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INTRODUCTION

In 1941, Kolmogorov proposed two hypotheses [1],
which formed the basis of turbulence theory [2, 3].
However, throughout the years of intensive studies,
these hypotheses have never been rigorously proven
[4], although they were experimentally confirmed in
the “–5/3 law.” In this paper a way of proving of sec�
ond Kolmogorov hypothesis is outlined if we expand
the first one. This complement makes it possible to
describe the entire spectrum (in both the viscous and
the energy ranges), as well as to use inverse Fourier
transform to explain observed deviation of structural
and correlation functions from Kolmogorov law [5].

In the extended formulation, the first similarity
hypothesis is written as follows: “For the locally iso�
tropic turbulence the distribution of Fn is uniquely
determined by the quantities ν, ε, and E.” We have
added the turbulence energy, E to Kolmogorov’s for�
mulation. The key role of turbulence energy in the
small�scale fluctuations spectrum formation was
always beyond doubt, but the addition of this parame�
ter destroys the assumption on the unicity of the spec�
trum shape, which is derived from the dimensional
analysis. In the dimensionless coordinates, the spec�
trum can also contain a function of the dimensionless

ratio E/ , where ε is the dissipation rate and ν is
the kinematic viscosity. This ratio in turn depends on
the Reynolds number.

To validate Kolmogorov’s second hypothesis, we
proceed from the universality of the kinetic energy dis�
sipation spectrum ε(κ) = κ2E(κ) = 4πκ4Φ(κ), where
E(κ) is the kinetic energy spectral density of uniform
and isotropic stationary turbulence. The Fourier
transform of the correlation function is expressed
trough Φ(κ) [2]. The universality of dissipation rate
spectrum ε(κ) is certainly a hypothesis, but this
hypothesis is generally adopted from the physical
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assumption that, at small scales the mechanism of the
mixing and energy transfer over the spectrum is the
same and independent of external conditions. How�
ever, the spectrum width depends on the Reynolds
number, which relates the internal and external (inte�
gral) scales of turbulence.

In a spatial spectral representation [6], the kinetic
energy of turbulence is expressed through E(κ) as
follows:

(1)

However, kinetic energy of Lagrange particles is not
rigorously conserved, since it can transform to poten�
tial energy, which, in turn, can transform to heat
(internal) energy. We will not consider a relationship
between the kinetic and total energies of turbulence.
We only assume that these energies are statistically
proportional to each other. This assumption allows us
to remain within Kolmogorov’s representation and
not to go to frequency distributions of energy fluctua�
tions. At the same time, the closure we propose in this
work can be only proved by using the connection
between kinetic and internal or available potential
energies of turbulence, as well as of a finitness of tur�
bulent irregularities lifetime.

The closure of the turbulence spectrum on small
and large scales rests on the assumptions formulated in
[7], and on the energy transfer over the spectrum via
the wave interaction of incompressible turbulent
movements (Kolmogorov turbulence) with fast adia�
batic oscillations, i.e., acoustic and acoustic–gravity
waves [7]. Fast (high�frequency) and compressible
waves transfer the energy and momentum and smooth
the physical properties of incompressible Lagrangian
particles. The mechanism of this mixing is well known.
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It was proposed by Tatarskii [8] and it is the Bragg’s or
resonance interaction of acoustic waves with turbu�
lence. Unlike the traditional Obukhov’s model [6], as
well as the models that were proposed by other authors
(for further details see [2]), the energy flow over the
spectrum is related to probabilistic transition between
two arbitrary wavenumbers κi and κj rather than to
energy transfer through the wavenumber κ. The statis�
tical parametrization of these resonance transitions,
which can be represented as the interaction of the
“turbulence diffraction gratings” with fast adiabatic
movements, leads to the entropy dissipation of the
Lagrangian particles. The dissipation rate statistically
characterizes the incompressible turbulent fluctuation
lifetime [9]. Nonlinear wave interaction can also be
described via the Hamiltonian formalism of the inter�
action of incompressible turbulence with acoustic
waves [10].

THE SPECTRAL REPRESENTATION
AND INTEGRAL RELATIONS

In uniform and isotropic turbulence the kinetic
energy is expressed through the correlation function
of the Lagrangian particles velocities Bij at zero: E =
Bii(0), where Bij(Δr) = 〈ui(r)uj(r')〉 and Δr = |r' – r|.
The angular brackets mean the statistical averaging
and subscripts denote the orthogonal components of
velocity vector, u, repeated indices are implicitly
summed over (i.e. E is the trace of the correlation
tensor).

The convergence of integral (1) does not result
from Kolmogorov’s hypotheses since Kolmogorov
considers the structural function of the velocities [2]
Wij(Δr) = 2(Bij(0) – Bij(Δr)) rather than the correla�
tion functions. In Kolmogorov theory, the energy of
turbulence can take an infinitely large value. Note that
the correlation and structural functions have the same
dimension; therefore, the behavior of the velocity
structure function in the inertial range based only on
dimension analysis cannot explain the behavior of the
correlation function in this range. It suggests that
Bii(0) or the energy of turbulent mixing is the
governing characteristic of the turbulent fluctuations
spectrum.

In Kolmogorov model, the velocity spectral density
E(κ) determines one more important integral, namely,
the dissipation rate:

(2)

A key feature of integrals (1) and (2) is the following
obvious corollary of the Kolmogorov–Obukhov law:
the “–5/3 law” makes it impossible to determine the
energy of turbulence and the dissipation rate by Kol�
mogorov spectral density integration [8]. If E(κ) ~ κ–5/3,

ε 2ν κ2E κ( ) κ.d
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integral (1) diverges at zero and integral (2) diverges at
κ  ∞. To overcome this obvious obstacle, not long
after the publication of Kolmogorov’s and Obukhov’s
results, several model closure schemes of a “universal”
turbulence spectrum in the viscous and energy ranges
were proposed [2]. These schemes have not com�
pletely been validated physically as yet, but they are
essentially necessary for calculating of waves propaga�
tion in a turbulent medium; therefore, they are used in
practice as “empirical” ones [11].

To combine observed behavior of the velocity spec�
trum and the effect of adiabatic fluctuations in the
high�frequency range on this spectrum, the following
closure formula is proposed:

(3)

If  � κ � κ0, E(κ) ~ κ–5/3 and it describes the

empirical Kolmogorov–Obukhov law. At δ  0, the
term in the braces tends to unity and can be considered
as a correction factor in Kolmogorov theory. This term
is necessary, since the parameter ε in (3) is determined
by the behavior of the spectrum at high frequencies; at
κ  ∞ the spectrum is governed by the damping of
fast adiabatic oscillations, which transfer and smooth
the energy and momentum fluctuations of the
Lagrangian particles [7].

The parameter κ0 = 2π/L0, where L0 is the integral
scale of turbulence, is required to limit the Kolmog�
orov spectrum at zero. Unlike von Karman spectrum
[12] we limit the scalar spectral density E(κ) rather
than Φ(κ). The latter function always enters into
three�dimensional spectral integrals with the multi�
plier κ2. The finiteness of the small�scale turbulence
spectral density E(κ) at zero are confirmed by numer�
ous observations, both classical [13, 14] and current
[15]. The value of E(0) is an important characteristic
of the spectrum since it determines the convergence of
the correlation function Bii(r).

In the uniform and isotropic turbulence E and B
are related by the following relation:

(4)

The Fourier transform makes it possible to calculate
the correlation and spectral functions using spectrum
(3) and shows that the structure function behavior in
the vicinity of zero is determined by the spectrum
behavior in the vicinity of κ0. Formula (3) can also be
considered just as a convenient approximation. Other
variants of the spectrum in the low�frequency range (at
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0 < κ < κ0), with Obukhov’s limit E(κ) ~ κ–5/3 at κ �
κ0, will only give a correction factor of the order of
unity in calculations (1) and (2).

Two parameters of spectral distribution (3) (κ0 and
δ) are uniquely related to integral characteristics of the
spectrum (E and ε). Under increasing Reynolds num�
ber and the dimensionless quantity L0/δ, the depen�
dence of δ on E is decreased and δ becomes a function
of ε and ν only. In the inertial range, if κ0 � κ � 1/δ
and L0/δ  ∞, the dependence of the spectral den�
sity on both ν and E falls out of (3), which proves Kol�
mogorov’s second hypothesis.

CONVERGENCE TO THE KINETIC ENERGY 
OF TURBULENCE

Let us consider the integral

(5)

The substitution of variables κ = κ0t yields the follow�
ing expression:

(6)

We also introduce the following designation of the
dimensionless number: κ0δ ≡ Δ. As the Reynolds num�
ber increases, Δ  0. Let us now consider the follow�
ing integral I:

(7)

We divide this integral into two parts (I1 and I2) with
different behaviors at t  ∞ and Δ  0:

(8)

and

(9)
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The expansion of the function in the braces into the
Taylor series at t < m and Δ  0 so that Δm � 1 yields
the following expression:

(10)

It can be seen that at Δ  0 the remainders decrease,
except for the first one.

Let us make an upper estimate of the second inte�

gral. Since  ≤ 1, then

(11)

The first term in braces is retained to express the gen�
eral integral through

 = 3/2. 

The remainders are of the order of (m + 1)–2/3; at
m  ∞, these remainders are much less than unity.
If the remainders in the integral I1 are also to be less
than the principal term and to decrease with the same
rate as the reminders in I2 does, it is sufficient to set
Δ(m + 1) = const � 1.

Thus, at Δ  0, only the first term can be retained
in the integral I and the other terms can be dropped. In
this case the integral I is expressed as follows:

(12)
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Then we obtain:

(13)

or, within numerical factor of the order of unity the

integral scale of turbulence is L0 = . It is obvi�

ous that L0 is not implicitly dependent on ν at Δ  0.

CONVERGENCE TO THE DISSIPATION RATE

Let us now consider integral (2). When the spectrum
E(κ) ~ κ–5/3 is used, this integral diverges at κ  ∞.
The Gaussian truncation at the high�frequency band of
the spectrum, which was proposed by Novikov and
used by Tatarski, is not validated from the physical
viewpoint and does not correspond to the observations
[2, 12]. This formula also requires a special truncation
scale to be introduced. Approximation (3) proposed in
this work does not require this scale and explains the lim�
itation of the dissipation rate spectrum ε(κ) at κ  ∞
by the damping of high�frequency adiabatic waves. In
the “viscosity range” the dissipation rate decreases
nearly exponentially, as the spectrum of adiabatic oscil�
lations, which is concentrated in the high�frequency
range and has the Planck form [7]. The assumption of
the Planck curve for the adiabatic turbulent fluctua�
tions spectrum was made by Obukhov in 1941 [6]. In
other words, the proposed hypothesis of closure has a
physical explanation rather than being only the corol�
lary of mathematical convergence requirements or
“empirical” functions.

Using the above�introduced notations, we obtain
the following expression:

(14)

where

(15)

but here, t = δκ.

We also divide this integral into two parts (J1 at t <
m < 1) and (J2 at t > m), which demonstrate different
behaviors at Δ  0 and t  ∞. In the vicinity of

zero, we have  � 1. Therefore,
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if m < 1. Introducing x = Δ + t and shifting the limits,
we obtain the following estimation:

(17)

if Δ < m.
The principal value of the integral J is determined

by the value of J2, i.e., by the behavior of the integrand
at t  ∞:

(18)

If t > m and Δ < m, the expression in the braces can be

estimated as 1 –  + . Let us introduce the

additional designation

J0 =  = Γ(7/3)ζ(7/3) ≈ 1.658, 

where Γ(x) is the gamma function and ζ(x) is the Rie�
mann zeta function. Then we obtain the following
expression:

(19)

The last correction term for J0 can easily be estimated
by expanding the exponent into a Taylor series. It is
approximately equal to 0.75m4/3 at m � 1. In other
words, at Δ  0, m should be selected so that Δ �
m � 1. Then J1 � J2 and J ≈ J0. For example, a power
dependence between m and Δ can be established as
m ~ Δ3/7, so that at Δ  0 the remainders in (16) and
(18) decrease with the same rate.

For now, the relation between ε, ν, and δ can be
found. From (14), ε1/3 = 2CνJ0δ–4/3, and we obtain the
following relation:

(20)

This formula shows that the parameter δ of spectral
density (3) is proportional to Kolmogorov’s internal
scale. In this case, there is no need for introducing an
additional scale for the “viscosity range.” The empiri�
cal coefficient C was introduced to adjust the spectrum
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(3) to Kolmogorov one, because the damping of fast
adiabatic oscillations is caused not only by the kine�
matic viscosity ν, but also by the thermal diffusivity χ.
For adiabatic movements, the effective loss factor is

η =  + χ, where Cp/C
v
 is the ratio of air

heat capacities at constant pressure and volume (den�
sity) [16].

CONCLUSIONS

Model (3) of the small�scale turbulence spectrum
that was presented in this paper is a statistical model.
This means that the integral characteristics ε and E,
which determine the parameters of the spectrum κ0 or
L0 and δ remain unchanged within the statistical
ensemble of turbulent fluctuations. The phenomenon
of intermittency, e.g., fast and random change in
parameter ε, observed in atmospheric turbulent flows
cannot be explained in the context of Kolmogorov
approach.

To explain the phenomenon of intermittency, it is
necessary to go beyond the limits of the incompress�
ibility and stationary approximation and to consider
the relation between the kinetic and total energies of
turbulence. The total energy of turbulence also
includes the thermal and potential components. These
components can be joined in the concept of the avail�
able potential energy of turbulence [17], which is the
fraction of the total energy that can freely transform to
kinetic energy and back, resulting in intermittency.
Similarly, the dissipation of the kinetic energy ε is not
only component of the total dissipation of turbulent
fluctuations. One would expect that the turbulent
kinetic energy that is experimentally determined using
formula (13) is a fluctuating characteristic even if the
total energy of turbulence is conserved. Experimental
observations show that these fluctuations are appeared
in calculations of structure function of temperature or
sound velocity fluctuations [9] and in the refraction
index of turbulent atmosphere [11]. Strong fluctua�
tions of the temperature structure function exponent
in the atmospheric boundary layer were observed by
Tatarski as early as 1956 [2].

The spectrum parameters κ0 and δ depend on sta�
tistical properties of turbulence and should be deter�
mined experimentally or they can be parametrized in
the models depending on the thermal and velocity
stratification. For example, parameter κ0 can be esti�
mated by so�called compensated (fE( f)) frequency
spectra of small�scale turbulent fluctuations [14] using
Taylor’s hypothesis: f = Uκ, where U is the average
velocity of the turbulent flow. If fm is the maximum of
such a spectrum and fm = Uκm, it can easily be calcu�
lated that κm = 1.5κ0 if δκ0 � 1.

The parameter δ (internal scale) in spectrum (3)
characterizes the behavior of the spectrum of adiabatic
fluctuations [7]. In the Plank approximation of this
spectrum, δ ≈ γcs/C

v
T, where γ is the damping param�

eter of the entropy fluctuations of the Lagrange parti�
cles and cs is the average sound velocity.

This work does not present a rigorous proof of the
second Kolmogorov hypothesis. It just outlines a way
towards such proof. For example, the question is topi�
cal of why the exponent is 5/3 in the observations and
in spectrum (3) if the dimensional analysis offer other
possible combinations. Possibly, the answer can be
found using the concept of redistribution of total
energy over three components (kinetic, potential and
internal) in view of the anisotropy of turbulent mixing.
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