Single Crystal Diamond Needle as Point Electron Sourceстатья

Статья опубликована в высокорейтинговом журнале
Сведения о статье проверены и подтверждены
Статья опубликована в журнале из списка Web of Science и/или Scopus

Работа с статьей


[1] Kleshch V. I., Purcell S. T., Obraztsov A. N. Single crystal diamond needle as point electron source // Scientific reports. — 2016. — Vol. 6, no. 35260. Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть