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Abstract
It is shown experimentally that the multiwall carbon nanotubes 
(MWNTs) suspension in N,N-dimethylformamide (DMF) irreversibly 
bleaches in a wide spectrum range under a pulsed nanosecond 
laser radiation at the wavelength of 532 nm. According to the 
data of the transmission electron microscopy (TEM), the Raman 
spectroscopy and the reflection infrared spectrometry the 
bleaching is shown to be caused by MWNTs degradation, with 
the formation of new chemical bonds which result from the laser-
induced chemical reactions between MWNTs and DMF molecules.
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carbon  (OLC) suspension in N,N-dimethylformamide  (DMF) 
to irreversibly bleach under high light fluence at the wavelength 
of 1064  nm, with the bleached fraction possessing pronounced 
diamagnetic properties  [19]. We explained it by the laser-induced 
chemical reactions between OLC and DMF  (graphene shells 
hydrogenation with formation of non-conducting fragments 
resembling condensed aromatic compounds) resulting in the 
transparent liquid formation. The photo-induced reactions between 
fullerenes and H‑donor molecules in presence of photosensitizers 
were previously observed [20]. Besides, the reaction of SWNTs with 
hydrogen gas in the temperature range of 400‑550°C and under the 
hydrogen pressure of 50 bar was reported [21]. The photo-induced 
chemical reactions of SWNTs with oxygen were also observed [22]. In 
that study it is shown that laser radiation causes pronounced bleaching 
and decay of photoluminescence from SWNTs on either glass or mica 
substrates. To put it another way and to take into account the fact that 
MWNTs can absorb the electromagnetic radiation in the wide wave 
band  [23], it is logical to expect similar phenomena such as in the 
suspension of OLC in DMF to occur in the suspension of MWNTs in 
DMF under the laser radiation effect. In this paper we report on the 
study of the laser radiation interaction with this suspension.

Experimental Section
The MWNTs obtained by CVD technology in the reaction of the 

ethylene thermal catalytic decomposition on the Fe/Co catalysts were 
used in experiments. The MWNTs average diameter and length were 
7-9 nm and 10-20 µm respectively (Figure 1a and 1b). The suspension 
of tubes in DMF with the MWNTs concentration of 0.015  g/l was 
dispersed ultrasonically (22 kHz, 300 W). This suspension was stable 
for 24 hours.

The optical scheme of this experiment is presented in Figure 2a. 
Laser beam of the YAG:Nd3+‑laser   with a frequency converter into 
second harmonic (the wavelength of 532 nm, the pulse duration of 
17 ns) [24] passed through opened shutter (1) was focused by lens 
(2), with a focal distance of 100  mm, on an optical cuvette filled 
with the suspension under study (3). At closed shutter  (1), the 
region of interaction between laser radiation and suspension (3) was 
photographed by photocamera (4). The diameter of the focused beam 
waist was 70 µm and the thickness of the cuvette was 1 mm.

To measure the transmission spectrum of the initial and bleached 
suspensions, the suspensions samples were placed in a 1.01-mm 
quartz cuvette. The measurements were made by the PerkinElmer 
LAMBDA 650 double-beam UV/Vis spectrophotometer.

The transmission electron microscope JEM 2012 (JEOL, Japan) 
with the accelerating voltage of 200  kV was used to obtain high 
resolution TEM images of the MWNTs and particles of the bleached 
suspension. The lattice plane resolution was 0.14 nm and the point 
resolution was 0.194 nm. 

The comparative analysis of the products contained in the 
initial and bleached suspensions has been carried out by the Raman 
spectrometer (Labram HR800, Horiba) at the wavelength of 632.8 nm 
and by the infrared reflectance spectrometer (FTIR 8000, Shimadzu). 
Thereto the films containing the solid fractions of the suspensions 

Introduction
Scientists have recently been studying light and nanocarbon 

materials interaction to acquire new knowledge to develop radically 
new devices for photonics and optoelectronics, e.g. graphene mode-
locked laser [1] and passive laser switches based on suspensions 
and films of single-wall carbon nanotubes  (SWNTs), permitting to 
obtain laser picosecond and subpicosecond pulses in the infrared 
region  [2‑8]. One can also cite the study of the laser radiation 
interaction with nanographite films that resulted in creation of a 
quick-response photodetector which can operate in a wide spectral 
range [9] at high temeperatures  [10]. A fundamentally new type of 
a polarization analyzer of laser radiation on the basis of this study 
has been designed and made [11], the principle of operation being 
the recording of the polarization-dependent surface photocurrents in 
nanographite films.

The study of laser radiation interaction with nanocarbon materials 
is also of interest from the point of view of production of new 
organic materials possessing different magnetic properties  [12,13], 
magnetooptical light modulators developing  [13], improvement of 
optical limiters based on nanocarbon materials [14-17]. Research in 
this field is also useful as an approach to locally engineer the band gap 
and defect densities along the SWNTs [18].

We have recently shown the semitransparent onion-like 
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were produced on a quartz substrate by a simple exsiccation of a 
suspension layer deposited on the substrate.

Results and Discussion
The MWNT suspension was treated by pulsed laser radiation at 

different values of the input fluence W. The maximum value of the 
input fluence was below 2  J·cm-2. The bleaching was observed after 
the action of several pulses. The input fluence W of these pulses was 
above 0.8 J·cm-2. A typical image of the suspension bleached part is 
shown in Figure 2b. From this figure one can see that the bleached 
fraction of the suspension formed by the absorbed laser power, and 
therefore having a higher temperature, moves upward in the vertical 
direction.

To understand and analyze the bleaching mechanisms of the 

suspension, it was necessary to obtain the bleached fraction of 
the suspension in quantum satis. To this end the initial MWNTs 
suspension in DMF after its dispersion was injected into the 
optical cuvette and exposed to laser pulses for a long time, with 
the pulse repetition rate of 1 Hz, during 75×103 s. As a result initial 
semitransparent suspension was transformed into a practically 
transparent liquid.

The bleached fraction of the suspension had a yellowish shade. 
The optical density of initial χ1 (blue line) and bleached χ2 (green line) 
suspensions as functions of the light wavelength (λ) obtained relative 
to DMF are shown in Figure 3. From these measurements one can 
see that the bleaching phenomenon occurs over the whole range of 
the wave band from 200 to 900 nm, since the inequality χ1(λ)>χ2(λ) 
is true. However, from the calculated dependence (χ2/χ1(λ)) which is 
shown in the inset in Figure 3 one can conclude that the degree of 
bleaching depends on the wavelength. Laser bleaching reveals itself 
strongly over the wave bands of 330<λ<900 nm and 200<λ<250 nm. 
Th e total bleaching was established to occur at the wavelength 
range of 615<λ<900  nm. The bleaching at the wavelength range of 
250<λ<330  nm is less pronounced since the χ2/χ1 ratio exceeds 0.5 
over this wave band. It defines a weak yellowish shade of the bleached 
suspension obtained.

It was of interest to perform a comparative spectral analysis of 
materials contained in the initial and bleached suspensions using the 
Raman spectroscopy and the infrared reflectance spectrometry. The 
Raman spectrum of the initial MWNTs particles (prior to dispersion) 
was also obtained.

The study has shown that the Raman spectrum of the initial particles 
of MWNTs and samples of the MWNTs suspension practically does 
not differ in the frequency shifts region 1000‑1800 cm-1. The scattering 
spectrum of the initial MWNTs consists of two peaks with the 
frequency shifts of 1594.1 cm‑1  (G band) and 1335.4 cm-1  (D band) 
(Figure  4a). The presence of the D band, with the intensity being 
greater than that of the G band, is associated with the presence of 
impurities and a lot of defects in the MWNTs studied [25].

Figure 1: TEM images of the (a, b) initial MWNTs samples and (c, d, e, f) 
particles of the bleached suspension. (c) The tubes remains with amorphized 
external layers, (d) a big graphite-like fragment, (e) the fragments of nanotubes 
and capsules of multi-wall graphene-like layers, (f) the remains of tubes walls 
(2-3 layers).

Figure 2: (a) The optical scheme of the experiment: (1) - shutter; (2) - focusing 
lens; (3) - optical cuvette with MWNT suspension in DMF; (4) - photocamera; 
(b) the image of the bleached part of the suspension: (1) suspension, (2) zone 
under irradiation (a focused laser beam was perpendicular to the image plane), 
(3) bleached suspension spreading upwards by virtue of thermal convection.

Figure 3: The optical density of χ1 (1) initial and χ2 (2) bleached suspensions as 
functions of the λ light wavelength obtained relative to DMF. The suspensions 
were kept in quartz cuvettes with thickness of 1.01 mm. The χ2/χ1(λ) calculated 
dependence is shown in the inset.
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From Figure 4b one can see that the Raman spectrum of the film 
obtained from the bleached fraction of the studied suspension differs 
considerably from that of the initial MWNTs (Figure 4a) suspension 
and DMF (Figure  4c). According to the reference data  [26], the 
scattering peaks of the bleached fraction with the frequency shifts of 
1074 and 1460.2 cm-1 are due to the CH2 bonds, and the peak with the 
shift of 1138 cm-1 corresponds to the CH3 bonds. The esters (‑COOR) 
or aldehydes (‑CHO) or carboxylic acids (‑COOH) can cause a peak 
with the shift of 1739.9 cm-1. The peak with the shift of 1613.5 cm-1 
can be conditioned by the ‑NH2 group. The investigations carried 

out by the infrared spectrometer also confirm the presence of the 
chemical bonds in the bleached fraction of the suspension (Figure 
5). Thus, the peaks with the shifts of 2963 cm-1, 2933 cm-1, 2876 cm-1, 
1468 cm-1 correspond to the CH3 bonds, the peaks with the shift of 
1748 cm-1 – to the lactones, the peaks with the shifts of 1163 cm-1 and 
1059 cm-1 – to the ethers (R‑O‑C‑O‑R). It is difficult to interpret the 
peaks with the shifts of 816 cm-1, 713 cm-1, 650 cm-1, 541 cm-1. However, 
one can attribute the frequency range 720‑740 cm-1 to the methylene 
groups (-CH2-CH2-). The peaks with the shifts of 3400‑3500 cm-1 and 
1600  cm-1 were not observed in the infrared spectrum of bleached 
MWNTs suspension. These frequency ranges are typical for NH 
groups, so we can conclude that the dimethylformamide group is not 
present in the bleached MWNTs suspension. We should note that it 
was difficult to set off the effect of the background, so the peaks with 
the shifts of 2363 cm-1 and 2343 cm-1 correspond to CO2.

The TEM study of the bleached fraction of suspension has shown 
the bleached fraction to consist of an inhomogeneous mixture of 
different carbon formations (Figure  1c-1f). It can be divided into 
graphite-like aggregates, polyhedral thin-walled formations and 
amorphized carbon-bearing remains of an organic solvent. A great 
amount of carbon is concentrated in large (several microns) graphite-
like particles consisting of bundles of graphene layers, with the 
thickness of 5‑20 nm. In addition, the polyhedral fragmented remains 
of carbon nanotubes with the length of 5‑20 nm are observed. The 
graphene walls quantity of such fragments is 2‑10. The formations 
remotely resembling the fragments of MWNTs are also present. The 
organic remains of the solvent localize on the graphite layers surface 
and cover the polyhedral formations. The film thickness ranges from 
0.5 nm to 3 nm. These data indicate that the photochemical reactions 
between MWNTs and DMF in the suspension of MWNTs in DMF 
occur under the laser exposure, which results in the formation of new 
chemical bonds which are not present in the initial suspension. 

Conclusions
We have reported the phenomenon of the bleaching of MWNTs 

suspension in DMF under the powerful laser radiation effect at 
the wavelength of 532  nm, which reveals itself after several laser 

Figure 4: The Raman spectra of the films exsiccated on the quartz substrate 
of (a) the initial MWNTs suspension, (b) bleached MWNTs suspension. (c) The 
Raman spectrum of DMF.

Figure 5: The infrared spectrum of bleached MWNTs suspension.



Citation: Mikheev KG, Mikheev GM, Kuznetsov VL, Mogileva TN, Moseenkov SI, et al. (2013) Laser Bleaching of Carbon Nanotubes Suspension in N,N-
Dimethylformamide. J Nanomater Mol Nanotechnol 2:4.

• Page 4 of 4 •

doi:http://dx.doi.org/10.4172/2324-8777.1000118

Volume 2 • Issue 4 • 1000118

pulses. The suspension bleaches in the wide wave band from 200 
to 900 nm. The bleaching results from the photochemical reactions 
between MWNTs and DMF, which leads to the formation of a new 
stable liquid fraction. It was verified by the analysis of the initial and 
bleached fractions of the suspension using the transmission electron 
microscopy, the infrared spectrometry and the Raman spectroscopy. 
Although presented results demonstrate that the powerful laser 
irradiation destroys the graphitic structure of the MWNTs we believe 
that there is a proper value of laser intensity for functionalizing the 
MWNTs by different groups of H-donor compounds. 
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