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ON ESTIMATES OF MEROMORPHIC FUNCTIONS
AND SUMMATION OF SERIES IN THE

ROOT VECTORS OF NONSELFADJOINT OPERATORS
UDC 519.45

A. A. SHKALIKOV

1°. Let L be an unbounded operator with discrete spectrum acting in a separable
Hilbert space ©. It is convenient in what follows to assume that ker L = 0, i.e., L™ exists
and is a compact operator. Furthermore, it is assumed below that L' is an operator of
finite order. Let {e,} be a sequence of eigenvectors and associated vectors (EV’s and AV’s)
of L corresponding to the eigenvalues'(EVAL’s) (A}, and for the adjoint operator let {e}}
be the sequence of EV’s and AV’s biorthogonal to the system {e}.

We say that the EV’s and AV’s of L form a basis for the Abel summation method of
order a, and write L € A(a, 9), if the following conditions hold:

1) With the exception of finitely many EVAL'’s, the spectrum of L lies in the sector
|arg A |< 7 /26 for some 6 > a.

2) There exist disjoint domains G, (k ="1,2,...), each containing at most finitely many
EVAL’s A, with the whole spectrum of L in their union and such that the series

o0

(1) u(f,1) = s 3 (L — A1) fdA
2mi =,
converges for any ¢ > 0.
3) The limit lim,_, ;o u( f, t) = fexists in the sense of strong convergence in .
Note that when there are no associated vectors, the series (1) coincides with the series

) Wfi)=3 3 eM(fiet)e,
k

=1 \,€G,

and the choice of the domains G, corresponds to an arrangement of parentheses in the
Abel summation method.

Questions involving summation of series in the EV’s and AV’s of nonselfadjoint
operators by the Abel method were first studied in [1]. These questions were later studied
by many authors for abstract, differential and. pseuodifferential operators; in particular,
see [2]-[6].

2°. We shall use the following notation:
1) A% = (A:|@ — arg A|< 7/20},1/2 <0 < o0, and AG = Ay;
2) P2, =P,,={(A:ReA=>1,|ImA|<h(ReA)?} and P}, = {(\: e A E P}, ~o0 <
g<1,h>0
(domains bounded by parabolas, straight lines or hyperbolas, depending on the sign of g);
3) K(A,, R) = {A:|A — A,|< R}, and K = K(0, R);
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4 n,(r)= EM<,1 and 7, (r) = 2:;'« 1, where the A are the EVAL’s of L, and the s,
are the s-numbers of L™';

5)d(\, G) is the distance from a point A to the domain G; and

6) W¥[0,1] is the Sobolev space of functions on [0, 1], with norm || f|l,x = || fll ., +
(AP

The next result follows from [1] when a remark in [5] (see §36.4) is taken into account.

THEOREM. Suppose that the spectrum of L lies in the domain G = Kg U Ay for some
0 > p, R is sufficiently large, the estimate

(2) (L —A1)'||< cd™'(A,G)

holds outside of G, and the condition /i ;(r) < Cr” is satisfied.
Then L € A(a, ©) for a € ( p, 8). Moreover, the domains G, in (1) can be chosen as the
simply connected components of the set

K= G K()\l‘e“"'r_""), 0<e<a-—p,

j=1
i.e., only terms corresponding to exponentially close EVAL’s A, are combined in parentheses.

In investigating solutions of differential equations with operator coefficients (see [1]) it
is important to establish the property L € A(a, £) for a = 1. In this connection it is
important to determine general conditions under which it is possible to extend the interval
for the order of summability. This note deals with this question and with the investigation
of the limit case when the Abel summation method of a specific order does not work. Our
main result is

THEOREM 1. Suppose that there are finitely many rays y, = re'?, j = 1, 2,....m0<r<
oo, |arg ;| < m/28, such that the spectrum of L lies in the domain

G= U PY UK,
Jj=1

(in the domain G = U;":, AY UKg, R= R(B), for arbitrarily large B), while the estimate
(2) holds outside of G. If

(3) limn,(r)r?=a<w

r— oo
andp — (1 — q) <8(p <8),then L € A(a, O) for all a with max[0, p — 1=—q))<a<¥
(p < a < 8). Moreover, if the number a in condition (3) is equal to zero or the number h can
be chosen arbitrarily small, then the value « = p — (1 — q) is allowed if p — (1 — q) = 0. If
n,(r+r% —ny(r)= O(r") for somep, = 0, then for a > p, the domains G, in (1) can be
chosen as the simply connected components of the set X = U7_ K(A, e M,

REMARK 1. If L = L, + L,, where L, is a selfadjoint operator, D(L,) C D(L,), and
L, fll < C||IL§/f|| for all f € D(L,) for some g <1, then it is easy to verify that the
estimate (2) holds for the resolvent of L, where G = Kz U P, and R and h are some
numbers. Therefore, setting m = 1 and @; = 0 in Theorem 1, we get the summability
results in [2], [4] and [5] and the summability theorem in [3] for operators of finite order.
The question of the arrangement of the parentheses was not studied in [2]-[4], but in [5]
the question of the frequency of an arrangement of parentheses was studied under the
assumption that n,(r) =r? + O(r?"), p, <p, though the question of just which terms
should be combined in parentheses was not considered.
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To prove Theorem 1 we use new estimates for meromorphic functions; these estimates
are of independent interest.

THEOREM 2. Suppose that F(X) is the quotient of two holomorphic functions of finite order
in the domain P, . ., € > 0, and that its poles (X} lie in P, . Suppose that

(4) limng(r)r”<a, ng(r)= 3 1.
reoo Aj=r
Then there is a sequence ry <r, < --- <r, — 00 such that

|F(A)|< Cexp(Cih(a+ 8)A"?)

for|N|=r,and\ € P, ,, where 8 > 0 is an arbitrary number, and the constants C and C, do
not depend on A, a + 8, nor hif 0 < h < h, h, a fixed number.

If the condition np(r + r?) — ny(r) = O(r”") holds for some p, = 0 instead of condition
(4), then the estimate

[F(V)] < CexplA”

holds outside the set X. = UT_ | K(X,exp{-|A,[* 7' %}),0<e<a —p,, fora>p,.

3°.If L € A(1, ), then a solution of the Cauchy problem
(5) du/dt + Lu = 0, t>0, Ul—o=f€P

(the last condition is understood in the sense that u(z) — f as t — +0) exists and can be
represented for all 7 > 0 by a convergent series in the EV’s and AV’s of L:

6) u(x, 1) = §I S ¢ (1)(f.e?)e,.
k=1 j=N,

where the coefficients ¢;(t) can be determined from (1) with « = 1, and have the form
¢,(1) = exp{-A,r} when the EVAL’s are simple.

The existence of a solution of (5) can be guaranteed if the spectrum of L lies in the
domain G = K U A, for some # > 1, while the estimate (2) holds outside this domain. In
this case the integral

(7) u(f,t):—E%Le"“(L—)\I)"fd)\,

where the contour I' encircles the spectrum of L and is asymptotically directed along the
sides of the angle Ay, 1 <8’ <4, is a solution of problem (5) for 7 > 0 (see [1]), and use
the remark on p. 347 of [5] enables us to show that u( f, 1) — fast— +0. We note also
that the function u( f, ¢) is analytic in ¢ in the sector A, J(0—1)-

For certain concrete operators it has not been possible to show that the integral in (7) is
representable for all 7 > 0 by a convergent series (6) in the EV’s and AV’s of L, but it has
been possible to prove such a representation for sufficiently large ¢. The following
definition is useful in this connection.

DEFINITION. We write L € H(a, $) if the following conditions hold:

1) All but finitely many of the EVAL’s of L lie in a sector Ay, 0> a.

2) For a suitable choice of the domains G, the series (1) converges for all 1 > ¢, where
to=0 is a sufficiently large number not depending on f, and the function u(f, 1)
representing this series is analytic in some neighborhood of the ray (g, ).

3) u( f, t) admits an analytic extension to a domain containing the ray (0, o0), and the
limit lim,_, o u( f, 1) = fexists in the strong sense.
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We mention the following simple fact. If L € H(a, $), then the system {e;} of EV’s
and AV’s of L and the system {ef} are complete in ©. Indeed, if an element y is
orthogonal to all the EV’s and AV’s of L, then the function F(7) = (u( f,1),¢) is equal to
zero for t > t,, so F(¢) = 0 in some domain containing the ray (0, 00). But F(2) = (f,¢)
as t — +0; therefore, (f,¢) = 0 for all f € §, which implies that ¢ = 0. Similarly, if fis
orthogonal to the elements {e*}, then ( f,¥)=0forally € $,andsof= 0.

If L € H(1, ©), then a solution of problem (5) exists and can be represented by a
convergent series (6) for large 7 > ;. Indeed, in the case L € H(1, ©) the function u(x, t)
defined for 1 > ¢, by (6) satisfies the equation u( f, 1) = ~L'W'(f,t) for t >1t,, and the
functions u(x, t) and u’(x, t) can be extended analytically to a neighborhood of the ray
(0, 00). Hence, u’(f,t) € © for all >0, and the uniqueness of the analytic extension
gives us that u(f, 1) CD(L) for all > 0; moreover, u( f,t) = f as t = 0. Therefore,
u(x, t) is a solution of (5).

Using Theorem 2, we get the following result.

THEOREM 3. If (3) holds for some p > 0, the spectrum of L lies in the domain G = K U
P,p—(1—9> 0 (G=AyU Kg,8>p), and the estimate (2) holds outside G, then
LeH(p—(1-4q),9)(LEH(p, D).

4°. We present two examples in which the limit situation considered in the preceding
section is encountered.
ExampLE 1. Consider the operator

(8) Lu=Au+ Tu, ulyy=0,

in a bounded domain  C R?, where A is the Laplace operator, and T is a differential
operator of order 1 whose coefficients are bounded functions.

It is known (see, for example, [1]) that n(L, r) ~ Cr*/?, and by using Remark 1 we can
get the estimate (2) for the resolvent of L outside the domain G = Kz U P, , for ¢ = 1/2.
We then conclude from Theorem 3 that L € H(1, L,(2)). Thus, problem (5) with L
defined in (8) has a solution which is given by (7) and can be represented by a convergent
series in the EV’s and AV’s of L for large 1.

ExAMPLE 2. Consider the problem
Fu_, W Pu
9 010x  Jx?2

9 -

in the half-strip S = {0 < x < 1,0 < < o0}, with the boundary conditions
(10) u(0,7) =u(1,2)=0, >0, u(x,1)|_o=f(x), u(x,00)=0.

With this problem we associate the operator pencil M(A) = A + iAB — NI, where
A = -d*/dx* B = 2aid/dx, I is the identity operator, and the domain of the operator
M(MN) is D(M) = {y(x): y(x) € W3[0, 1], y(0) = y(1) = 0}. The operator pencil M,(N)
= A"'/2M(X)A"/? (see [7]) admits the factorization

M,(A) = (I +XA"2K") (I — AKA™'/?%)
with respect to the imaginary axis. Then we get

M(M\) = (42K + NI )(K~'4"/? — \I),

=0, —-l<a<l,

and the EVAL’s and EV’s of the operator L = K ~'4'/? coincide with the EVAL’s and
EV’s of the pencil M()) in the right half-plane, which in this case have the explicit form
A, =k, e(x) = eP**sin kx, B = a/ 1 — a*. Using the estimate |[M ~'(A)|| < C|A[?in
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the angles abutting on the imaginary axis (see [7]), we can get the estimate |(L — A1)7'|| <
C|A[" for X & Ay, 1 <6 <m/(m — 2arccos a). Then L € H(1, L,), the integral (7) gives
a solution of problem (9), (10), and for large ¢ this solution can be represented by a
convergent series

o0
u(f,t) = 3 ce *ePkxsin kx.
k=1

It can be shown that this series does not, generally speaking, converge for all 1 > 0, i.e.,
L & A1, L,).
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