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Abstract:
Modern optomechanical devices, such as gravitational-wave detectors, in near-term period should reach such sensitivity, that it would be possible to observe quantum phenomena with macroscopic quantum objects. One of the

most interesting experimental projects in such area of fundamental physics is the proof of the Einstein�Podolsky�Rosen paradox in its initial interpretation, that is for coordinate and momentum of mechanical objects. [1]. It is
necessary to note that achievements of last years in the �eld of ultraprecise mechanical measurements stimulated in particular by the development of gravitational-wave detectors [2], allow us assert that it is possible to attain
the corresponding optimal parameters for the experimental preparation of quantum oscillators in entangled state [3].
In particular, the scheme [3] for experimental proof of EPR-paradox for two mechanical degrees of freedom of Michelson interferometer has been o�ered. Within the bounds of this experiment the particular interest would

be the estimation of conditions and requirements for mechanical and optical noise in the scheme at which it is possible to observe quantum entanglement and also estimation of optimal parameters of the initial quantum state
of optomechanical system that maximize the entanglement. As model of aforementioned system we consider mechanical and optical degree of freedom of a laser interferometer and formulate the conditions for realization of
experiment in which we would be able to observe quantum entanglement arising as a result of dynamic interaction between them.
Generally the analysis of such experiments is complicated due to necessity to consider in�uence of numerous channels of dissipation and as a consequence the decoherence of quantum state of considered system. Similar scheme

was considered in [4]. Our model di�ers in two aspects. First, we consider time dependence of the entanglement. Second, we assume the initial squeezed states of the mechanical and optical degrees of freedom. For the considered
model we calculate logarithmic negativity [5] � one of the most popular measures of a quantum entanglement as function of time. This measure allows us to determine the characteristic �lifetime� of entangled state in system with
dissipation. We analyze the phenomenon of the entanglement sudden death [6] and the entanglement sudden revival [7] considering optomechanical system.

Quantum entanglement:

Quantum entanglement � phenomenon which does not have analogues in the classical physics, at which the
quantum state of two or more subsystems cannot be described separately from each other and wave function
(density matrix) of the system cannot be factorized. As a result at ensemble measurements conducted over
separated space-like subsystems correlation of results is observed which does not have explanation within the
limits of local classical formalism. That is entangled quantum state appears to be quantum nonlocal.

ψ(A,B) 6= ψ(A)⊗ ψ(B)

For mixed entangled states the situation is much more di�cult: ρ̂ 6=
∑

k=1,2
pkρ̂

(1)
k ⊗ ρ̂

(2)
k , pk ≥ 0

Einstein � Podolsky � Rosen paradox

In 1935 in their most famous and most cited article �Can quantum-
mechanical description of physical reality be Considered Complete?�Albert
Einstein, Boris Podolsky and Nathan Rosen have formulated their well-
known paradox, which subsequently has caused set of questions relating to
the interpretation of quantum mechanics. For the long time this paradox
was basically in the interest of those who were engaged in interpretation of
quantum mechanics. But recently the experimental proof became possible.
For optical continuous variable (CV) systems the experimental proof was
given only in 1992 by professor Kimble and others [8]. We are interested
in veri�cation of EPR-paradox for mechanical CV systems as the proof of
macroscopic quantum mechanics which appears to be the key problem of the
modern physycs.
(a) Scheme for realization of EPR-paradox by nondegenerate parametric

ampli�cation, with the optical aplitudes (Xs, Ys).
(b) Principal components of experiment.

SiN membrane � almost ideal object for the macroscopic quantum mechanics:

Mechanical properties:
Mass of the oscillator: m = 50 ng
Size: 1, 5mm× 1, 5mm
Thickness: 75nm
Resonant frequency: ωm/2π = 500 kHz
Mechanical quality factor: Qm = 106

Optical properties:
Power re�ectance: ∼ 33%

The mass of membrane is extremely small but it can be considered as a
macroscopic object. Due to interaction of light with membrane by radiation
pressure membrane and light, which is quantum object, appear to be in the
entangled state. One of the disadvantages of membrane is not enough high
re�ectivity since it reduces the optomechanical coupling.

Quantum entanglement in optomechanical system:

We consider ordinary optomechanical system consisting from optical mode of Fabry-Perot resonator with
eigenfrequency ω0 and bandwidth γ and a mirror which is considered to be a mechanical oscillator with
eigenfrequency ωm and damping Γm = ωm/Qm (shown on picture). The resonator is pumped by laser with
pumping frequency detuned from resonance ωp = ω0 + Ω. The Hamiltonian of optomechanical system is:

Ĥ
~

= ω0â
†â︸ ︷︷ ︸

Ĥopt/~

+ ωmb̂
†b̂︸ ︷︷ ︸

Ĥmech/~

+ G0(b̂+ b̂†)â†â︸ ︷︷ ︸
OM interaction

+ i
√
γ(α̂†inâe

iωpt − h.c.)︸ ︷︷ ︸
optical pumping

+ i
√

Γm

∫
dω

2π
(b̂β̂†ω − h.c.)︸ ︷︷ ︸

mech. dissipation

+
Ĥbath

~
,

where G0 = ω0xZPF/L � coupling considered of optomechanical interaction, xZPF =
√

~/(2mωm) � amplitude

of zero point �uctuations of oscillator, â, b̂ � quantum annihilation operators of optical and mechanical modes
correspondingly, α̂in � annihilation operator of pumping photons, β̂ω � annihilation operator of thermostat

phonons, corresponding to mechanical dissipation, à Ĥbath =
∫
dω
2π

~ωβ̂†ωβ̂ω +
∫
dω
2π

~ωα̂†ωα̂ω � Hamiltonian of
evolution of thermostats (mechanical and optical).

Initial state of optical and

mechanical subsystems

This system is nonlinear, but with powerful enough optical pumping it
could be linearized and the Hamiltonian in the interaction picture with
Ĥ0 = ~ωpâ†â is equivalent to the Hamiltonian of coupled harmonic
oscillators with dissipation:

Ĥeff

~
= Ωâ†â+ ωmb̂

†b̂+Geff(b̂+ b̂†)(â+ â†) +
Ĥdiss

~
+
Ĥbath

~
where Geff = G0A � linear constant of optomechanical interaction,
A =

√
PcL/(~ωpc) � classical amplitude of the optical mode of the

resonator, associated with ñ circulating power Pc.
Solving the standard Heisenberg-Langevin equations we calculate

covariation matrix V(t) of second moments of coordinates and
momentums of oscillators for every moment of time t taking noises into account, assuming that mechanical
thermostat is at temperature T 6= 0, and optical thermostat relating to pumping �eld is at zero temperature
(laser noises are assumed to be quantum). As the initial state V(0) we consider covariation matrix of dual-mode
squeezed state:

V(0) =

(
S(r1, 0) 0

0 S(r2, λ)

)
, where S(r, λ) ≡

(
cosh 2r − sinh 2r cos 2λ sinh 2r sin 2λ

sinh 2r sin 2λ cosh 2r + sinh 2r cos 2λ

)
Owing to that the initial state obviously is Gaussian and dynamics of system is linearized the knowledge of a
matrix V(t) completely de�nes the condition of the state at any moment of time.
Now knowing covariation matrix of system and having set the initial state we can de�ne logarithmic negativity
EN (ρ̂(t)) as monotone and additive entanglement measure for Gaussian state.

Aim of our work: Formulate the requirements for system of two coupled harmonic oscillators with

dissipation at which it would be possible to set up an experiment of the entanglement observation.

Entanglement measures:

In the quantum information �eld entanglement is precious physical resource which we need to quantify, like
energy or entropy. So the question arises: �How much is this state entangled?�. The answer for this question
would be the entanglement measure, which is monotone by the entanglement functional of quantum state and
associates to each density operator a real positive number ρ̂: ρ̂ −→ E(ρ̂) ∈ R+.

Logarithmic negativity � monotone, additive, but not convex functional of quantum entanglement de�ned as
[5]:

EN (ρ̂) = ln ||ρ̂TB ||tr, ||Â||tr = Tr (
√
Â†Â),

where ρ̂TB � partially transposed (with respect to the system B) density operator of bipartite system A and
B.
Theorem. If ρ̂ � is a density operator of a bipartite Gaussian state of 1 × 1 modes, characterized by its

correlation matrix V, then

EN (ρ̂) = max{− ln(ν), 0},
where ν is the minimum symplectic eigenvalues of the partially transposed matrix ΛVΛ, Λ = diag[1, 1, 1,−1].
For Gaussian states nonzero Logarithmic negativity is both necessary and su�cient condition for

entanglement, as it was shown by Simon et. al. [9]. Particularly for bipartite Gaussian state characterized
by covariation matrix which can be written in a block form like:

V =

(
A C
CT B

)
, where A =

(
〈∆x̂2

A〉 〈∆x̂A ◦∆p̂A〉
〈∆x̂A ◦∆p̂A〉 〈∆x̂2

A〉

)
,

B =

(
〈∆x̂2

B〉 〈∆x̂B ◦∆p̂B〉
〈∆x̂B ◦∆p̂B〉 〈∆x̂2

B〉

)
, C =

(
〈∆x̂A ◦∆x̂B〉 〈∆x̂A ◦∆p̂B〉
〈∆p̂A ◦∆x̂B〉 〈∆p̂A ◦∆p̂B〉

)
,

where x̂A,B and p̂A,B � coordinate and momentum of a particles A and B correspondingly, and 〈α̂〉 ≡ Tr[ρ̂α̂],

∆α̂ ≡ α̂− 〈α̂〉, and α̂ ◦ β̂ ≡ 1
2

[α̂β̂ + β̂α̂]. Then the logarithmic negativity is determined by a simple formula:

EN = max

−ln

√
Σ−
√

Σ2 − 4 DetV
2

, 0

 , where Σ = DetA+ DetB − 2 DetC.

Results:

Logarithmic negativity EN as a function of time τ = Λt (Λ = 20γ � sloshing frequency) and initial squeeze
angle of oscillators λ (squeezing � 10 dB) at various values of temperature of the mechanical heat bath T : left
� T = 1K, right � T = 2K, optical frequency ωo = 1.77 × 1015s−1, �nesse: F = 105, length of Fabry-Perot
resonator L = 10 cm, circulating power Pc = 1 W

Logarithmic negativity EN as a function of time at various
values of γ/Λ, squeezing � 10 dB, T = 1K, λ = 0.

Conclusion:

We can see that entanglement in system of
coupled oscillators: (EN ):

1. oscillates with oscillates with the quadruple
sloshing frequency(4Λ);

2. maximal at parallel squeezing of the initial
states: λ = 0;

3. entanglement monotonously increases with
increase of squeezing parameters of the initial
states r1 and r2 for both oscillators;

4. entanglement decreases that faster, than it is
more parameter Θ = 2kBT/(Qm~ωm) [10];

5. entanglement decreases that faster, than it is
more ratio of sloshing frequency to damping
rate: Λ/γ.

The phenomenon of entanglement sudden death (ESD) and sudden revival (ESR) was discovered for entangled
qubits. We investigate it for a continuous variable system. Two initially entangled and afterward interacting
subsystems(mechanical and optical) can become completely disentangled in a �nite time and than the initially
unentangled subsystems can be entangled after a �nite time despite the fact that the coherence between them
exists for all times. We have analyzed and shown that sudden death and sudden revival of the entanglement
is the result of dynamics of system. This ESD and ESR constitutes yet another distinct and counter-intuitive
trait of entanglement. For parameters mentioned above we calculated characteristic �lifetime� of entangled state
(τ ∼ 1µs) which is su�cient for experimental observation of entangled state.
The made estimations allow us to assert about possibility of attainment of the corresponding optimal

parameters for the experimental preparation of quantum oscillators in entangled state.
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