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Goldstone Type (Non-Poincaré) Supergravity
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The gauge description of gravity as Higgs-Goldstone type fields is extended on supergravity.

Following the Poincaré gauge version of gravity, contemporary supergravity models are connected
with the super (graded) Poincaré group. Most of these models are hased on gauge coordinate supertrans-
lations in the spirit of Kibble's gravity approach.” although graded affine bundles come into play, too.”
However, Poincaré gauge versions of gravity (especially Kibble’s one criticized by F. Hehl and others) fail
to be quite satisfactory.** The Poincaré supergravity faces its own additional difficulties. For instance,
many authors ignore the fact that by the supertranslation law coordinates X* are not real, but represent
even elements of a Grassmann algebra.

The Poincaré gauge versions of gravity lost sight of the fact that not only gauge potentials, but
Higgs-Goldstone fields appear in a gauge theory when symmetries are spontaneously broken. Einstein’s
gravitational field and supergravity turn out to be fields just of this type.

§ 1. Gauge gravitation theory

We consider the gauge gravitation theory as being based on Einstein’s relativity and
equivalence principles reformulated in the fibre bundle terms.*~>

In these terms a metric gravitational field on an orientable space-time manifold X is
defined as a global section ¢ of the fibre bundle B of pseudo-Euclidean bilinear forms in
tangent spaces over X*. The bundle B is associated with the tangent bundle 7°(X)
possessing the structure group GL*(4, R), and this is isomorphic with the fibre bundle in
quotient spaces GL"(4, R)/SO(3,1). The global section /% of the quotient bundle, which
is isomorphic with ¢, describes a gravitational field in the tetrad form.

By the well-known theorems® for a global section /# of the quotient bundle to exist,
the possibility of contraction of the structure group GL*(4, R) of the tangent bundle to the
Lorentz group is necessary and sufficient. It means the existence of an atlas ¥9= {u,
¢:°} of T(X) such that all transition functions of ¥'¢ are elements of the Lorentz gauge
group, and all metric functions ¢: = ¢.%g coincide with the Minkowski metric 7 relative to
¢  Tetrad (vierbein) functions h:= ¢:%h take on values in the center of the quotient
space GL™(4, R)/SO(3, 1) relative to ¥*.

Usually a tetrad field / is written as a section of the principal GGL(4, R)-bundle up to
multiplication of % on the right by elements of the gauge Lorentz group. This freedom
reflects the nonuniqueness of the atlas ¥'¢. Let us fix the atlas ¥¢ and tetrad functions
i, taking values in the unit element of the group GL (4, R). Then with respect to any
atlas ¥ of T(X) the tetrad functions 4. read h.=¢.(¢.9)"". These represent matrix
functions acting in the typical fibre of T(X) and describing the gauge transformations
from the atlas ¢ to the atlas ¥ ={ur, ¢.=h:¢.’}. Changes of ¥ to ¥ ={u., ¢
=g.¢:} lead to gauge transformations 2.— g.h: of the tetrad field 4..

In the fibre bundle terms the relativity principle proves to be identical with the gauge
principle of covariance under the gauge group GL(4, R)(X) of all transformations of
atlasses of the tangent bundle 7(X). Thereby the gravitation theory can be built



970 D. Ivanenko and G. Sardanashvily

directly as the gauge theory of the space-time group GL*(4, R). But the relativity
principle fails to fix the Minkowski signature (—, —, —, 1) of metric fields, and therefore
the equivalence principle must be called into play in the gauge gravitation theory.

In the fibre bundle terms the equivalence principle can be formulated as the postulate
of the existence of a reference frame where Lorentz invariants can be defined everywhere
on a manifold X* and these would be conserved under any parallel transport. This
postulate holds if the connection on the tangent bundle can be reduced to the Lorentz
connection, what entails in turn the contraction of the structure group GL*(4, R) of this
bundle to the Lorentz group, and consequently the existence of a gravitational field on X*.
In this fashion the equivalence principle establishes the situation of spontaneous breaking
of gauge space-time symmetries down to the exact Lorentz gauge and a gravitational field
can be treated as the sui generis Goldstone field corresponding to this breakdown.

This standpoint is contrary to ideas on the Poincaré gauge description of gravity,
which aimed to represent tetrad gravitational fields as gauge fields of translations due to
seeming coincidence of tensor ranks of tetrad fields and translation gauge fields. More-
over, a gauge model of the Poincaré group as the fundamental dynamic group of Special
Relativity was believed to supplement gauging of internal and intrinsic spin symmetries of
particles. However, one faced here the specification of gauging of the Poincaré group as
the dynamic group realized by differential operators. All such attempts resulted in
models which were rather far from the conventional formulation of a gauge theory. "

The conventional gauge technique can be applied for gauging of the Poincaré group,
if one ignores its physical role and regards it as an abstract group.”® In this case the
Poincaré gauge potentials are represented by coefficients of a general affine connection A
on the principlal affine frame bundle A(X). Under fixing a certain translation gauge the
correspondence between A and the pair (AL, #) of a linear connection A, on the linear
frame bundle L(X) and R*valued 1-form § on the total space of L(X) (or the tensor
field @ of the type (1,1) on X, or fibre mapping of T(X)) is established.”’ Coeflicients
of tensor field § represent homogeneous components of translation gauge potentials.

One sees at once that @ has nothing to do with 2. Among other things they differ
mainly in their gauge transformation laws. Tetrad functions # describing the gauge
transition between the fixed atlas ¥ and a given atlas ¥ are transformed as A~ gLl
under atlas changes, whereas gauge translation potentials # describing the fibre mapping
of T(X) are transformed as 0.~ g.0.g:. "

Thus the Poincaré gauge model fails to provide a gravitational field with the status
of translation gauge potentials. Then one must pose the question on the physical treat-
ment of translation gauge fields. For instance, such fields are applied to describe disloca-
tions in the gauge theory of dislocations and disclinations,” and this description can be
used in the gauge field theory.'”

Since supergravity (N =1) must include gauge gravity, one ought to construct a
supergravity theory as sui generis graded generalization of a gauge gravitation theory.
As a matter of experience of a gauge gravitation theory the Poincaré gauge approach fails
to be quite relevant for this aim. Therefore, one is obliged to formulate supergravity in
terms of super fibre bundles after the fashion of the gauge gravitation theory in our
version.
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§2. Super fibre bundles

Let us recall some notions. One calls Grassmann algebra an associative algebra A
(with the unit element) over the field of real numbers R, which possesses a canonical
(finite) set of anticommutative generators &, -+, &1, [€4, £5]+=0. This is a Z».-graded
commutative algebra A=/A,PA;, whose even part A, (odd part A,) represents a
21-'.dimensional real vector space of even (odd) products of generators §&. An even part
Ao splits into Ao= RP A, and the projection 0:/1—~ R is called the body map.

A Grassman algebra can be provided with the structures of Banach algebra and
Euclidean topological space by the norm'”

L
Il =Z]at 4, &=32 2 @™ *Eaan. (1)
k=0A1Axr

In a super field theory the Grassmann algebra replaces the numerical field, and
superspaces over / replace familiar vector spaces over R. We call a superspace the
product B™™= /A," X A,™. On the one hand, this represents the /-envelope of a Z.-graded
vector space L”"=L®L:=R"®R™ which is obtained by multiplication of even (odd)
vectors of L by even (odd) elements of /1. A superspace B™" considered as the /-
envelope possesses (#-+m) basis vectors {Bs, a=1, -, n; B;,i=1,-, m}, and coor-
dinates of its even (odd) elements are even (odd) elements of /4. On the other hand, a
superspace B™™ forms a 27" (n+ m)-dimensional real vector space with the basis {B aa,
Ba).

A superspace is provided with the norm and the Euclidean topology induced by the
norm (1). Functions on superspaces, differentiation with respect to Grassmann coor-
dinates, supersmooth (superanalitic) functions and mappings are defined on the analogy of
the ordinary case, but with a glance to a certain specification.'”~'* We only remark that
functions on a superspace B™™, which take on values in the Grassmann algebra, can be
considered as mapping of the vector space R*" '(n+m) into the vector space R*.
Accordingly, the differentiation of such functions with regard to Grassmann coordinates
can be rewritten via their derivatives with regard to real coordinates, when these de-
rivatives obey the generalized version of the Cauchy-Riemann condition.

An (%, m)-dimensional supermanifold M ™™ is defined as a Banach manifold endowed
with an atlas ¥ ={us, ¢:: u; > B™™) whose transition functions are supersmooth'"”'?
One constructs the super tangent bundle 7(M™™) over the supermanifold M™™. The
typical fibre of this bundle is the superspace B™", and the structure group of T(M™") is
the group of automorphisms of B™".

This is the super Lie group L{(#n, m) of invertible matrices

M= A B
c D’
where A and D are square (X n) and (m X m) matrices consisting of even Grassmann
elements, and B, C are rectangular matrices consisting of odd Grassmann elements. A

matrix M is invertible as soon as matrices 64 and ¢ (where ¢ is the body mapping) are
invertible. The super Lie group L{#, m) represents an ordinary Lie group included in the
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group GL(2" '(n+m), R).

Thereby a supermanifold M " and a super tangent bundle T(M™™) may be represent-
ed as a certain 2° ' (m+ n)-dimensional real manifold and the tangent bundle over it,
whose transition functions obey the special condition of the Cauchy-Riemann type.

Let us describe the “super” analogue of a space-time manifold.

§ 3. Super space-time symmetry

A super Lie group SG is an abstract group admitting the parametrization by Grass-
mann elements, which endows this group with superanalytic manifold. The analogy of a
Lie algebra for a super Lie group is graded Lie module of left-invariant derivations at the
unit element of SG.'Y The even part of this module (which consists of the tangent space
at the unit element of SG) represents an ordinary Lie algebra, which equals the Lie
algebra of the super Lie group SG as a Lie group.

Hereinafter we restrict ourselves to the case of super Lie groups whose Lie albebras
can be obtained as A-envelopes of Lie superalgebras (graded Lie algebras). This case
exhausts symmetries of a super field theory.

One calls Lie superalgebra any Z,-graded algebra A= Ao@P A, endowed with products
[ , ] satisfying the following axioms:

(7, 1']=—(—De"e[r I],
(7,07, I'N=[U, 1], 17+ (=D« 1,171,
1€ Aary, I'EAaur.

The even part of a Lie superalgebra forms a Lie algebra, whereas the odd part A, forms
a representation of this Lie algebra, what enables one to classify simple Lie superalgebras
after the fashion of the Lie algebra classification."”

Irredusible linear representations of Lie superalgebras A are realized in Z.-graded
vector spaces L by matrices

A0
0 D

for even elements and

)

for odd elements. This representation space L is a sum of spaces of irreducible represen-
tations of the Lie albebra Ao, and odd elements of A, perform transitions between these
representations.

Since, roughly speaking, A is a superalgebra of generators of a super Lie group, we
see that the study of A exhausts the description of symmetries of a super field theory.

Point out that a supergravity theory admits only real superalgebras and their real
representation at least in an even sector.

At first we discuss the super analogies of the spatial rotation SO(3) and the covariant
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spatial transformation algebra L(3, R). One ought to discern two kinds of SO(3):
{M1, M, M;: [Mi, Mj]:EzjkMk} ,
{S+: Z'leMz, S = iM1+M2, 53: ZM3} .

These are isomorphic real subalgebras of the complex algebra SL(3, C). The first
describes space rotations, and the second is the so-called quantum mechanic albebra of
spin operators.

The minimal superalgebra including SO(3) is OSP (1,1). Its even part consists of
the Lie albebra SP(2), which equals SO(3) in the quantum mechanic form {S;:, S_, S},
and its odd part contains two generators @', @ . The commutation relations of OSP
(1, 1) read:

S, Q' 1=3Q . [SnQl-—1@,

(S, @1=0, (S, Q1=Q",

[ @1=q", (S, @1=0,

Q" Ql=—3S.. [@.Ql=%S ., 10.Ql=1ts, (2

plus commutation relations for S+, S-, Si;. The odd elements @ realize the fundamental
spin 1/ 2 representation of SO(3).

The superalgebra OSP (3, 1) possesses representations by real matrices in the scalar-
spinor graded space L"?, and in the vector-spinor graded space L*? describing the spatial
part of a super space-time. Unfortunately the quantum mechanic algebra SO(3) cannot
be included in the real algebra GL(3), and the superalgebra OSP(1, 1) fails to be relevant
for a supergravity theory.

The superalgebra OSP(3, 1) turns out to be quite satisfactory. Its even part is the
direct sum of the Lie algebra SO(3) with generators {M, Mz, M} and the Lie algebra
SP(2)=S0(3) with generators {S:, S-, Sa}. Its odd part contains three pairs of gen-
erators {Q;', @7, i=1,2 3}. The commutation relations of OSP(3, 2) read:

[M,S]:O, [Mz', jS]:ifzijki,
(@, Qi+:]=0, [Q., Q+:]=0,
[Qz’i, z‘iz‘]:’}l*&'jkMk

plus commutation relations for {M,, M., Ms}, {S+, S_, S5}, and commutation relations (2)
for each index 7 of @7, ;. The pair of odd elements {Q.', Q. } for each index i
realizes the fundamental spin 1/2 representation of the algebra {S., S_, Ss}, and the
triplet {Q:", @:", Q:"}({Q. , Q= , Qs 7)) realizes the vector (covector) representation of
the algebra {Mi, M,, Ms).

The superalgebra OSP (3, 1) possesses the minimal-dimensional representation in the
graded space L** by (5X5) matrices where non-zero elements «.,; read:

M1:{CZ32:““1123:]}, Mz:{alsz“(lm:l}, Maz{dm:*(lm:l},
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54:{045:1}, S—:{6154:1}, 83:‘{6144:_6155:%},

Qi+:{di5:d4i:?}}y QiW:{(ZSiZ*aM:%}.

The even subspace of L*? is the space of the vector representation of SO(3) = (M, M2, M},
and the odd subspace of L** is the space of the spin 1/ 2 representation of SO(3)=1{S+, S-,
Ss).

The Lie algebra SO(3) ={M, M-, M) can be included into the Lie algebra GL(3, R),
and the superalgebra OSP(3,1) can be included into the Lie superalgebra L(3,2). The
even part of L(3,2) is the direct sum of Lie algebras GL(3, R) and GL(2, R). 0Odd
generators of L(3,2) are (Q:F, Qi , Q. Q. ,i=1,2,3}. Generators (M, S, Q} and {M,
S. Q) compose two graded subalgebras OSP(3,1) of L(3,2). The even generators
completing OSP(3,1) to L(3, 9) are yielded by products [Q, Q.

The superalgebra L(3, 2) possesses the natural representation in the graded space
132 The even part of L** is the spatial vector space of the natural representation of the
Lie algebra GL(3, R), and the odd part of L*? is the spinor space realizing the spin 1/2
representation of the Lie algebra SO(3)=SP(2) and the dilatation operator )= {Gas= ass
=1/2). In comparison with @, matrices @ on L*? read: Q' ={du= —Gis=1/2},
Qi7:{5i4: asi=1/2}.

In the fashion of the spatial supersymmetries the super space-time symmetries are
examined. The subalgebra OSP(4, 2: 1) seems to be the most convenient for describing
super space-time symmetries. Its even part is the direct product of the Lorentz algebra
SO(3, 1) and the symplectic algebra SP(2, 2) which is isomorphic to the algebra SO(4, 1)
and includes the Lorentz algebra SO(3,1). The odd part of OSP(4,2:1) is composed of
generators Q. a=1,4,i=1"4 which form the 4-vector representation of SO(3,1)
along the indices ¢, and the 4-spinor representation of SO(3,1)C SP(2,2) along the
indices i.

The superalgebra OSP (4, 2; 1) possesses the minimal-dimensional representation by
real matrices in the graded space L**, which is the direct sum of the 4-vector space X* and
the 4-spinor space @*. The odd generators Q. are realized in L** by matrices

Qe = usri= F e, diesira =y (=7 B =i—(—1)'}

Imbedding of the Lie algebra SO(3, 1) into the Lie algebra GL(4, R) induces imbed-
ding of the Lie superalgebra OSP(4,2;1) into the Lie superalgebra 1.(4, 4) possessing the
natural representation in the graded space L The even part of L(4,4) is the direct sum
of two algebras GL(4, R), and the odd part contains generators Q. Q.', where, in
comparison with @, matrices Q on L** read:

Qal = {da,zﬂ i ﬁaadd,zx + 1y 54+k(i),a: a4+k(i),a} .

The even generators completing OSP(4, 2; 1) to L(4, 4) are produced by products [Q, Q.
§ 4. Super Minkowski space

The Grassman envelope B** of the graded space L** seems to be the best model for
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the super expansion of the standard Minkowski space. The super Lie group OSP (4, 2;
1) whose Lie algebra is the Grassman envelope OSP,(4, 2; 1) of the Lie superalgebra OSP
(4, 2; 1) replaces the Lorentz group. The supergroup OSP(4, 2; 1) keeps the invariance of
the bilinear form

I{(u@y @/) = ﬁaa'XaXa/+ aijez.@j/
= XX XX XX XX 00T~ 0207+ 0707 0°0F (3)

on the elements B=X%B,+6'B, of the superspace B**. Coordinates X* and 6’ of
elements B are even and odd Grassmann elements respectively, and the form (3) takes
on values in the even part of the Grassmann algebra /.

The SO(3, 1) and SP(2, 2) generators multiplied in even parameters turn the form H
into zero by definition, and one can verify the same section of generators  multiplied in
odd parameters.

§5. Supergravity

Let us examine a supermanifold M** and a super tangent bundle 7(M**) over M**.
This bundle possesses the typical fibre B**. The structure group of T(M**) is the
supergroup L(4,4) whose Lie algebra represents the Grassmann envelope of the Lie
superalgebra L(4, 4).

Following the treatment of the equivalence principle in the gauge gravitation theory
considered by us, let us require the contraction of the structure group L(4, 4) of the bundle
T(M**) to the super Lie group OSP(4, 2:1). Since a supermanifold M**, a super tangent
bundle T(M**) and structure groups L(4, 4), OSP(4, 2; 1) are an ordinary manifold, an
ordinary fibre bundle and Lie groups respectively for this structure group contraction to
take place a global section G of the associated fibre bundle in quotient spaces L(4, 4)
JOSP(4,2: 1) must exist (where L(4,4) and OSP(4,2;1) are considered as Lie groups).

This quotient space is isomorphic to the space of all bilinear forms on a superspace
B** which can acquire the canonical form (3) via L(4, 4) transformations. Then on the
fashion of our treatment of the gauge gravitation theory a global section G may be treated
as a supergravity field.

The definition of a supergravity field in the fibre bundle terms in the same way as a
gravity field opens the door to build a supergravity theory as the gauge theory of the
super-group L(4, 4) which is spontaneously broken down to the super Lorentz group OSP
(4,2:1). For instance, one may build supergeometry (super Christoffel symbols, supertor-
sion, supercurvature, etc.) directly by analogy with the conventional gravitation theory,
but with a glance to the certain specification connected with the odd Grassmann algebra
generators.

Supergravity must include gravity. This inclusion is induced by the immersion of the
real field R into a Grassmann algebra and by projection of a Grassmann algebra onto R
by the body map. The body map of a superspace B™™ onto R” is defined by the equivalen-
ce relation 6B =0B', B, B'EB™™ on a superspace B"™. But the definition of this
relation on a supermanifold faces difficulties. Really, let (u, ¢) and (u’, ¢') be two charts
on a supermanifold, whose intersection is not connected, i.e.,
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uﬂu’z VIU Vz, Vlm V2:¢ .

Denote

¢)1,2: §/1 1 V1,2 , ¢{,2: QZJ’ I Via.

Let B.€ V., B,& V, be two o-equivalent elements relative to (u, ¢), i.e., 6¢1B1= 0> DB-.
But these may be nonequivalent relative to (u', ¢') because o¢n'¢r '+ o¢s'¢. "0 in
general. A supermanifold possesses such an atlas that o-equivalence is defined every-
where on a supermanifold,’® but the quotient of a supermanifold by this equivalence
relation fails to be even a topological manifold in general. Moreover this equivalence
relation is destroyed by transition to other atlases of a supermanifold.

The body map problem is common to all models utilizing supermanifolds, and this is
the serious difficulty for physical outcomes of supersymmetry formalism to consider it as
quite satisfactory.
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