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The multitude of proposed gauge gravitation theories shows that the pauge
principle alone is too broad to describe the gravity in an unambiguous way.

At the same time general relativity (GR) still remains the most safisfac-
tory gravitation theory, although iis not yet definitely sclved problems of ener-
gy, reference systems, singularitics aud some others should not be forgotten [*).

We therefore consider il reasonable to assume that the gauge gravitation
theory, like GI2 should also be based on ihe relativity and equivalence prin-
ciples forimulated in gauge theory terms by using ihe fiber bundle forinalism.

[n this formalism a gravitation field on an orientable spacetime manifoid
A" is gefined as a global section g{x) of the fiber bundle A of pseudo-Eucli-
dean bilinear forms in tangent spaces over X% A is associated with the tan-
gent bundle 7(X*) possessing the structure group GL™(4, R). A is isomorphic
to the fiber bundle in quotient spaces GL(4, R)/L, where L is the Lorentz
group, We mark it X Its global section £ix) describes a gravitation field in
the tetrad form (g,, (x) A2 ()h%(¢) yas, e is the constant Minkowski metric
tield), where tetrad fields 4ix) are determined up to local Lorentz transforina-
tions hix)=A{x)L(x), taken on the right hand side.

L. Relativity Principle. In (iR the relativity principle (RP) is usually formu-
lated as the requirement for matter field (or test particle) equations to conser-
ve their form whatever the changes of reference frames.

In fiber bundle ferms a reference frame in the gravitation theory may be
defined as the choice of a cerlain atlas ¥ {{/,, y,} of the tangent bundle 7(.X*)
{({{/;) and |y;} are consequently ranges and homeomorphisms of frivializations
of 7T{XM). But the group of all reference frame changes is the gauge group
GL(L, R)(A*) of sections of the principal bundle associated with 7(X%).

This definition is close to that used in the tetrad formulation of GR. lf
an atlas of 7(X%) is chosen, telrads {f.}; -y 4x)}s) ({f} is the basic repere
the typical fiber ') are erected in every point of the space-time maniiold
A* and their fransformations accompany the changes of reference frames.

The conventional (general covariant) form of GR corresponds to the spe-
cial case of holonomic transformations of reference frames, when the choice of
an atlas of the bundle 7(AY) correlates ¥ =|{/;, y,=d;,} with coordinate atlas
Wy {U;, ¢, of the manifold X' and this correlation is kept steady under fra-
me changes,
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Thus iu the fiber bundle formalism RP in the gravitation theory may be
formulated as the requirement of the covariance of matter field equations un-
dee the gauge group GLH(4, RX) Tn this from the relativity principle proves
to be identical with the wauge principle of the gange theory of external sym-
metry group GL (1, R), and counsequently the gravitation theory can be huilt
from RP directly as the gauge theory,

However, the (/74, R)-gauge theory turns out to be broader than the
veneral conception of the gravitation theory, For example, it does not distin-
suisti the Minkowski metric forms from other possible types in tangent spaces.
That is why the equivalence principle in the gravifation theory also has to be
considered.

2 Equivalence Principle. [n GR the ennivalence principle (EP) supplements
R0 and exnresses e transition to special relativity in a certain reference
frime.

lin geometric terms special relativity may be defined as the geometry i
Lorentz invariants (in the spirit of Klein’s Erlanger program). Then EF in the
oravitation gauge theory may be formulated as the requirement to conserve
Lorantz invariants under transitions from map to map in some reference fra-
mees and under parallel franslations. This means that the connections on 7{AY)
helng (i34, R)-gange fields have to be reduced to the Lorentz gauge fields
in some reference irames, and this leads to the contraction of the structure
group GL(1, Ky of T(A") to the Lorentz group.

This contraction is necessary and sufficient for a global section of the
quotient bundle ¥, and hence of the metric bundle A, to exist. The exisfence
of o tetrad or metric gravitation field anywhere on A" results from EP.

I turn the presence of a gravitation field entails the usual postulates of
the equivalence principle in (JR. Thus there is a holonomic reference frame,
where {he gravitation metric field becomes of the Minkewski type and its
Christoffel syimbols vanish in a space-time point, although, since the Lorentz
vauge flelds contain also torsion components, the whole connection in general
case does not go lo zero in this frame. But let us recall that there alse exi-
afs a reference frame, where the whole connection vanishes in a point, yet the
oravilation fetrad field may be present.

EP in the gauge gravilation theory detines a certain Klein-Chern genmet-
rv of invariants on the total spaces and on the sheave of sections of associat-
ed with 7(X" bundles. The contraction of the structure group Gl4, &) of
F{A" to the Lorentz group and consequently to its maximal compact subgroup
SO(3) means the existence of atlases of 7{\*) such thatevery Lorentz or SO(3)
nvariant does 1ot change under transition from map to map of these atlases.
For example, the (3 - /i-decomposition proves {o be possible in all points of X*.

This enables ue to interpret the geometrical aspects of the gravity in the
spirit of Klein's Frlanger programine, although Fock, Bondi, Havas and somle
othier authors deny the presence of any symmetries in the gravitation iheory.

3. Gravity as a Field of the Goldstone Type. It sh.ould be emphasized that the
equivalence principle formulated in the gravitation gauge theory permits o view
{he oravitation field as a field of the Goldstone lype in the gauge theory of
external svminetries |7

It a gauge thenry Goldstone and Higgs fields are known fo appear when
ever the svinmetry is spontaneously broken. In that case the structure group
G of a cerlain vector fiber bundle 7, whose sections [y} describe some mullip-
lel of matfer fields, is coniracted to its subgroup /71 A global constant section
(XY V., al 2 then exists, where o, is a non-zero f/-fixed point of the {vpi-
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ca] fiber V' of i This field is vsually interpreted as the vacuum or ground
state and then minor fluctuations {ob near it are consfdered.

These fluctuations take the known form « g4t ¢ s 6, where values of
4 lie In the [fflinvariant subspace of V and (¢,--0) are sections of the bun-
dle in quotient spaces (/ /{ associaled with i. Then o prove to be CGoldstone
tields and (g, - g are called couventionally Iiges fields in the gauge theory
with sponlaneous svmmetry breaking. Ilowever, in pauge theories of internal
svmmetries (inldstone fields o can be removed by a certain gange iransfor-
mation.

[n the gauge gravitation theory the contraction of the structure group
(EHd, Ry of T(A™ to L resulling from I* deseribes a situation, which is ana-
logous to spontaneous symmetry breaking. It entails the existence of a global
section of the quotient bundle 2 with the tvpical fiber GLT4, £)L, and the
single [-fixed point of this fiber space is the Minkowski metric. Then, by ana-
logv with the case of the spontanecus breaking of internal symmetries, one
may imagine the Minkowski metric field as possessing the sense of the Higes
tield v but the small deformations from it will play the role of Goldstone
fields ~.

These deformations are identified with the presence of the gravitation field,
which therefore may be considered as a field of the CGaldstone type. But here,
in contrast to Goldstone fields of internal symmetries, the gravitation field can-
not be removed Dy any gauge, because the gauge transformations of external
ymmetries also act on operators of partial derivatives, which are vectors,

d
{()ﬂ 'm«“jl of tangent spaces. But these vectors retain the sense of derivatives

if
oculv in holonnmic frames. In nonholonomic frames {r),_‘ --h,’fj ,,},and consequent-

v ounler arbitrary gaoge transformations, not all tetrad coefficients are conceal-
ed in th2 rezauge oozt as o tre internal symunetry case, i e. the gra-
vitation field remains
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