt{1+h_x^2}} \frac{\partial \varphi^{(\mp)}}{\partial y}(l,h(l,t))\xi \right) \Phi^{(\mp)}(\xi,h(l,t)) - \\ &- \frac{1}{1+h_x^2} \left(-h_x^2 \frac{\partial \tilde{A}_1}{\partial x}(\xi,l,t) + h_x \frac{\partial \tilde{A}_2}{\partial x}(\xi,l,t) + \\ &+ h_x \frac{\partial \tilde{A}_1}{\partial y}(\xi,l,t) - \frac{\partial \tilde{A}_2}{\partial y}(\xi,l,t)\right) \Phi^{(\mp)}(\xi,h(l,t))\xi + \\ &+ \tilde{A}_1(\xi,l,t) \frac{\partial \varphi^{(\mp)}}{\partial x}(l,h(l,t)) + \tilde{A}_2(\xi,l,t) \frac{\partial \varphi^{(\mp)}}{\partial y}(l,h(l,t)) + \tilde{B}(\xi,l,t), \\ a производные функции h(x,t) берутся при x = l. Из равенств (4.39) в порядке ε^1 следуют краевые условия$$

$$Q_1^{(\mp)}(0,l,h(l,t),t) + \bar{u}_1^{(\mp)}(l,h(l,t)) = 0.$$
(4.48)

Добавим также условия на бесконечности

$$Q_1^{(\mp)}(\mp\infty, l, h(l, t), t) = 0.$$
(4.49)

Решения задач (4.47) - (4.49) можно выписать в явном виде:

$$Q_{1}^{(\mp)}(\xi, l, h(l, t), t) = -\bar{u}_{1}^{(\mp)}(l, h(l, t)) \frac{\Phi^{(\mp)}(\xi, h(l, t))}{\Phi^{(\mp)}(0, h(l, t))} + \Phi^{(\mp)}(\xi, h(l, t)) \int_{0}^{\xi} \frac{ds}{\Phi^{(\mp)}(s, h(l, t))} \int_{\mp\infty}^{s} f_{1}^{(\mp)}(\eta, l, t) d\eta.$$

$$(4.50)$$

Для функций $Q_1^{(\mp)}(\xi, l, h(l, t), t)$ имеют место экспоненциальные оценки типа (4.46).

Функции переходного слоя произвольного порядка

Функции переходного слоя произвольного порядка $k=2,3,\ldots$ определяются как решения задач

$$\begin{split} &\frac{\partial^2 Q_k^{(\mp)}}{\partial \xi^2} - P(\tilde{u}(\xi,h(l,t)),h(l,t)) \frac{\partial Q_k^{(\mp)}}{\partial \xi} - \frac{\partial P}{\partial u}(\tilde{u}(\xi,h(l,t)),h(l,t)) \Phi^{(\mp)}(\xi,h(l,t)) Q_k = \\ &= f_k^{(\mp)}(\xi,l,t), \\ &Q_k^{(\mp)}(0,l,h(l,t),t) + \bar{u}_k^{(\mp)}(l,h(l,t)) = 0, \quad Q_k^{(\mp)}(\mp\infty,l,h(l,t),t) = 0 \\ &\text{известными выражениями для } f_k^{(\mp)}(\xi,l,t). \ \text{Для функций } Q_k^{(\mp)}, \ k = \end{split}$$

2, 3, ... справедливы экспоненциальные оценки вида (4.46).

с

4.4 Асимптотическое приближение положения фронта

Неизвестные коэффициенты $h_i(l,t)$ i = 1, 2, ... разложения (4.22) будем определять из условия сшивания (4.24) производных по направлению нормали к кривой h(x,t).

Запишем производную по направлению нормали к кривой h(x,t) в

переменных r, l, t. Единичный вектор нормали имеет вид

$$\mathbf{n} = \frac{1}{\sqrt{1+h_x^2}} \{-h_x; 1\},\$$

учитывая представление (4.37) оператора ∇ получим следующее выражение для производной по направлению нормали:

$$\frac{\partial}{\partial n} = (\mathbf{n}, \nabla) = \frac{\partial}{\partial r} = -\sin\alpha \frac{\partial}{\partial x} + \cos\alpha \frac{\partial}{\partial y}, \qquad (4.51)$$

где $\sin \alpha$, $\cos \alpha$ определяются выражением (4.7).

В переменных ξ, l, t эта производная имеет вид:

$$\frac{\partial}{\partial n} = \frac{1}{\varepsilon} \frac{\partial}{\partial \xi}$$

С учетом равенств (4.51), представления (4.19) и разложений (4.20), (4.21) перепишем условия сшивания производных (4.24) в следующем виде

$$-\sin\alpha \frac{\partial \varphi^{(-)}}{\partial x}(l,h(l,t)) + \cos\alpha \frac{\partial \varphi^{(-)}}{\partial y}(l,h(l,t)) - \varepsilon \sin\alpha \frac{\partial \bar{u}_{1}^{(-)}}{\partial x}(l,h(l,t)) + \\ + \varepsilon \cos\alpha \frac{\partial \bar{u}_{1}^{(-)}}{\partial y}(l,h(l,t)) + \ldots + \frac{1}{\varepsilon} \frac{\partial Q_{0}^{(-)}}{\partial \xi}(0,l,h(l,t),t) + \frac{\partial Q_{1}^{(-)}}{\partial \xi}(0,l,h(l,t),t) + \ldots = \\ -\sin\alpha \frac{\partial \varphi^{(+)}}{\partial x}(l,h(l,t)) + \cos\alpha \frac{\partial \varphi^{(+)}}{\partial y}(l,h(l,t)) - \varepsilon \sin\alpha \frac{\partial \bar{u}_{1}^{(+)}}{\partial x}(l,h(l,t)) + \\ + \varepsilon \cos\alpha \frac{\partial \bar{u}_{1}^{(+)}}{\partial y}(l,h(l,t)) + \ldots + \frac{1}{\varepsilon} \frac{\partial Q_{0}^{(+)}}{\partial \xi}(0,l,h(l,t),t) + \frac{\partial Q_{1}^{(+)}}{\partial \xi}(0,l,h(l,t),t) + \ldots$$

$$(4.52)$$

Введем функцию $H(l, h(l, t), t, \varepsilon)$:

$$H(l, h(l, t), t, \varepsilon) := \varepsilon \frac{\partial U^{(-)}}{\partial n} (l, h(l, t), t, \varepsilon) - \varepsilon \frac{\partial U^{(+)}}{\partial n} (l, h(l, t), t, \varepsilon)$$

с помощью которой перепишем условие сшивания (4.24) как

$$H(l, h(l, t), t, \varepsilon) = 0.$$

Представим функцию $H(l, h(l, t), t, \varepsilon)$ в виде суммы

$$H(l, h(l, t), t, \varepsilon) = H_0(l, h(l, t), t) + \varepsilon H_1(l, h(l, t), t) + \varepsilon^2 H_2(l, h(l, t), t) + \dots,$$

где

$$H_{0}(l,h(l,t),t) = \frac{\partial Q_{0}^{(-)}}{\partial \xi}(0,l,h(l,t),t) - \frac{\partial Q_{0}^{(+)}}{\partial \xi}(0,l,h(l,t),t),$$

$$H_{1}(l,h(l,t),t) = -\sin\alpha \frac{\partial \varphi^{(-)}}{\partial x}(l,h(l,t)) + \cos\alpha \frac{\partial \varphi^{(-)}}{\partial y}(l,h(l,t)) + \frac{\partial Q_{1}^{(-)}}{\partial \xi}(0,l,h(l,t),t) - \left(-\sin\alpha \frac{\partial \varphi^{(+)}}{\partial x}(l,h(l,t)) + \cos\alpha \frac{\partial \varphi^{(+)}}{\partial y}(l,h(l,t)) + \frac{\partial Q_{1}^{(+)}}{\partial \xi}(0,l,h(l,t),t)\right)$$

$$(4.53)$$

и т.д.

Условия гладкого сшивания (4.52) в порядке ε^0 с учетом обозначений (4.41) и (4.43) дают равенство

$$H_0(l, h(l, t), t) = \Phi^{(-)}(\varphi^*(l, t), h(l, t)) - \Phi^{(+)}(\varphi^*(l, t), h(l, t)) = 0.$$
(4.54)

Выпишем выражение для функции $H_0(x, h(x, t), t)$ с учетом обозначений (4.41), уравнений (4.44) и равенства (4.10):

$$H_{0}(x, h(x, t), t) = = \frac{1}{\sqrt{1 + h_{x}^{2}(x, t)}} \int_{\varphi^{(-)}(x, h(x, t))}^{\varphi^{(+)}(x, h(x, t))} (h_{t}(x, t) - h_{x}(x, t)A_{1}(u, x, h(x, t)) + A_{2}(u, x, h(x, t))) du.$$

$$(4.55)$$

Выполнение условия **A5** (см. (4.16)) означает, что равенство (4.54) выполняется при $h(l,t) = h_0(l,t)$. Будем считать, что функция $h_0(x,t)$ является первым слагаемым в разложении (4.22).

Запишем условия сшивания (4.52) в порядке ε^1 с учетом разложения (4.22):

$$h_{1t}\frac{\partial H_0}{\partial h_t}(l,h_0(l,t),t) + h_{1x}\frac{\partial H_0}{\partial h_x}(l,h_0(l,t),t) + h_1\frac{\partial H_0}{\partial h}(l,h_0(l,t),t) + H_1(l,h_0(l,t),t) = 0.$$
(4.56)

Определим функцию $h_1(x,t)$ как решение задачи $\frac{\partial H_0}{\partial h_t}(x,h_0(x,t),t)\frac{\partial h_1}{\partial t} + \frac{\partial H_0}{\partial h_x}(x,h_0(x,t),t)\frac{\partial h_1}{\partial x} + \frac{\partial H_0}{\partial h}(x,h_0(x,t),t)h_1 + H_1(x,h_0(x,t),t) = 0,$ $h_1(x,t) = h_1(x+L,t); \quad h_1(x,0) = 0,$ где функция $H_0(x, h(x, t), t)$ дается выражением (4.55).

Эта задача разрешима поскольку (см. [54])

$$\frac{\partial H_0}{\partial h_t}(x, h_0(x, t), t) = \frac{1}{\sqrt{1 + h_{0x}^2}} \left(\varphi^{(+)}(x, h_0(x, t)) - \varphi^{(-)}(x, h_0(x, t))\right) > 0.$$
(4.57)

Уравнения для коэффициентов $h_k(x,t), k = 2, 3, ...$ разложения (4.22) получают из условий гладкого сшивания (4.52) в порядке ε^k .

Функции $h_k(x,t)$ определяются как решения задач

 $\frac{\partial H_0}{\partial h_t}(x, h_0(x, t), t)\frac{\partial h_k}{\partial t} + \frac{\partial H_0}{\partial h_x}(x, h_0(x, t), t)\frac{\partial h_k}{\partial x} + \frac{\partial H_0}{\partial h}(x, h_0(x, t), t)h_k + H_k(x, h(x, t), t) = 0,$ $h_k(x, t) = h_k(x + L, t); \quad h_k(x, 0) = 0.$

4.4.1 Асимптотическое представление решения

Определим члены рядов (4.20)-(4.22) до номера k включительно, и положим

$$\hat{h}_k(x,t) = \sum_{i=0}^k \varepsilon^i h_i(x,t).$$
(4.58)

В окрестности кривой $\hat{h}_k(x,t)$ перейдем к локальным координатам (l,\hat{r}) с помощью соотношений, аналогичных (4.6), и введем растянутую переменную $\hat{\xi} = \frac{\hat{r}}{\varepsilon}$. Кривая $\hat{h}_k(x,t)$ в каждый момент времени разделяет область \bar{D} на подобласти $\bar{D}_k^{(-)}$ и $\bar{D}_k^{(+)}$ ($\bar{D}_k^{(-)}$: $(x,y) \in \mathbb{R} \times [0; \hat{h}_k(x,t)]$ и $\bar{D}_k^{(+)}$: $(x,y) \in \mathbb{R} \times [\hat{h}_k(x,t),a]$).

Составим суммы

$$U_{k}^{(-)}(x,y,t,\varepsilon) = \sum_{i=0}^{k} \varepsilon^{i} \left(\bar{u}_{i}^{(-)}(x,y) + Q_{i}^{(-)}(\hat{\xi},l,\hat{h}_{k}(l,t),t) \right), \quad (x,y,t) \in \bar{D}_{k}^{(-)} \times [0;T], \ \xi \leqslant 0;$$

$$U_{k}^{(+)}(x,y,t,\varepsilon) = \sum_{i=0}^{k} \varepsilon^{i} \left(\bar{u}_{i}^{(+)}(x,y) + Q_{i}^{(+)}(\hat{\xi},l,\hat{h}_{k}(l,t),t) \right), \quad (x,y,t) \in \bar{D}_{k}^{(+)} \times [0;T], \ \xi \geqslant 0.$$

$$(4.59)$$

Переменные x и l в (4.59) связаны первым из соотношений (4.6) заменой r на \hat{r} .

Положим

$$U_{k} = \begin{cases} U_{k}^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{k}^{(-)} \times [0; T], \\ U_{k}^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{k}^{(+)} \times [0; T]. \end{cases}$$
(4.60)

Функция $U_k(x, y, t, \varepsilon)$ по своему построению удовлетворяет уравнению (4.1) с точностью $O(\varepsilon^{k+1})$ всюду в области \overline{D} , за исключением кривой $\hat{h}_k(x, t)$, а краевым и начальным условиям задачи (4.1) эта функция удовлетворяет точно.

4.5 Обоснование асимптотики

Для доказательства существования решения задачи (4.1) и оценки точности его асимптотического приближения используется асимптотический метод дифференциальных неравенств (см. [19], [20]). Согласно этому методу решение задачи (4.1) существует, если существуют непрерывные функции $\alpha(x, y, t, \varepsilon)$ и $\beta(x, y, t, \varepsilon)$, называемые соответственно нижним и верхним решениями задачи (4.1), для которых при достаточно малых ε выполняется следующая система неравенств (см. [49], [47]):

У1 Условие упорядоченности нижнего и верхнего решений.

$$\alpha(x, y, t, \varepsilon) \leqslant \beta(x, y, t, \varepsilon)$$
 при $(x, y, t) \in \overline{D} \times [0, T].$

У2 Действие дифференциального оператора уравнения (4.1) на нижнее

и верхнее решения.

$$\begin{split} L[\alpha] &\equiv \varepsilon \Delta \alpha - \frac{\partial \alpha}{\partial t} - (\mathbf{A}(\alpha, x, y), \nabla) \,\alpha + B(\alpha, x, y) \geqslant 0, (x, y, t) \in \bar{D} \times [0, T]; \\ L[\beta] &\equiv \varepsilon \Delta \beta - \frac{\partial \beta}{\partial t} - (\mathbf{A}(\beta, x, y), \nabla) \,\beta + B(\beta, x, y) \leqslant 0, (x, y, t) \in \bar{D} \times [0, T]; \\ \text{для почти всех точек } (x, y, t) \in \bar{D} \times [0, T], \text{ за исключением тех под-} \\ \text{множеств нулевой меры, на которых функции } \alpha(x, y, t, \varepsilon) \, \text{и} \, \beta(x, y, t, \varepsilon) \\ \text{не являются гладкими.} \end{split}$$

УЗ Условия на границах области *D*:

$$\begin{aligned} \alpha(x,0,t,\varepsilon) &\leqslant u^0 \leqslant \beta(x,0,t,\varepsilon), \quad \alpha(x,a,t,\varepsilon) \leqslant u^1 \leqslant \beta(x,a,t,\varepsilon), \quad x \in \mathbb{R}, t \in [0,T] \\ \alpha(x,y,t,\varepsilon) &= \alpha(x+L,y,t,\varepsilon), \quad \beta(x,y,t,\varepsilon) = \beta(x+L,y,t,\varepsilon), \quad (x,y,t) \in \bar{D} \times [0,T]. \end{aligned}$$

У4 Условия в начальный момент времени.

Пусть функция $u_{init}(x, y, \varepsilon)$ такова, что выполнены следующие неравенства:

$$\alpha(x, y, 0, \varepsilon) \leqslant u_{init}(x, y, \varepsilon) \leqslant \beta(x, y, 0, \varepsilon), \quad (x, y) \in \bar{D}.$$

У5 Условия скачка производных нижнего и верхнего решений по направлению нормали к кривым, на которых эти решения не являются гладкими.

$$\frac{\partial\beta}{\partial n}\left(x,h_{\beta}(x,t)-0,t,\varepsilon\right)-\frac{\partial\beta}{\partial n}\left(x,h_{\beta}(x,t)+0,t,\varepsilon\right) \ge 0,$$

где $h_{\beta}(x,t)$ – кривая, на которой верхнее решение не является гладким,

$$\frac{\partial \alpha}{\partial n} \left(x, h_{\alpha}(x,t) + 0, t, \varepsilon \right) - \frac{\partial \alpha}{\partial n} \left(x, h_{\alpha}(x,t) - 0, t, \varepsilon \right) \ge 0,$$

где $h_{\alpha}(x,t)$ – кривая, на которой нижнее решение не является гладким.

Известно (см. [47], [49]), что при выполнение условий **У1-У5** существует функция $u(x, y, t, \varepsilon)$ – решение задачи (4.1) – для которой выполняются неравенства

$$\alpha(x, y, t, \varepsilon) \leqslant u(x, y, t, \varepsilon) \leqslant \beta(x, y, t, \varepsilon), \quad (x, y, t) \in \bar{D} \times [0, T].$$

4.5.1 Построение верхнего и нижнего решений

Для построения верхнего и нижнего решений используем асимптотический метод дифференциальных неравенств (см. [19], [20], [47], [49]), согласно которому эти функции представляют собой модификации асимптотических представлений (4.59). Будем считать, что кривая $h_{\beta}(x,t)$, определяющая положение внутреннего переходного слоя для верхнего решения, задается следующим образом:

$$h_{\beta}(x,t) = \hat{h}_{n+1}(x,t) - \varepsilon^{n+1}\delta(x,t), \qquad (4.61)$$

где $\hat{h}_{n+1}(x,t)$ – сумма (4.58) при k = n+1, $\delta(x,t)$ – положительная функция, которая выбирается таким образом, чтобы выполнялось условие **У5** для верхнего решения.

В окрестности кривой $h_{\beta}(x,t)$ перейдем к локальным координатам (l,r_{β}) согласно следующим равенствам:

$$x = l - r_{\beta} \sin \alpha_{\beta},$$

$$y = h_{\beta}(l, t) + r_{\beta} \cos \alpha_{\beta} = \hat{h}_{n+1}(l, t) + r_{\beta} \cos \alpha_{\beta} - \varepsilon^{n+1} \delta(l, t),$$
(4.62)

где r_{β} – расстояние от кривой $h_{\beta}(x,t)$ вдоль нормали к ней, l – координата точки на оси x, параметр кривой \hat{h}_{n+1} , $\cos \alpha_{\beta} = \frac{1}{\sqrt{1 + (h_{\beta})_x^2}}$, $\sin \alpha_{\beta} = \frac{(h_{\beta})_x}{\sqrt{1 + (h_{\beta})_x^2}}$, а производные функции $h_{\beta}(x,t)$ в каждый момент времени t берутся при x = l.

Верхнее решение задачи (4.1) будем строить отдельно в каждой из областей $\bar{D}_{\beta}^{(-)} \times [0;T]$ и $\bar{D}_{\beta}^{(+)} \times [0;T]$, где $\bar{D}_{\beta}^{(-)} : (x,y) \in \mathbb{R} \times [0;\hat{h}_{\beta}(x,t)]$ и $\bar{D}_{\beta}^{(+)} : (x,y) \in \mathbb{R} \times [\hat{h}_{\beta}(x,t),a]$:

$$\beta(x, y, t, \varepsilon) = \begin{cases} \beta^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\beta}^{(-)} \times [0, T], \\ \beta^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\beta}^{(+)} \times [0, T]. \end{cases}$$
(4.63)

Функции $\beta^{(-)}(x, y, t, \varepsilon)$ и $\beta^{(+)}(x, y, t, \varepsilon)$ будем сшивать на кривой $h_{\beta}(x, t)$, таким образом, чтобы функция $\beta(x, y, t, \varepsilon)$ была непрерывна на этой кривой, и выполнялись равенства

$$\beta^{(-)}(l, h_{\beta}(l, t), t, \varepsilon) = \beta^{(+)}(l, h_{\beta}(l, t), t, \varepsilon) = \frac{\varphi^{(-)}(l, h_{\beta}(l, t)) + \varphi^{(+)}(l, h_{\beta}(l, t))}{2}$$
(4.64)

В окрестности кривой $h_{\beta}(x,t)$ введем растянутую переменную $\xi_{\beta} = \frac{r_{\beta}}{\varepsilon}$.

Функции $\beta^{(-)}$ и $\beta^{(+)}$ будем строить как модификации асимптотических представлений (4.59).

$$\beta^{(-)} = U_{n+1}^{(-)}\Big|_{\xi_{\beta}} + \varepsilon^{n+1} \left(\mu^{(-)}(x,y) + q_{0}^{(-)}(\xi_{\beta},t) + \varepsilon q_{1}^{(-)}(\xi_{\beta},t) \right),$$

$$(x,y,t) \in \bar{D}_{\beta}^{(-)} \times [0,T], \ \xi_{\beta} \leq 0;$$

$$\beta^{(+)} = U_{n+1}^{(+)}\Big|_{\xi_{\beta}} + \varepsilon^{n+1} \left(\mu^{(+)}(x,y) + q_{0}^{(+)}(\xi_{\beta},t) + \varepsilon q_{1}^{(+)}(\xi_{\beta},t) \right),$$

$$(x,y,t) \in \bar{D}_{\beta}^{(+)} \times [0,T], \ \xi_{\beta} \geq 0.$$

$$(4.65)$$

Здесь через $U_{n+1}^{(\mp)}$ обозначены функции (4.59) при k = n + 1, в которых аргумент ξ Q-функций заменен на ξ_{β} , а функция $\hat{h}_{n+1}(x,t)$ – на $h_{\beta}(x,t)$.

Функции $\mu^{(\mp)}(x,y)$ выбираются далее таким образом, чтобы выполнялись условия **У1-У3**. Определим их как решения задач

$$\bar{A}_{1}^{(\mp)}(x,y)\frac{\partial\mu^{(\mp)}}{\partial x} + \bar{A}_{2}^{(\mp)}(x,y)\frac{\partial\mu^{(\mp)}}{\partial y} + W^{(\mp)}(x,y)\mu^{(\mp)} = R,$$

$$\mu^{(-)}(x,0) = R^{(-)}, \quad \mu^{(+)}(x,a) = R^{(+)}, \quad \mu^{(\mp)}(x,y) = \mu^{(\mp)}(x+L,y),$$

(4.66)

где $R, R^{(\mp)}$ - некоторые положительные величины, а $\bar{A}_i^{(\mp)}(x, y), i = 1, 2$ и $W^{(\mp)}(x, y)$ определяются соответственно выражениями (4.27) и (4.29). Ранее в пункте 3.1 были рассмотрены аналогичные задачи для функций $\bar{u}_1(x, t)$. Повторяя приведенные там рассуждения, выпишем решения задач (4.66) в явном виде:

$$\mu^{(\mp)}(x,y) = R^{(\mp)} \exp\left(-\int_{0,a}^{y} \frac{W^{(\mp)}\left(X^{(\mp)}(y_{1},C_{1}),y_{1}\right)}{\bar{A}_{2}^{(\mp)}\left(X^{(\mp)}(y_{1},C_{1}),y_{1}\right)}dy_{1}\right) + \int_{0,a}^{y} \exp\left(-\int_{y_{1}}^{y} \frac{W^{(\mp)}\left(X^{(\mp)}(y_{2},C_{1}),y_{2}\right)}{\bar{A}_{2}^{(\mp)}\left(X^{(\mp)}(y_{2},C_{1}),y_{2}\right)}dy_{2}\right)\frac{R}{\bar{A}_{2}^{(\mp)}\left(X^{(\mp)}(y_{1},C_{1}),y_{1}\right)}dy_{1},$$

$$(4.67)$$

где $C_1^{(\mp)}$ – левые части первых интегралов (4.32).

Согласно условию **A3** при всех $(x, y) \in \overline{D}$ выполняются неравенства $\overline{A}_2^{(-)}(x, y) > 0, \overline{A}_2^{(+)}(x, y) < 0$, поэтому $\mu^{(\mp)}(x, y)$ принимают положительные значения при $(x, y) \in \overline{D}$.

Функции $q_0^{(\mp)}(\xi_{\beta},t)$ устраняют невязки порядка ε^n в выражении $L[\beta]$ и невязки порядка ε^{n+1} в условии непрерывного сшивания верхнего ре-

шения (4.64), возникшие в результате модификации регулярной части — добавок $\mu^{(\mp)}(x,y)$. Определим их как решения уравнений

$$\frac{\partial^2 q_0^{(\mp)}}{\partial \xi_{\beta}^2} - P(\tilde{u}(\xi_{\beta}, h_{\beta}(l, t)), h_{\beta}(l, t)) \frac{\partial q_0^{(\mp)}}{\partial \xi_{\beta}} - \frac{\partial P}{\partial u} (\tilde{u}(\xi_{\beta}, h_{\beta}(l, t)), h_{\beta}(l, t)) \Phi^{(\mp)}(\xi_{\beta}, h_{\beta}(l, t)) q_0^{(\mp)} = \frac{\partial P}{\partial u} (\tilde{u}(\xi_{\beta}, h_{\beta}(l, t)), h_{\beta}(l, t)) \mu^{(\mp)}(l, h_{\beta}(l, t)) \Phi^{(\mp)}(\xi_{\beta}, h_{\beta}(l, t)), \quad (4.68)$$

где производные функции h_{β} в каждый момент времени t берутся приx = l.

Граничные условия для $q_0^{(\mp)}(\xi_{\beta}, t)$ при $\xi_{\beta} = 0$ следуют из условия непрерывного сшивания верхнего решения (4.65) с учетом условий при $\xi_{\beta} = 0$ для функций $Q_i^{(\mp)}(\xi_{\beta}, l, h(l, t)), i = 0, 1, ..., n + 1$ (см. (4.39)):

$$q_0^{(\mp)}(0,t) = -\mu^{(\mp)}(l,h_\beta(l,t)), \quad t \in [0;T].$$
(4.69)

Потребуем еще выполнения условий на бесконечности:

$$q_0^{(\mp)}(\xi_\beta, t) \to 0 \text{ при } \xi_\beta \to \mp \infty, \quad t \in [0; T].$$

$$(4.70)$$

Функции $q_0^{(\mp)}(\xi_{\beta}, t)$ можно выписать в явном виде:

$$q_{0}^{(\mp)}(\xi_{\beta},t) = -\mu^{(\mp)}(l,h_{\beta}(l,t))\frac{\Phi^{(\mp)}(\xi_{\beta},h_{\beta}(l,t))}{\Phi^{(\mp)}(0,h_{\beta}(l,t))} + \Phi^{(\mp)}(\xi_{\beta},h_{\beta}(l,t))\int_{0}^{\xi_{\beta}}\frac{ds}{\Phi^{(\mp)}(s,h_{\beta}(l,t))} \times \\ \times \int_{\mp\infty}^{s} \frac{\partial P}{\partial u}(\tilde{u},h(l,t))\mu^{(\mp)}(l,h_{\beta}(l,t))\Phi^{(\mp)}(\eta,h_{\beta}(l,t))d\eta.$$
(4.71)

Функции $q_1^{(\mp)}(\xi_{\beta}, t)$ определим как решения задач $\frac{\partial^2 q_1^{(\mp)}}{\partial \xi_{\beta}^2} - P(\tilde{u}, h_{\beta}(l, t)) \frac{\partial q_1^{(\mp)}}{\partial \xi_{\beta}} - \frac{\partial P}{\partial u} (\tilde{u}, h(l, t)) \Phi^{(\mp)}(\xi_{\beta}, h_{\beta}(l, t)) q_1^{(\mp)} = q_1^{(\mp)} f(\xi_{\beta}, t) - \left(\bar{A}_1^{(\mp)}(l, h(l, t)) \frac{\partial \mu^{(\mp)}}{\partial x}(l, h(l, t)) + \bar{A}_2^{(\mp)}(l, h(l, t)) \frac{\partial \mu^{(\mp)}}{\partial y}(l, h(l, t)) + W^{(\mp)}(l, h(l, t)) \mu^{(\mp)}(l, h(l, t)) \right),$ $q_1^{(\mp)}(0, t) = 0, \quad q_1^{(\mp)}(\xi_{\beta}, t) \to 0 \text{ при } \xi_{\beta} \to \mp\infty, \quad t \in [0; T].$

(4.72)

где $q_1^{(\mp)} f(\xi_\beta, t)$ - слагаемые порядка ε^{n+1} в разложении Тейлора функций, входящих в выражение для $L[\beta]$, за исключением тех, которые содержат множители $q_1^{(\mp)}(\xi_\beta, t)$.

Функции $q_0^{(\mp)}(\xi_{\beta}, t), q_1^{(\mp)}(\xi_{\beta}, t)$ имеют экспоненциальные оценки, типа (4.46).

Нижние решение $\alpha(x, y, t, \varepsilon)$ задачи (4.1) построим аналогично верхнему. Зададим кривую $h_{\alpha}(x, t)$, определяющую положение внутреннего переходного слоя для нижнего решения, следующим образом:

$$h_{\alpha}(x,t) = \hat{h}_{n+1}(x,t) + \varepsilon^{n+1}\delta(x,t), \qquad (4.73)$$

где $\delta(x,t)$ – та же функция, что и в (4.61).

В окрестности кривой $h_{\alpha}(x,t)$ перейдем к локальным координатам $(l,r_{\alpha}),$ согласно равенствам

$$x = l - r_{\alpha} \sin \alpha_{\alpha}$$

$$y = h_{\alpha}(l, t) + r_{\alpha} \cos \alpha_{\alpha} = \hat{h}_{n+1}(l, t) + r_{\alpha} \cos \alpha_{\alpha} + \varepsilon^{n+1} \delta(l, t),$$

$$(4.74)$$

где величины $\sin \alpha_{\alpha}$ и $\cos \alpha_{\alpha}$ определяются по аналогии с такими же величинами для верхнего решения.

Нижнее решение задачи (4.1) будем строить отдельно в каждой из областей $\bar{D}_{\alpha}^{(-)} \times [0;T]$ и $\bar{D}_{\alpha}^{(+)} \times [0;T]$, где $\bar{D}_{\alpha}^{(-)} : (x,y) \in \mathbb{R} \times [0;\hat{h}_{\alpha}(x,t)]$ и $\bar{D}_{\alpha}^{(+)} : (x,y) \in \mathbb{R} \times [\hat{h}_{\alpha}(x,t),a]$:

$$\alpha(x, y, t, \varepsilon) = \begin{cases} \alpha^{(-)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\alpha}^{(-)} \times [0, T], \\ \alpha^{(+)}(x, y, t, \varepsilon), & (x, y, t) \in \bar{D}_{\alpha}^{(+)} \times [0, T]. \end{cases}$$
(4.75)

Функции $\alpha^{(-)}(x, y, t, \varepsilon)$ и $\alpha^{(+)}(x, y, t, \varepsilon)$ будем сшивать на кривой $h_{\alpha}(x, t)$, так чтобы функция $\alpha(x, y, t, \varepsilon)$ была непрерывна на этой кривой и при-

нимала значение, равное $\varphi^*(l, h_\alpha(l, t))$:

$$\alpha^{(-)}(l, h_{\alpha}(l, t), t, \varepsilon) = \alpha^{(+)}(l, h_{\alpha}(l, t), t, \varepsilon) = \frac{\varphi^{(-)}(h_{\alpha}(l, t)) + \varphi^{(+)}(h_{\alpha}(l, t))}{2}.$$
(4.76)

Функции $\alpha^{(-)},\,\alpha^{(+)}$ будем строить как модификации сумм (4.59), при k=(n+1):

$$\alpha^{(-)} = U_{n+1}^{(-)}\Big|_{\xi_{\alpha}} - \varepsilon^{n+1} \left(\mu^{(-)}(x,y) + q_{0}^{(-)}(\xi_{\alpha},t) + \varepsilon q_{1}^{(-)}(\xi_{\alpha},t) \right),$$

$$(x,y,t) \in \bar{D}_{\alpha}^{(-)} \times [0,T], \ \xi_{\alpha} \leqslant 0;$$

$$\alpha^{(+)} = U_{n+1}^{(+)}\Big|_{\xi_{\alpha}} - \varepsilon^{n+1} \left(\mu^{(+)}(x,y) + q_{0}^{(+)}(\xi_{\alpha},t) + \varepsilon q_{1}^{(+)}(\xi_{\alpha},t) \right),$$

$$(x,y,t) \in \bar{D}_{\alpha}^{(+)} \times [0,T], \ \xi_{\alpha} \ge 0.$$
(4.77)

Здесь $\mu^{(\mp)}(x, y)$ – те же функции, что и в выражениях для верхнего решения, а $q_0^{(\mp)}(\xi_{\alpha}, t), q_1^{(\mp)}(\xi_{\alpha}, t)$ определяются из таких же задач, что и для верхнего решения, в которых переменная ξ_{β} заменена на переменную $\xi_{\alpha} = \frac{r_{\alpha}}{\varepsilon}.$

4.5.2 Проверка дифференциальных неравенств

Лемма Функции $\beta(x, y, t, \varepsilon), \alpha(x, y, t, \varepsilon)$, определенные выражениями (4.65) и (4.77), удовлетворяют условиям **У1** - **У5**, и тем самым являются верхним и нижним решениями задачи (4.1).

Проверка условия упорядоченности верхнего и нижнего решений проводится точно так же, как в 3 Главе.

Из самого способа построения верхнего и нижнего решений следуют равенства

$$L[\beta^{(\mp)}] = -\varepsilon^{n+1}R + O(\varepsilon^{n+2}), \quad L[\alpha^{(\mp)}] = \varepsilon^{n+1}R + O(\varepsilon^{n+2}),$$

где R > 0 – постоянная в правой части задачи (4.66). Необходимый знак в дифференциальных неравенствах условия **У2** обеспечивается за счет выбора достаточно большой величины R.

Условия **УЗ** оказываются выполненными при выборе достаточно больших положительных величин $R^{(-)}$ и $R^{(+)}$ в начальных условиях задачи (4.66).

Проверим выполнение неравенства **У5** для верхнего решения. Разложим разность

$$\frac{\partial \beta^{(-)}}{\partial n}(l,h_{\beta}(l,t),t,\varepsilon) - \frac{\partial \beta^{(+)}}{\partial n}(l,h_{\beta}(l,t),t,\varepsilon)$$

в ряд по степеням ε с центром $(l, h_0(l, t), t, 0)$. В силу проведенного гладкого сшивания левой и правой частей асимптотического представления решения задачи (4.1) (а именно, в силу равенства (4.52)) коэффициенты при ε^i для i = 0, ..., n равны нулю, а коэффициент при ε^n включает только те слагаемые, которые возникают в результате модификации асимптотики.

$$\frac{\partial \beta^{(-)}}{\partial n}(l,h_{\beta}(l,t),t,\varepsilon) - \frac{\partial \beta^{(+)}}{\partial n}(l,h_{\beta}(l,t),t,\varepsilon) = \\
= \varepsilon^{n}\delta_{t}(l,t)\frac{\partial H_{0}}{\partial h_{t}}(l,h_{0}(l,t),t) + \varepsilon^{n}\delta_{x}(l,t)\frac{\partial H_{0}}{\partial h_{x}}(l,h_{0}(l,t),t) + \varepsilon^{n}\delta(l,t)\frac{\partial H_{0}}{\partial h}(l,h_{0}(l,t),t) + \\
+ \varepsilon^{n}\left(\frac{\partial q_{0}^{(-)}}{\partial \xi_{\beta}}(0,t) - \frac{\partial q_{0}^{(+)}}{\partial \xi_{\beta}}(0,t)\right) + O(\varepsilon^{n+1}), \quad t \in [0;T], \quad l \in \mathbb{R}.$$
(4.78)

Вычислим выражения в скобках в последнем слагаемом, использую

явный вид функций $q_0^{(\pm)}(\xi_{eta},t)$

$$\frac{\partial q_0^{(-)}}{\partial \xi_\beta}(\xi_\beta, t) - \frac{\partial q_0^{(+)}}{\partial \xi_\beta}(\xi_\beta, t) = \frac{\mu^{(-)}}{\sqrt{1 + (h_{0x})^2}}(h_{0x}(l, t)\bar{A}_1^{(-)}(l, h_0(l, t)) - \bar{A}_2^{(-)}(l, h_0(l, t))) + \\
+ \frac{\mu^{(+)}}{\sqrt{1 + (h_{0x})^2}}(h_{0x}(l, t)\bar{A}_1^{(+)}(l, h_0(l, t)) - \bar{A}_2^{(+)}(l, h_0(l, t)))$$
(4.79)

Определим функцию $\delta(x, t)$ как решение начальной задачи $\frac{\partial H_0}{\partial h_t}(x, h_0(x, t), t) \frac{\partial \delta}{\partial t}(x, t) + \frac{\partial H_0}{\partial h_x}(x, h_0(x, t), t) \frac{\partial \delta}{\partial x}(x, t) + \frac{\partial H_0}{\partial h}(x, h_0(x, t), t)\delta(x, t) =$ $= \sigma - F(x, t),$ $x \in \mathbb{R}, \quad t \in (0; T], \quad \delta(x, 0) = \delta^0(x),$ (4.80)

где σ – положительная величина, $\delta^0(x)$ – функция принимающая положительные значения для всех $x \in \mathbb{R}$, а

$$F(x,t) = \mu^{(+)} P\left(\varphi^{(+)}(x,h_0(x,t)),h_0(x,t)\right) - \mu^{(-)} P\left(\varphi^{(-)}(x,h_0(x,t)),h_0(x,t)\right)$$

Последнее выражение получено с использованием явного вида функций $q_0^{(\pm)}(\xi_{\beta},t).$

В силу условия **A1** коэффициент при производной $\frac{\partial \delta}{\partial t}$ в уравнении (4.80) принимает строго положительные значения (см. (4.57)).

Согласно известной теории дифференциальных уравнений в частных производных (см. [54]) задача имеет положительное решение при достаточно больших σ и $\delta^0(x) > 0$ (см. аналогичное доказательство в предыдущей главе).

При указанном выборе функци
и $\delta(x,t)$ равенство (4.78) преобразуется к виду

$$\frac{\partial \beta^{(-)}}{\partial n}(l,h_{\beta}(l,t),t,\varepsilon) - \frac{\partial \beta^{(+)}}{\partial n}(l,h_{\beta}(l,t),t,\varepsilon) = \varepsilon^{n}\sigma + O(\varepsilon^{n+1}).$$

Выражение в правой части положительно при достаточно малых ε , поскольку $\sigma > 0$.

При том же выборе функции $\delta(x,t)$ выполнено неравенство условия **У5** для нижнего решения.

Основным результатом настоящей работы является следующая теорема.

Теорема. При выполнении условий **A1-A5** для любой достаточно гладкой начальной функции $u_{init}(x, y, \varepsilon)$, лежащей между верхним и нижним решениями:

$$\alpha(x, y, 0, \varepsilon) \leqslant u_{init}(x, y, \varepsilon) \leqslant \beta(x, y, 0, \varepsilon),$$

существует решение $u(x, y, t, \varepsilon)$ задачи (4.1), которое при любом $t \in [0; T]$ заключено между этими верхним и нижним решениями, и для которого функция $U_n(x, y, t, \varepsilon)$ является равномерным в области $\bar{D} \times [0; T]$ асимптотическим приближением с точностью $O(\varepsilon^{n+1})$, то есть всюду в области $\bar{D} \times [0; T]$ справедлива оценка

$$|u(x, y, t, \varepsilon) - U_n(x, y, t, \varepsilon)| < C\varepsilon^{n+1}, \quad C > 0.$$

Построенные верхнее и нижнее решения гарантируют существование решения $u(x, y, t, \varepsilon)$ задачи (4.1), удовлетворяющего неравенствам (см. [47]):

$$\alpha(x, y, t, \varepsilon) \leqslant u(x, y, t, \varepsilon) \leqslant \beta(x, y, t, \varepsilon), \quad (x, y, t) \in \bar{D} \times t \in [0, T].$$

Поскольку $\beta(x,y,t,\varepsilon) - \alpha(x,y,t,\varepsilon) = O(\varepsilon^n)$, то

$$u(x, y, t, \varepsilon) = \alpha(x, y, t, \varepsilon) + O(\varepsilon^n) = U_{n+1}(x, y, t, \varepsilon) + O(\varepsilon^n) = U_{n-1}(x, y, t, \varepsilon) + O(\varepsilon^n)$$

заменив в этом равенстве n на n+1 получаем результат теоремы.

4.6 Пример

$$\begin{split} \varepsilon \Delta u &- \frac{\partial u}{\partial t} = V u \frac{\partial u}{\partial x} - u \frac{\partial u}{\partial y} - u \sin x, \\ y &\in (0, 1), \quad x \in \mathbb{R}, \quad t > 0, \\ u(x, 0, t, \varepsilon) &= -\frac{3 + \cos x}{V}, \quad u(x, 1, t, \varepsilon) = \frac{6 - \cos x}{V}, \\ u(x, y, t, \varepsilon) &= u(x + 2\pi, y, t, \varepsilon), \\ u(x, y, 0, \varepsilon) &= \frac{4(\sin x + 1)}{V} \cdot \operatorname{th} \frac{y - 0, 1}{\varepsilon} - \frac{3 + \cos x}{V}, \quad V = const \end{split}$$

Проверим выполнение условий **A1-A4**: рассмотрим вырожденное уравнение

$$Vu\frac{\partial u}{\partial x} - u\frac{\partial u}{\partial y} - u\sin x = 0.$$

Это уравнение в частных производных первого порядка. Запишем соответствующее уравнение характеристик:

$$\frac{dx}{Vu} = -\frac{dy}{u} = \frac{du}{u\sin x}.$$

Первые интегралы уравнения имеют вид:

$$C_1 = x + Vy \quad C_2 = Vu + \cos x.$$

Исключая переменную x, получим

$$C_2 = Vu + \cos(C_1 - Vy). \tag{4.81}$$

Подставим условие при y = 0: $u = -\frac{3 + \cos x}{V} = -\frac{3 + \cos C_1}{V}$

$$C_2 = -3.$$

Функция и определяется из уравнения

$$Vu + \cos x = -3.$$

Окончательно,

$$\varphi^{(-)} = \frac{-3 - \cos x}{V} < 0.$$

Подставим в уравнение (4.81) условие при y = 1 $u = \frac{6 - \cos x}{V} = \frac{6 - \cos(C_1 - V)}{V}$

 $C_2 = 6.$

Функция и определяется из уравнения

$$Vu + \cos x = 6,$$

тогда

$$\varphi^{(+)} = \frac{6 - \cos x}{V} > 0.$$

Условие $\varphi^{(-)} < \varphi^{(+)}$ выполнено, поскольку

$$\varphi^{(-)}(x,y) < 0, (x,y) \in \overline{D}; \varphi^{(+)}(x,y) > 0, (x,y) \in \overline{D}.$$
 (4.82)

Поскольку $A_2(u, x, y) = -u$, то Условие **A2** так же выполнено в силу неравенства (4.82). Нулевое приближение кривой перехода определяется из уравнения $H_0(l, h(l, t), t) = 0$ (см. (4.54)), где

$$H_0(l, h(l, t), t) = \frac{1}{\sqrt{1 + h_x^2(l, t)}} \left(h_t(l, t)(\varphi^{(+)}(l, t) - \varphi^{(-)}(l, t)) - \frac{Vh_x(l, t) + 1}{2} \left((\varphi^{(+)}(l, t))^2 - (\varphi^{(-)}(l, t))^2 \right) \right)$$
(4.83)

проведя преобразования, получим:

$$\frac{\partial h_0}{\partial t} \left(\varphi^{(+)}(x, h_0) - \varphi^{(-)}(x, h_0) \right) = \int_{\varphi^{(-)}(x, h_0)}^{\varphi^{(+)}(x, h_0)} \left(V u \frac{\partial h_0}{\partial x} + u \right) du.$$
Вычисляя интеграл в правой части получаем

$$\frac{\partial h_0}{\partial t} \left(\varphi^{(+)}(x, h_0) - \varphi^{(-)}(x, h_0) \right) = \left(V \frac{\partial h_0}{\partial x} + 1 \right) \left. \frac{u^2}{2} \right|_{\varphi^{(-)}(x, h_0)}^{\varphi^{(+)}(x, h_0)}$$

После преобразований получаем уравнение в частных производных

$$h_t = \frac{Vh_x + 1}{2} \left(\varphi^{(+)} + \varphi^{(-)}\right), \qquad (4.84)$$

ИЛИ

$$\frac{V}{3-2\cos x}\frac{\partial h_0}{\partial t} - \frac{V}{2}\frac{\partial h_0}{\partial x} = \frac{1}{2}$$

Выпишем уравнение характеристик:

$$\frac{3-2\cos x}{V}dt = -\frac{2}{V}dx = 2dh_0$$

Один из первых интегралов имеет вид:

$$C_1 = x + Vh_0$$

Еще один первый интеграл определим из уравнения

$$2Vdh_0 = (3 - 2\cos(C_1 - Vh_0))dt$$

Разделим переменные, получим

$$\frac{2dh_0}{3 - 2\cos(C_1 - Vh_0)} = \frac{dt}{V}$$

Интегрируя, получим

$$\frac{2}{\sqrt{5}}\operatorname{arctg}\left(\sqrt{5}\cdot\operatorname{tg}\frac{C_1-Vh_0}{2}\right) = -\frac{1}{2}t + C_2 \tag{4.85}$$

Найдем начальное значение функции h_0 из условия (4.17)

$$\frac{4(\sin x + 1)}{V} \cdot \operatorname{th} \frac{y - 0, 1}{\varepsilon} - \frac{3 + \cos x}{V} = \frac{3 - 2\cos x}{2V}$$

откуда

$$h_{00} = \varepsilon \cdot \operatorname{arcth}\left(\frac{9}{8(\sin x + 1)}\right) + 0, 1$$

Подставляя в (4.85) условие при t = 0 $h_0 = h_{00}$

$$C_2 = \frac{2}{\sqrt{5}} \operatorname{arctg}\left(\sqrt{5} \cdot \operatorname{tg}\frac{C_1 - Vh_{00}}{2}\right)$$

Функция h_0 является решением уравнения

$$\frac{1}{2}t + \frac{2}{\sqrt{5}}\operatorname{arctg}\left(\sqrt{5}\cdot\operatorname{tg}\frac{x}{2}\right) = \frac{2}{\sqrt{5}}\operatorname{arctg}\left(\sqrt{5}\cdot\operatorname{tg}\frac{x+Vh_0-Vh_{00}}{2}\right)$$

Можно получить h_0 в явном виде:

$$h_0 = \frac{2}{V} \operatorname{arctg}\left(\frac{1}{\sqrt{5}} \cdot \operatorname{tg}\left(\frac{\sqrt{5}}{4}t + \operatorname{arctg}\left(\sqrt{5} \cdot \operatorname{tg}\frac{x}{2}\right)\right)\right) + h_{00} - \frac{x}{V}$$

Функция \tilde{u} определяется из уравнения

$$\frac{\partial \tilde{u}}{\partial \xi} = \frac{1}{\sqrt{1 + h_x^2(l, t)}} \left(h_t(l, t)(\tilde{u} - \varphi^{(\mp)}(l, t)) - \frac{Vh_x(l, t) + 1}{2} \left(\tilde{u}^2 - (\varphi^{(\mp)}(l, t))^2 \right) \right)$$
(4.86)

Для тех кривых h(x,t), для которых выполнено неравенство

$$h_t - (Vh_x + 1)\varphi^{(+)}(x, y) < 0$$
(4.87)

существует решение уравнения (4.86) при $\xi \ge 0$, и при этом $\lim_{\xi \to +\infty} \tilde{u}(\xi, t) = \varphi^{(+)}(l, t).$

Для тех кривых h(x,t), для которых

$$h_t - (Vh_x + 1)\varphi^{(-)}(x, y) > 0$$
(4.88)

существует решение уравнения (4.86) при $\xi \leq 0$, и при этом $\lim_{\xi \to -\infty} \tilde{u}(\xi, t) = \varphi^{(-)}(l, t).$

Заметим, что для криво
й $h_0(x,t)$ выполнены неравенства (4.87) и (4.88): Действительно,
 h_{0x}

$$h_{0x} = \frac{1}{V} \frac{5}{4\cos^2\left(\frac{\sqrt{5}}{4}t + \operatorname{arctg}\left(\sqrt{5} \cdot \operatorname{tg}\frac{x}{2}\right)\right) + 1} \cdot \frac{1}{1 + 4\sin^2\frac{x}{2}} - \frac{1}{V}, \quad (4.89)$$

$$h_{0t} = (Vh_{0x} + 1)\varphi^{(+)}(x, y) = \frac{Vh_{0x} + 1}{2}(\varphi^{(-)} - \varphi^{(+)}) < 0,$$

$$h_{0t} = (Vh_{0x} + 1)\varphi^{(-)}(x, y) = \frac{Vh_{0x} + 1}{2}(\varphi^{(-)} - \varphi^{(+)}) > 0$$

(здесь было использовано уравнение кривой $h_0(x,t)$).

Разделим переменные в уравнении (4.86):

$$\frac{d\tilde{u}}{\left(\tilde{u}-\varphi^{(\mp)}\right)\left(h_t-\frac{Vh_x+1}{2}\left(\tilde{u}+\varphi^{(\mp)}\right)\right)} = \frac{d\xi}{\sqrt{1+h_x^2}}$$

Решая это уравнение с условием $\tilde{u}(0, l, h(l, t), t) = \frac{\varphi^{(+)} + \varphi^{(-)}}{2} = \frac{3 - 2\cos l}{V}$:

$$\tilde{u} = \frac{C^{(\mp)} \exp\left(\frac{h_t - \varphi^{(\mp)}(Vh_x + 1)}{\sqrt{1 + h_x^2}}\xi\right) \left(\frac{2h_t}{Vh_x + 1} - \varphi^{(\mp)}\right) + \varphi^{(\mp)}}{1 + C^{(\mp)} \exp\left(\frac{h_t - \varphi^{(\mp)}(Vh_x + 1)}{\sqrt{1 + h_x^2}}\xi\right)},$$

здесь индекс (—) соответствует решению при
 $\xi\leqslant 0,$ а индекс (+) соответствует решению пр
и $\xi\geqslant 0,$ а

$$C^{(\mp)} = \frac{\varphi^{(\pm)} - \varphi^{(\mp)}}{\frac{4h_t}{Vh_x + 1} - \varphi^{(\pm)} - 3\varphi^{(\mp)}}$$

Первый порядок.

Регулярная часть:

$$V\varphi^{(\mp)}\frac{\partial\bar{u}_{1}^{(\mp)}}{\partial x}-\varphi^{(\mp)}\frac{\partial\bar{u}_{1}^{(\mp)}}{\partial y}+\left(V\frac{\partial\varphi^{(\mp)}}{\partial x}-\frac{\partial\varphi^{(\mp)}}{\partial y}-\sin x\right)\bar{u}_{1}^{(\mp)}=\frac{\partial^{2}\varphi^{(\mp)}}{\partial x^{2}}+\frac{\partial^{2}\varphi^{(\mp)}}{\partial y^{2}}$$

В области $\bar{D}^{(-)},$ учитывая явные выражения для $\varphi^{(-)},$ получаем

$$(-3 - \cos x)\frac{\partial \bar{u}_1^{(-)}}{\partial x} - \frac{-3 - \cos x}{V}\frac{\partial \bar{u}_1^{(-)}}{\partial y} = \frac{\cos x}{V}$$
(4.90)

Уравнение характеристики:

$$\frac{dx}{-3 - \cos x} = -\frac{V dy}{-3 - \cos x} = \frac{V}{\cos x} d\bar{u}_1^{(-)}$$

Один из первых интегралов уравнения (4.90) дается выражением

$$C_1 = x + Vy$$

Еще один первый интеграл определяется из уравнений

$$\frac{-\cos(C_1 - Vy)}{-3 - \cos(C_1 - Vy)} dy = d\bar{u}_1^{(-)}$$

Интегрируя, получаем в области $\bar{D}^{(-)}$

$$\frac{C_1}{V} - y - \frac{3}{\sqrt{2}V} \operatorname{arctg}\left(\frac{1}{\sqrt{2}} \cdot \operatorname{tg}\frac{C_1 - Vy}{2}\right) = -\bar{u}_1^{(-)} + C_2$$

Подставим условие $\bar{u}_{1}^{(-)}(x,0) = 0$

$$C_2 = \frac{C_1}{V} - \frac{3}{\sqrt{2}V} \operatorname{arctg}\left(\frac{1}{\sqrt{2}} \cdot \operatorname{tg}\frac{C_1}{2}\right)$$

Функция $\bar{u}_1^{(-)}(x,y)$ определяется как

$$\bar{u}_1^{(-)}(x,y) = y + \frac{3}{\sqrt{2}V} \operatorname{arctg}\left(\frac{1}{\sqrt{2}} \cdot \operatorname{tg}\frac{x}{2}\right) - \frac{3}{\sqrt{2}V} \operatorname{arctg}\left(\frac{1}{\sqrt{2}} \cdot \operatorname{tg}\frac{x+Vy}{2}\right)$$

В области $\bar{D}^{(+)}$, получаем

$$(6 - \cos x)\frac{\partial \bar{u}_1^{(+)}}{\partial x} - \frac{6 - \cos x}{V}\frac{\partial \bar{u}_1^{(+)}}{\partial y} = \frac{\cos x}{V}$$
(4.91)

Уравнение характеристики:

$$\frac{dx}{6 - \cos x} = -\frac{V dy}{6 - \cos x} = \frac{V}{\cos x} d\bar{u}_1^{(+)}$$

Одним из первых интегралов уравнения (4.91) дается выражением

$$C_1 = x + Vy$$

Еще один первый интеграл определяется из уравнений

$$\frac{-\cos(C_1 - Vy)}{6 - \cos(C_1 - Vy)} dy = d\bar{u}_1^{(+)}$$

Интегрируя, получаем в области $\bar{D}^{(+)}$

$$-\frac{C_1}{V} + y - \frac{12}{\sqrt{35}V} \operatorname{arctg}\left(\frac{\sqrt{35}}{5} \cdot \operatorname{tg}\frac{C_1 - Vy}{2}\right) = \bar{u}_1^{(+)} + C_2$$

Подставим условие $\bar{u}_{1}^{(+)}(x,0) = 0$

$$C_2 = -\frac{C_1}{V} - \frac{12}{\sqrt{35}V} \operatorname{arctg}\left(\frac{\sqrt{35}}{5} \cdot \operatorname{tg}\frac{C_1}{2}\right)$$

Функция $\bar{u}_1^{(+)}(x,y)$ определяется как

$$\bar{u}_{1}^{(+)}(x,y) = y - \frac{12}{\sqrt{35}V} \operatorname{arctg}\left(\frac{\sqrt{35}}{5} \cdot \operatorname{tg}\frac{x}{2}\right) + \frac{12}{\sqrt{35}V} \operatorname{arctg}\left(\frac{\sqrt{35}}{5} \cdot \operatorname{tg}\frac{x+Vy}{2}\right)$$

Функции $Q_1(\xi, l, h(l, t), t)$ определяются из выражения (4.50), где

$$f_{1}^{(\mp)}(\xi,l,t) = \frac{\partial Q_{0}^{(\mp)}}{\partial t}(\xi,l,h(l,t),t) + \frac{h_{xx}}{(1+h_{x}^{2})^{\frac{3}{2}}}\Phi^{(\mp)}(\xi,h(l,t)) + \frac{1}{1+h_{x}^{2}}(h_{t}h_{x}+(V-h_{x})\tilde{u}(\xi,h(l,t)))\frac{\partial Q_{0}^{(\mp)}}{\partial l}(\xi,l,h(l,t),t) + \frac{Vh_{x}+1}{\sqrt{1+h_{0x}^{2}}} \times \left(\bar{u}_{1}^{(\mp)}(l,h(l,t)) - \frac{h_{x}}{\sqrt{1+h_{x}^{2}}}\frac{\partial \varphi^{(\mp)}}{\partial x}(l,h(l,t))\xi + \right)\Phi^{(\mp)}(\xi,h(l,t)),$$

здесь $Q_0^{(+)}(\xi, l, h(l, t), t) = \tilde{u}(\xi, h(l, t)) - \varphi^{(\mp)}(l, h(l, t)).$

Подставим в уравнение (4.56) для функции h_1 выражения

$$\begin{aligned} \frac{\partial H_0}{\partial h_t} &= \frac{\varphi^{(+)} - \varphi^{(-)}}{\sqrt{1 + h_{0x}^2}} = \frac{9}{\sqrt{1 + h_{0x}^2}} \\ \frac{\partial H_0}{\partial h_x} &= -\frac{1}{\sqrt{1 + h_{0x}^2}} V \frac{(\varphi^{(+)})^2 - (\varphi^{(-)})^2}{2} = \frac{-27 + 18\cos x}{2V\sqrt{1 + h_{0x}^2}} \\ \frac{\partial H_0}{\partial h} &= 0, \end{aligned}$$

где h_{0x} определена выражением (4.89).

Функция $h_1(x,t)$ определяется из уравнения

$$9\frac{\partial h_1}{\partial t} - \frac{27 - 18\cos x}{2V}\frac{\partial h_1}{\partial x} = G_1(x, t),$$

с условием $h_1(x,0) = 0$, где

$$G_1(x,t) = \sqrt{1 + h_{0x}^2} \left(\frac{\partial Q_1^{(+)}}{\partial \xi} (0, x, h_{0x}(x,t), t) - \frac{\partial Q_1^{(-)}}{\partial \xi} (0, x, h_{0x}(x,t), t) \right),$$

$$\begin{split} \frac{\partial Q_1^{(\mp)}}{\partial \xi}(0,x,h(x,t),t) &= \int_{\mp\infty}^0 \frac{\partial \tilde{u}}{\partial t}(\xi,h(l,t))d\xi + \\ &+ \left(\varphi^{(+)}(x,h(x,t)) - \varphi^{(-)}(x,h(x,t))\right) \cdot \frac{h_{xx}}{(1+h_x^2)^{\frac{3}{2}}} + \\ &+ \frac{h_t h_x}{1+h_x^2} \int_{\mp\infty}^0 \frac{\partial Q_0^{(\mp)}}{\partial l}(\xi,x,h(x,t),t)d\xi + \\ &+ \frac{V-h_x}{1+h_x^2} \int_{\mp\infty}^0 \tilde{u}(\xi,h(l,t)) \frac{\partial Q_0^{(\mp)}}{\partial l}(\xi,x,h(x,t),t)d\xi - \\ &- \frac{1}{\sqrt{1+h_x^2}} \left(h_t - (Vh_x+1)\varphi^{(\mp)}(x,h(x,t))\bar{u}_1^{(\mp)}(x,h(x,t))\right) - \\ &- \frac{h_x(Vh_x+1)}{1+h_x^2} \frac{\partial \varphi^{(\mp)}}{\partial x}(x,h(x,t)) \int_{\mp\infty}^0 \xi \Phi^{(\mp)}(\xi,h(l,t))d\xi. \end{split}$$

Заключение

В диссертационной работе рассмотрены начально-краевые задачи с решениями в виде движущегося фронта для уравнений типа реакциядиффузия-адвекция на отрезке и в полосе и для уравнения решений диффузия в полосе. Получены асимптотические приближения решений с внутренним прееходным слоем, доказано их существование. Важным результатом работы является получение асимптотического приближения локализации фронта в каждый момент времени. Эти результаты могут быть использованы для разработки новых моделей в теории горения, акустике и теории упругости. Также результаты работы являются важными в теории асимптотических методов, поскольку содержат вид дифференциальных операторов, записанных в локальных координатах и определяющих вид функций, описывающих решение в области локализации фронтов.

Список литературы

- Применение теории контрастных структур для описания поля скорости ветра в пространственно-неоднородном растительном покрове / Н. Т. Левашова, Ю. В. Мухартова, М. А. Давыдова и др. // Вестник Московского университета. Серия 3: Физика, астрономия. - 2015. — № 3. — С. 3–10.
- Популяционная модель урбоэкосистем в представлениях активных сред / А. Э. Сидорова, Н. Т. Левашова, А. А. Мельникова, Л. В. Яковенко // Биофизика. — 2015. — Т. 60, № 3. — С. 574–582.
- Левашова Н.Т., Николаева О.А., Пашкин А.Д. Моделирование распределения температуры на границе раздела вода-воздух с использованием теории контрастных структур // Вестник Московского университета. Серия 3: Физика, астрономия. 2015. № 5. С. 12–16.
- Левашова Н.Т., Мухартова Ю.В., Ольчев А.В. Трехмерное моделирование турбулентного переноса в приземном слое атмосферы с применением теории контрастных структур // Компьютерные исследования и моделирование. — 2016. — Т. 8, № 2. — С. 355–367.

- Модель структурообразования урбоэкосистем как процесс автоволновой самоорганизации в активных средах / А. Э. Сидорова, Н. Т. Левашова, А. А. Мельникова, А. Е. Семина // Математическая биология и биоинформатика. — 2017. — Т. 12, № 1. — С. 186–197.
- Давыдова М.А., Захарова С.А., Левашова Н.Т. Об одной модельной задаче для уравнения реакция-диффузия-адвекция // Журнал вычислительной математики и математической физики. — 2017. — Т. 57, № 9. — С. 1548–1559.
- 7. Н.Е. Грачев, А.В. Дмитриев, Д.С. Сенин, В.Т. Волков, Н.Н. Нефедов, "Моделирование динамики фронта внутрипластового горения", Выч. мет. программирование, 11:4 (2010), 306–312.
- 8. В.Т. Волков, Н.Н. Нефедов, Н.Е. Грачев, Д.С. Сенин, "Оценка параметров фронта внутрипластового горения при закачке воздуха в нефтяной пласт", Нефтяное хозяйство, 2010, № 4, 93–96.
- 9. В.Т. Волков, Н.Н. Нефедов, Н.Е. Грачев, "Численно-асимптотическое исследование модели движения фронтов в задачах нефтедобычи", Материалы международной научно-практической конференции «Многомасштабное моделирование структур и нанотехнологии», ТГПУ им. Л.Н.Толстого, Тула, 2011, 115–116.
- М.П. Белянин, А.Б. Васильева, "О внутреннем переходном слое в одной задаче теории полупроводниковых плёнок", Ж. вычисл. матем. и матем. физ., 28:2 (1988), 224–236; U.S.S.R. Comput. Math. Math. Phys., 28:1 (1988), 145–153.

- М.П. Белянин, А.Б. Васильева, А.В. Воронов, А.В. Тихонравов,
 "Об асимптотическом подходе к задаче синтеза полупроводникового прибора", Матем. моделирование, 1:9 (1989), 43–63.
- В.Т. Волков, С.В. Крючков, И.А. Обухов, С.В. Румянцев, "Численноасимптотический анализ переходных процессов в полупроводниках", Ж. вычисл. матем. и матем. физ., 29:8 (1989), 1159–1167; U.S.S.R. Comput. Math. Math. Phys., 29:4 (1989), 132–138.
- Л.В. Калачев, И.А. Обухов, "Приближенное решение уравнения Пуассона в модели двумерной полупроводниковой структуры", Вестник Московского Университета, 30:3 (1989), 63–68.
- 14. Л.В. Калачев, С.В. Крючков, И.А. Обухов, "Асимптотический анализ решения уравнения Пуассона в полупроводниках", Матем. моделирование, 1:9 (1989), 129–140.
- Michael A Liberman, Mikhail F Ivanov, Oleg E Peil1, Damir M Valiev and Lars-Erik Eriksson. Numerical studies of curved stationary flames in wide tubes. Combust. Theory Modelling 7 (2003) 653–676
- 16. Rudenko O. V. Inhomogeneous burgers equation with modular nonlinearity: Excitation and evolution of high-intensity waves // Doklady Mathematics. - 2017. - Vol. 95, no. 3. - P. 291–294.
- Руденко О.В. Неоднородное уравнение бюргерса с модульной нелинейностью: возбуждение и эволюция интенсивных волн // Доклады Академии наук. — 2017. — Т. 474, № 6. — С. 671–674.

- Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высш. школа, 1990.
- Nefedov N.N. An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability // Differential Equations. — 2000. — Vol. 36, no. 2. — P. 298–305.
- 20. Бутузов В.Ф., Нефедов Н.Н., Шнайдер К.Р. О формировании и распространении резких переходных слоев в параболических задачах // Вестник Московского университета. Серия 3: Физика, астрономия. 2005. № 1. С. 9–13.
- Nefedov N.N. Spike-type contrast structures in reaction-diffusion systems
 // Journal of Mathematical Sciences. 2008. Vol. 150, no. 6. P.
 2540–2549.
- Васильева А.Б., Бутузов В.Ф., Нефедов Н.Н. Сингулярно возмущенные задачи с пограничными и внутренними слоями // Труды Математического института им.В.А.Стеклова РАН. — 2010. — № 268. — С. 268–283.
- Нефедов Н.Н., Давыдова М.А. Периодические контрастные структуры в системах типа реакция-диффузия-адвекция // Дифференциальные уравнения. — 2010. — Т. 2010, № 46. — С. 1300–1312.
- 24. *Нефедов Н.Н.* Метод дифференциальных неравенств для некоторых классов нелинейных сингулярно возмущенных задач с внутренними

слоями. //Дифференц. уравнения. 1995. Т.31. N7. С. 1132—1139.

- 25. В.Т. Волков, Н.Н. Нефедов, "Развитие асимптотического метода дифференциальных неравенств для исследования периодических контрастных структур в уравнениях реакция-диффузия", Ж. вычисл. матем. и матем. физ., 46:4 (2006), 615–623; Comput. Math. Math. Phys., 46:4 (2006), 585–593.
- H.H. Нефедов, Ю. В. Божсевольнов. Движение фронта в параболической задаче реакция-диффузия. Ж. Выч. Мат. и Мат. Физ., 2010, том 50, N2, сс. 276–285; Comput. Math. Math. Phys., 50:2 (2010), 264–273.
- 27. Volkov V.T., Lukyanenko D.V., Nefedov N.N. Asymptotic-numerical method for the location and dynamics of internal layers in singular perturbed parabolic problems // Lecture Notes in Computer Science. — 2017. — Vol. 10187. — P. 721–729.
- 28. Lukyanenko D.V., Nefedov N.N., Nikulin E., Volkov V.T. Use of asymptotics for new dynamic adapted mesh construction for periodic solutions with an interior layer of reaction-diffusion-advection equations // Lecture Notes in Computer Science. — 2017. — Vol. 10187. — P. 107–118.
- 29. Lukyanenko D.V., Volkov V.T., Nefedov N.N. et al. Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes // Моделирование и анализ информационных систем. — 2016. — Vol. 23, no. 3. — Р. 334–341.

- 30. Lukyanenko D.V., Volkov V.T., Nefedov N.N. Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation // Моделирование и анализ информационных систем. — 2017. — Vol. 24, no. 3. — P. 322–338.
- 31. Lukyanenko D.V., Shishlenin M. A., Volkov V.T. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusionadvection equation with the final time data // Communications in Nonlinear Science and Numerical Simulation. — 2018. — Vol. 54. — P. 233–247.
- 32. Nefedov N.N., Yagremtsev A. On extension of asymptotic comparison principle for time periodic reaction-diffusion-advection systems with boundary and internal layers // Lecture Notes in Computer Science. — 2015. — Vol. 9045. — P. 62–72.
- 33. А.Б. Васильева, "Контрастные структуры типа ступеньки для сингулярно возмущенного квазилинейного дифференциального уравнения второго порядка", Ж. вычисл. матем. и матем. физ., 35:4 (1995), 520–531; Comput. Math. Math. Phys., 35:4 (1995), 411–419.
- 34. Васильева А.Б., Давыдова М.А. О контрастной структуре типа ступеньки для одного класса нелинейных сингулярно возмущенных уравнений второго порядка // Журнал вычислительной математики и математической физики. — 1998. — Т. 38, № 6. — С. 938–947.
- 35. Нефедов Н.Н., Давыдова М.А. Контрастные структуры в многомерных сингулярно возмущенных задачах реакция-диффузия-адвекция // Дифференциальные уравнения. — 2012. — Т. 48, № 5. — С. 738–748.

- 36. Нефедов Н.Н., Давыдова М.А. Контрастные структуры в сингулярно возмущенных квазилинейных уравнениях реакция-диффузия-адвекция // Дифференциальные уравнения. — 2013. — Т. 49, № 6. — С. 715–733.
- 37. Нефедов Н.Н., Давыдова М.А. Решения с пограничными и внутренними переходными слоями в многомерных сингулярно возмущенных задачах реакция-диффузия-адвекция // Учен. зап. физ. фак-та Моск. ун-та. — 2016. — № 3. — С. 163106–1–163106–3.
- 38. Давыдова М.А., Нефедов Н.Н. Существование и устойчивость контрастных структур в многомерных задачах реакция-диффузия-адвекция в случае сбалансированной нелинейности // Моделирование и анализ информационных систем. — 2017. — Т. 24, № 1. — С. 31–38.
- 39. Davydova M.A., Nefedov N.N. Existence and stability of contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems // Lecture Notes in Computer Science. - 2017. - Vol. 10187. - P. 277-285.
- Volpert A.I., Volpert V.A., Volpert V.A., Traveling wave solutions of parabolic systems, American Mathematical Soc., 1994.
- Carlo Mantegazza, Lecture Notes on Mean Curvature Flow, Progress in Mathematics, 290, Basel: Birkhauser/Springer, 2011.
- X.-F. Chen "Generation and propagation of interfaces for reactiondiffusion equations Journal of Differential Equations, 96 (1992), 116– 141.

- 43. Nefedov N.N., Nikulin E.I. Existence and stability of periodic solutions for reaction-diffusion equations in the two-dimensional case // Модели-рование и анализ информационных систем. 2016. Vol. 23, no. 3. Р. 342– 348.
- 44. Левашова Н.Т., Нефедов Н.Н., Ягремцев А.В. Контрастные структуры в уравнениях реакция–диффузия–адвекция в случае сбалансированной адвекции // Журнал вычислительной математики и математической физики. — 2013. — Т. 53, № 3. — С. 35–45.
- 45. Nefedov N.N., Nikulin E.I. Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem // Russian Journal of Mathematical Physics. — 2015. — Vol. 22, no. 2. — P. 215–226.
- 46. Нефедов Н.Н., Никулин Е.И. Существование и устойчивость периодических контрастных структур в задаче реакция-адвекция-диффузия в случае сбалансированной нелинейности // Дифференциальные уравнения. — 2017. — Т. 53, № 4. — С. 524–537.
- 47. C.V. Pao, "Nonlinear Parabolic and Elliptic Equations", 1992, 777.
- 48. Hess P., "Periodic-Parabolic Boundary Value Problems and Positivity",
 Pitman Research Notes in Mathematics Series, Longman, Harlow, 1991,
 160.
- 49. Sattinger D.H., "Monotone methods in nonlinear elliptic and parabolic boundary value problems", Indiana Univ. Math. J., 21:11 (1972), 979–-1001.

- 50. Fife Paul C., McLeod J.B. The Approach of Solutions of Nonlinear Diffusion. Equations to Travelling Front Solutions // Arch. ration. mech. anal. 1977. V. 65. № 4. P. 335–361
- 51. Нефедов Н.Н. Общая схема асимптотического исследования устойчивых контрастных структур. //Нелинейная динамика. 2010. Т.6. N1. C.181–186.
- 52. Н.Т. Левашова, Е.С. Петровская Применение метода дифференциальных неравенств для обоснования асимптотики решения системы двух обыкновенных дифференциальных уравнений в виде контрастной структуры типа ступеньки.//УЗФФ // Ученые записки физического факультета Московского Университета. — 2014. — Т. 1. — С. 143101–1–143101–13.
- 53. А.Б. Васильева, Г.Н. Медведев, Н.А. Тихонов, Т.А. Уразгильдина, "Дифференциальные и интегральные уравнения, вариационное исчисле- ние в примерах и задачах", 2-е изд., испр., ФИЗМАТЛИТ, М., 2005, 432.
- 54. Н.Н. Нефедов, В.Ю. Попов, В.Т. Волков, Обыкновенные дифференциальные уравнения. Курс лекций, Физический факультет МГУ им.
 М.В. Ломоносова, М, 2016, 200 с.
- 55. Nefedov N.N., "Comparison principle for reaction-diffusion-advection problems with boundary and internal layers", Lecture Notes in Computer Science, 8236 (2013), 62–72.

- 56. Васильева А.Б., Давыдова М.А. Сингулярно возмущенное уравнение второго порядка с малыми параметрами при первой и второй производных // Журнал вычислительной математики и математической физики. — 1999. — Т. 39, № 9. — С. 1504–1512.
- 57. Давыдова М.А., Левашова Н.Т., Захарова С.А. Асимптотический анализ в задаче моделирования процесса переноса газовой примеси в приповерхностном слое атмосферы // Моделирование и анализ информационных систем. — 2016. — Т. 23, № 3. — С. 283–290.
- 58. *Н.Т. Левашова, Н.Н. Нефёдов, А.В. Ягремцев* Контрастные структуры в уравнениях реакция-диффузия-адвекция в случае сбалансированной адвекции. Журнал вычислительной математики и математической физики, 2013, том 53, № 3, с. 365-376.
- 59. Васильева А.Б., Бутузов В.Ф., Нефедов Н.Н. Контрастные структуры в сингулярно возмущенных задачах, Фундаментальная и прикладная математика 1998, т.4, N3, с.799-851.
- Васильева А.Б., Бутузов В.Ф., Нефедов Н.Н. Асимптотическая теория контрастных структур, //Автоматика и телемеханика, 1997, N7, С. 4–32, Наука, Москва
- Бутузов В.Ф. Контрастные структуры типа всплеска в параболической системе двух сингулярно возмущенных уравнений. //Ж. вычисл. матем. и матем. физ. 1997. Т. 37. N4. C. 415–428.
- 62. Волков В.Т., Грачёв Н.Е., Нефёдов Н.Н., Николаев А.Н О форми-

ровании резких переходных слоев в двумерных моделях реакция– диффузия // Журнал вычислительной математики и математической физики. — 2007. — Т. 47, N8. — С. 1356–1364.

- 63. Fife P.C., Hsiao L. The Generation and Propagation of Internal Layers. Nonlinear Anal. Theory Methods Appl., 1998, 12 (1), p.19–41
- 64. Фэй П.Я., Мин К.Н., Левашова Н.Т., Николаева О.А. Внутренние слои для сингулярно возмущённого квазилинейного дифференциального уравнения второго порядка с разрывной правой частью // Дифференциальные уравнения. 2017. Т. 53, № 12. С. 1616–1626.