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WHEELER-DE WITT SUPERSPACE AND TOPOLOGICAL TRANSITIONS 

IN GRAVITY THEORY 

V. D. Dzhunushaliev and G. A. Sardanashvili UDC 530.12 

Despite all the success of the Einstein theory of gravitation, it contains a number 
of essential difficulties, and one of them is the problem of gravitational singularities. 
One of the proposed solutions has been to consider these singularities as a kind of topo- 
logical transitions (TT), which we have to learn how to describe in the theory of gravity. 

For the regular case, one can use the method of (3 + l)-splitting and represent evolu- 
tion in a theory of gravity as a certain trajectory in the Wheeler-De Witt superspace of 
3-geometries, which at the same time is the space of states in the canonical quantization 
approach [i]. It seems natural to use a similar construction for the case of TTs as well, 
especially since a number of authors consider TTs in the extreme case of gravitational singu- 
larities as an essentially quantum process. 

Without speaking so far about evolutionary equations which might describe such a process, 
let us consider the necessary condition for the very possibility of such a description: 
namely, the existence of a connected superspace which includes the spaces of 3-geometries 
both before and after the TT. Only if such a connected superspace exists, one can hope 
to connect the points of the 3-geometries before and after the TT by a continuous curve. 
Otherwise, most probably, one will have to be satisfied with defining a formal matrix of 
the TT probabilities, as is done, e.g., in [2]. 

Using the method of (3 + l)-splitting, a regular spacetime can be represented as a 
spacetime foliation, whose leaves are three-dimensional spacelike hypersurfaces considered 
as surfaces of simultaneity. For any finite time interval, all the leaves of such a foliation 
are diffeomorphic to each other. 

The presence of a gravitational singularity (if there is no causality violation) can 
be represented as the existence of a singularity of the spacetime foliation and the TT as 
a change in the topology of leaves of the foliation [3]. We shall assume that the TT takes 
place in a relatively compact region of spacetime and that the leaves of the foliation are 
compact, since if they are noncompact and if the metric at the infinity is isotropic, they 
can be compactified by adding the infinity point. Then the TT satisfies the following theo- 
rems [4]: 

Definition. Two smooth compact oriented n-dimensional manifolds M I and M 2 are called 
orientedly cobordant if there exists a smooth compact oriented manifold N such that its 
boundary 8N is orientedly diffeomorphic to the manifold M I + (-M2), where (-M 2) means the 
manifold M 2 with the reversed orientation. 

THEOREM. Any two three-dimensional compact manifolds are cobordant. 

THEOREM. On each cobordism there exists a correct Morse function. 

This means that there are no topological obstacles to changing the topology of spacelike 
leaves, and such a change can be represented as a chain of transitions through critical 
points of some Morse function on the spacetime manifold, the level surfaces of this Morse 
function being the leaves of the manifold. Therefore, it suffices to consider a TT through 
one critical point of the Morse function. 
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By a choice of coordinates, the Morse function in the neighborhood of a critical point 
can be represented in the canonical form 

K 4 

i=l /=ic-~1 

The index k is uniquely determined by the critical point and completely determines the type 
of the TT through this point, according to the following theorem [5]: 

THEOREM. Let us denote the leaf of the singular foliation under consideration before 
the transition by M_, and the leaf after the transition through the critical point of index 
k, by M+. Then there are cells e k and e 4-k whose intersection ekn e 4-k coI~tains only the 
critical point itself, and satisfying the conditions that M_n e k = 8e k, M+ne 1-k = 8e l-k, 
and that M - 8e k is diffeomorphic to M+ - 8e -k 

This means that the TT can be represented as a mapping of M into M+ such that M - ~e k 
is uniquely mapped onto M+ - 8e4-k; 8e k ~M contracts into the c~itical point, and th~n ex- 
pands to 8e 4-k ~ M+. 

Consider now the behavior of Wheeler-De Witt superspaces under such a TT. Since the 
leaves of the spacetime foliation are diffeomorphic to some typical leaf M for the case 
of regular evolution, it can be described as a change of the space metric on M, or as a 
motion in the superspace S(M). 

To define the superspace S(M), we shall first introduce a linear space SL(M) of symme- 
tric covariant tensor field of rank 2 on M, and define the topology of uniform convergence 
on it in derivatives of arbitrary order. This topology induces a topology on the subspace 
R(M) of Riemannian metrics on M, which forms an open cone in SL(M). The factorspace R(M) over 
the group of diffeomorphisms of the manifold M is called the Wheeler-De Witt superspace 
S(M). Generally, however, the superspace S(M) has a bad structure, and it is often more 
convenient to deal with the space R(M), which is a Frechet manifold, metrizable and connected 
[6]. 

In the case of a TT, when there are two nondiffeomorphic typical leaves M and M+, we 
have the problem of gluing together the superspaces S(M ) and S(M+) or spaces R(M ) and 
R(M+). The gluing can be accomplished using the diffeomorphism of the spaces M Z 8e k and 
M+ - 8e ~-k. To do it, let us consider in the space SL(M_) the subspace T of t~nsor fields 
which are Riemannian metrics on M - 8e k, and whose components all vanish-on 8e k. The 
points of T are boundary points With respect to the open cone R(M ) in the space SL(M ), but 
the space T_ itself is not closed in SL(M_). 

Let us construct a similar space T+~SL(M+) of Eiemannian metrics M+ - 8e 4-k, vanishing 
on 8e 4-k. The spaces T+ and T are homeomorphic to each other. Let us glue the spaces 
R(M_) U T_ and R(M+)U T+ over the boundary points of T and T+, identifying these points and 
defining the topology of gluing on the resultant space R. In this topology, the neighbor- 
hoods of a point g obtained by identifying the points G and G+ from T_ and T+, are all sets 
whose intersections with the spaces R(M) U T_ and R(M+)UT+ imbedded in R, are the neighbor- 
hoods of g_ and g+ in R(M_)U T_ and R(M+)U T+, respectively. 

The space R is connected (though it need not be a manifold at the glued points), and 
the change of the metric during the TT can be described by a trajectory in R connecting 
the points of R(M_) and R(M+). 

Let us now construct a superspace of TT of index k. To do that, let us consider the 
group G of diffeomorphisms of the leaf M_, leaving the boundary 8eke M invariant, and 
the grou-p G+ of diffeomorphisms of the leaf M+, leaving theboundary 8e~-~M+ invariant. 
The actions of the group G on the space T_ and of the group G+ on the space T+ are equiva- 
lent. Therefore, one can define the factorspace of the space R with respect to the action 
of the groups G and G+ in ~, which can be considered as a generalization of the Wheeler- 
De Witt superspace to the case of TT. The points from T+/G+ are not isolated in S, and there 
are trajectories in S connecting the points of 3-geometries before and after the TT. 

Let us emphasize that the superspace S is not obtained by gluing the superspaces S(M ) 
and S(M+) together. The reason is that we considered a TT at a fixed spacetime point with 
contraction and expansion of the leaves along fixed cells e k and e ~-k. Therefore, the fac- 
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torspaces of the spaces R(M_) and R(M+) were not taken with respect to the groups of all dif- 
feomorphisms of the leaves M_ and M+, but rather with respect to smaller groups G_ and G+. 
If necessary, one can also consider the case of a "wandering" TT point. 

Thus, we showed that it is possible in principle to describe the evolution in the theory 
of gravity through TTs. The next step of the description of TTs should be a construction 
of related evolutionary equations. 
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EXACT SOLUTIONS OF THE EQUATIONS OF MOTIONS OF QUARKS 

IN A NON-ABELIAN FIELD OF A FLAT COLOR WAVE 

I. A. Obukhov, V. K. Perez-Fernandez, and V. R. Khalilov UDC 539.1.01 

Exact solutions of the equations of motion of quarks in a non-Abelian field of 
a flat color wave of aspectral configuration are obtained. The gauge field of 
the wave takes values from the SU(2) group and is an exact solution of the 
Yang-Mills equations. 

As shown in [i], the flat-wave solution of the Yang-Mills equations can be written as: 

A~ = [fa (~) (n~ .x)  + ga (~)(n2. x) + h a (~)1 K~. (1) 

Here A~ are the vector potentials of the Yang-Mills fields; a is the color index; n~ I and 
nD 2 are the spacelike 4-vectors specifying the polarization of the color wave; KD is the 
isotropic wave 4-vector; ~ = (K'x) is the wave phase; (a.b) = g~a~b ~ is the scalar product 
in the Minkowski space with diag ~v = (i, -i, -i, -i); fa G ), ga($), and ha(S) are arbitrary 
bounded functions of the phase $; (nl-n 2) = (K-n I) = (K.n 2) = 0. 

If the energy density of the Yang-Mills fields is bounded, the direction of the Poynting 
vector is constant, and its norm numerically equals the energy density, then the solution 
(i) is unique modulo ha(~) [i]. 

The functions ha(S) in expression (i) are a purely gauge artifact and can be eliminated 
by a gaugetransformation which depends only on $. The existence of such a transformation 
follows from the gauge freedom remaining after applying to the vector potentials A~ the 
Lorentz condition: 

d~A ~ = O. 
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