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CLASSICAL HIGGS FIELDS

G. A. Sardanashvily∗

We consider a classical gauge theory on a principal fiber bundle P → X in the case where its structure

group G is reduced to a subgroup H in the presence of classical Higgs fields described by global sections

of the quotient fiber bundle P/H → X. We show that matter fields with the exact symmetry group H in

such a theory are described by sections of the composition fiber bundle Y → P/H → X, where Y → P/H

is the fiber bundle with the structure group H , and the Lagrangian of these sections is factored by virtue

of the vertical covariant differential determined by a connection on the fiber bundle Y → P/H .
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1. Introduction

In the general case, a classical gauge theory comprises fields of three types: gauge potentials, matter
fields, and classical Higgs fields. The last appear in a gauge theory after spontaneous symmetry breaking
that results in the transformation group for matter fields becoming smaller than the gauge group. We note
that the nature of the phenomenon of spontaneous symmetry breaking is more general; for example, in
quantum field theory, it is characterized by a Higgs vacuum similar to a background classical field [1].

We can completely formulate a classical field theory in terms of a Lagrangian theory on smooth fiber
bundles whose sections are classical fields [2], [3]. Correspondingly, a classical gauge theory is a classical
field theory on principal and associated fiber bundles [3], [4]. In a gauge theory on a principal fiber bundle
P → X , a spontaneous symmetry breaking pertains to reducing its structure Lie group G to a closed
subgroup H of exact symmetries [5]–[8]. Such a reduction is possible if and only if the quotient fiber bundle
P/H → X admits global sections h (Theorem 1). These sections can be interpreted as classical Higgs
fields [5], [6], [8], [9]. They parameterize the principal reduced subbundles P h (with the structure group H)
of the principal fiber bundle P . These subbundles are not equivalent (Remark 3) and are nonisomorphic in
the general case (Theorem 4).

If we reduce the structure group G of a principal fiber bundle P → X to a closed subgroup H , then
in the framework of this gauge theory, we can represent matter fields with the exact symmetry group H

as sections sh associated with subbundles P h ⊂ P of fiber bundles Y h with typical fibers V endowed with
the left action of the group H . Because the subbundles P h are not equivalent, such a matter field can
enter the theory only together with a definite Higgs field h. The problem of describing the set of all pairs
(sh, h) of matter and Higgs fields thus arises. These pairs are sections of the composition fiber bundle
Y → P/H → X (see (21)), where Y → P/H is a fiber bundle with the structure group H and a typical
fiber V , and this fiber bundle is associated with the principal H-bundle P → P/H (Sec. 5). The geometry
of such composition fiber bundles was studied in [3], [9]. The key observation is that for any section h of
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the quotient fiber bundle P/H → X , the fiber bundle h∗Y induced by the fiber bundle Y → P/H is a
subbundle Y h of Y → X , and this subbundle is associated with the principal reduced subbundle P h ⊂ P

with the structure group H . Its sections sh correspond to matter fields in the presence of a background
Higgs field h.

Following [9], we here prove that the composition fiber bundle Y → X is a P -associated fiber bundle
with the structure group G (Theorem 9). This allows describing matter fields with the symmetry group H

in terms of the gauge theory on the principal fiber bundle P (Sec. 6). The key point is that the Lagrangian
of these matter fields is factored through the vertical covariant differential ˜D (see (29)) determined by an
H-connection on the fiber bundle Y → P/H . The restriction Ah of this connection on the subbundle
Y h ⊂ Y then becomes an H-connection on this subbundle (Proposition 3), and the restriction Y h of the
vertical covariant differential ˜D then becomes the differential covariant with respect to the connection Ah

(Proposition 4).
But the problem is that a connection on a fiber bundle Y → P/H is not a dynamical variable in a

gauge theory. We therefore assume that the Lie algebra of the group G admits Cartan decomposition (18).
We here show that in this case, any G-connection on the principal fiber bundle P → X induces an H-
connection on any reduced subbundle P h (Theorem 7) and therefore induces the desired H-connection on
the fiber bundle Y → P/H (Theorem 10). On configuration space (40), this results in the gauge theory
of gauge potentials of the group G, of matter fields with the symmetry subgroup H ⊂ G, and of classical
Higgs fields.

An example of a classical Higgs field is the metric gravitational field in the gauge theory of gravity with
spontaneous symmetry breaking in the presence of Dirac spinor fields with the Lorentz group of symmetries
or by the geometric equivalence principle [5], [10], [11].

2. The gauge theory on principal fiber bundles

We consider smooth fiber bundles (of the class C∞). We assume that smooth manifolds are separable,
locally compact, countable at infinity, paracompact topological spaces.

As already mentioned, we formulate the classical gauge theory on the principal fiber bundle

πP : P → X (1)

on an n-dimensional manifold X with the structure Lie group G acting on P from the right fiberwise freely
and transitively [3], [4]. For brevity, we call P the principal G-bundle. Its atlas

ΨP = {(Uα, zα)�αβ} (2)

is defined by a family of local sections zα with G-valued transition functions �αβ such that zβ(x) =
zα(x)ραβ(x), x ∈ Uα ∩ Uβ.

Because G acts on P from the right, we consider the fiber bundles

TGP = TP/G, VGP = V P/G (3)

over X . A typical fiber of the bundle VGP → X is then the right Lie algebra gr of the group G with the
basis {εp} on which G acts in the adjoint representation. Sections of the fiber bundles TGP → X and
VGP → X in (3) are the respective G-invariant vector fields and vertical G-invariant vector fields on P .

In the general setting, a connection on a fiber bundle P → X is defined as a section of the fiber bundle
J1P → P , where J1P is the jet manifold of the fiber bundle P → X [4], [12]. Because we assume that
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connections on the principal fiber bundle are equivariant with respect to the structure group action (for
brevity, we call them G-connections), they are global sections of the quotient bundle of connections

C = J1P/G → X. (4)

This is an affine fiber bundle modeled over the vector bundle T ∗X ⊗X VGP . Because of the canonical
embedding

C −→
X

dxμ ⊗ (∂μ + ap
μep) ∈ T ∗X ⊗

X
TGP,

G-connections on P can also be represented in terms of TGP -valued forms

A = dxλ ⊗ (∂λ + Ap
λep). (5)

Let V be a manifold admitting a left action of the stricture group G of the fiber bundle P in (1). The
bundle associated with P and having a typical fiber V is then defined as a quotient space

Y = (P × V )/G, (p, v)/G = (pg, g−1v)/G, g ∈ G. (6)

For brevity, we call it a P -associated fiber bundle.
Every atlas ΨP given by (2) of the principal fiber bundle P determines the atlas

ΨY = {(Uα, ψα)}, ψα(x) : (zα(x), v)/G → v, (7)

of the associated fiber bundle Y in (6) and endows Y with fiberwise coordinates (xλ, yi).
Every G-connection A given by (5) on the principal fiber bundle P determines the connection

A = dxλ ⊗ (∂λ + Ap
λIi

p∂i) (8)

on the associated fiber bundle Y , where {Ip} is a representation of the Lie algebra gr in its typical fiber V .

3. Reduced structures and Higgs fields

Let H , dimH > 0, be a closed subgroup of the structure group G (see Remark 1 below). Then the
composition fiber bundle

P → P/H → X (9)

is determined, where
PΣ = P

πPΣ−−−→ P/H (10)

is the principal fiber bundle with the structure group H and

Σ = P/H
πΣX−−−→ X (11)

is a P -associated fiber bundle with the typical fiber G/H on which the structure group G acts from the
left.

Remark 1. A closed subgroup H of a Lie group G is a Lie group. We consider the quotient space
G/H of the group G with respect to the right action of H on G. We can show that

πGH : G → G/H (12)

is the principal fiber bundle with the structure group H [13]. In particular, if H is a maximum compact
subgroup of G, then the quotient space G/H is diffeomorphic to R

m, and fiber bundle (12) is then trivial.
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The structure Lie group G of the principal fiber bundle P is said to be reduced to its closed subgroup
H if the following equivalent conditions are satisfied:

1. The principal fiber bundle P admits atlas (2) with H-valued transition functions �αβ .

2. We have a principal reduced subbundle PH of the fiber bundle P with the structure group H .

Indeed, if PH ⊂ P is a reduced subbundle, then its atlas (2) generated by local sections zα is also an atlas
of the fiber bundle P with H-valued transition functions. Conversely, let (2) be an atlas of the fiber bundle
P with H-valued transition functions �αβ . For any x ∈ Uα ⊂ X , we define a submanifold zα(x)H ⊂ Px.
These submanifolds constitute an H-subbundle of P because zα(x)H = zβ(x)H�βα(x) on the intersections
Uα ∩ Uβ .

Remark 2. Principal reduced H-subbundles of the principal G-bundle are sometimes called G-struc-
tures [8], [14]–[16]. In [14], [16], only reduced structures of the principal fiber bundle LX of linear frames
in tangent spaces TX to the manifold X were considered, and the isomorphism class of these structures
was confined to holonomy automorphisms of LX , i.e., to functorial liftings to LX of diffeomorphisms of
the base X . The notion of G-structure was extended to an arbitrary fiber bundle in [15], where it was
interpreted as the Klein–Chern geometry. In the case where the Lie algebra of a group G admits Cartan
decomposition (18), the G-structure is said to be reduced [17] and manifests several additional features
(Theorem 7).

The key fact is the following statement [18].

Theorem 1. We have a one-to-one correspondence

P h = π−1
PΣ(h(X)) (13)

between principal reduced H-subbundles ih : P h → P of the fiber bundle P and global sections h of the

quotient bundle P/H → X given by (11).

Formula (13) implies that the principal reduced H-subbundle P h is a reduction h∗PΣ of the principal
H-bundle PΣ in (10) on a submanifold h(X) ⊂ Σ. At the same time, every atlas Ψh of the fiber bundle P h

generated by a family of its local sections is simultaneously an atlas of the principal G-bundle P and an
atlas of the P -associated fiber bundle Σ → X given by (11) with H-valued transition functions. Relative
to the atlas Ψh of a fiber bundle Σ, the global section h of this bundle then takes values in the kernel of
the quotient space G/H .

As already mentioned, we interpret global sections of the quotient bundle P/H → X as classical Higgs
fields in classical gauge theory [3], [8], [9].

For example, we can formulate a theory of gravity on an oriented four-dimensional manifold X as a
gauge theory on the principal fiber bundle LX of linear frames tangent to X with the structure group
GL+(4, R) reduced to the Lorentz group SO(1, 3) [5], [10], [11]. Global sections of the corresponding
quotient bundle LX/SO(1, 3) are pseudo-Riemannian metrics on the manifold X , which are identified with
gravitational fields in general relativity.

Reducing a structure group is not always possible. In particular, in the above case of the gauge theory of
gravity, it occurs on noncompact manifolds X and on compact manifolds with the zero Euler characteristic.
We note the following fact [13].

Theorem 2. A bundle Y → X whose typical fiber is diffeomorphic to the manifold R
m always admits

a global section, and every section of it over a closed submanifold of the base X can be extended, albeit

nonuniquely, to the global section.
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Corollary 1. The structure group G of the principal fiber bundle P is reducible to a closed subgroup

H if the quotient space G/H is diffeomorphic to the Euclidean space R
m.

In particular, we always have a reduction of the Lie structure group G to its maximum compact
subgroup H (see Remark 1). This includes the cases G = GL(m, C), H = U(m) and G = GL(n, R),
H = O(n), which are important for applications.

We also note that different principal H-subbundles P h and P h′
of the principal G-bundle P are not

necessarily mutually isomorphic.

Theorem 3 [13]. If the quotient space G/H is diffeomorphic to the Euclidean space R
m, then all

principal reduced H-subbundles of the principal G-bundle P are mutually isomorphic.

Theorem 4. Let the Lie structure group G of the principal fiber bundle P be reduced to its closed

subgroup H . We have the following statements:

1. Every vertical automorphism Φ of the principal fiber bundle P maps its principal reduced H-subbundle

P h to the isomorphic principal reduced H-subbundle P h′
= Φ(P h).

2. Conversely, let two reduced subbundles P h and P h′
of the principal fiber bundle P → X be mutually

isomorphic, and let Φ: P h → P h′
be their isomorphism over X . We can then extend Φ to the

isomorphism of the whole fiber bundle P .

Proof. Let
Ψh = {(Uα, zh

α), �h
αβ} (14)

be an atlas of a principal reduced subbundle P h, where zh
α are local sections P h → X and �h

αβ are the
transition functions. Given a vertical automorphism Φ of the fiber bundle P , we can endow the subbundle
P h′

= Φ(P h) with the atlas
Ψh′

= {(Uα, zh′

α ), �h′

αβ} (15)

determined by its local sections zh′

α = Φ ◦ zh
α. We can then easily obtain

�h′

αβ(x) = �h
αβ(x), x ∈ Uα ∩ Uβ, (16)

i.e., that transition functions of atlas (15) take values in the subgroup H . Conversely, every automorphism
(Φ, Id X) of principal reduced subbundles P h and P h′

of the fiber bundle P determines an H-equivariant
G-valued function f on P h by the relation pf(p) = Φ(p), p ∈ P h. Its extension to a G-equivariant function
on P is defined as

f(pg) = g−1f(p)g, p ∈ P h, g ∈ G.

The relation ΦP (p) = pf(p), p ∈ P , then defines a vertical automorphism ΦP of the fiber bundle P whose
restriction on P h coincides with Φ.

Remark 3. In Theorem 4, we can regard the principal G-bundle P endowed with the atlas Ψh given
by (14) as a P h-associated fiber bundle with the structure group H acting on its typical fiber G from the
left. Correspondingly, being equipped with the atlas Ψh′

given by (15), the bundle P is a P h′
-associated

H-bundle. The H-bundles (P, Ψh) and (P, Ψh′
) are not equivalent then, because their atlases Ψh and Ψh′

are not equivalent. Indeed, the union of these atlases is the atlas

Ψ = {(Uα, zh
α, zh′

α ), �h
αβ , �h′

αβ , �αα = f(zα)}
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with the transition functions

�αα(x) = f(zα(x)), zh′

α (x) = zh
α(x)�αα(x) = (ΦP ◦ zh

α)(x)

between the corresponding maps (Uα, zh
α) and (Uα, zh′

α ) from the respective atlases Ψh and Ψh′
. But

transition functions �αα are not H-valued. At the same time, equality (16) implies that transition functions
of both atlases constitute the same cocycle. Hence, the H-bundles (P, Ψh) and (P, Ψh′

) are associated.
Because of the isomorphism Φ: P h → P h′

, we can write

P = (P h × G)/H = (P h′ × G)/H, (p × g)/H = (Φ(p) × f−1(p)g)/H.

For any ρ ∈ H we then obtain

(pρ, g)/H = (Φ(p)ρ, f−1(p)g)/H = (Φ(p), ρf−1(p)g)/H = (Φ(p), f−1(p)ρ′g)/H,

where
ρ′ = f(p)ρf−1(p). (17)

Hence, we can treat (P, Ψh′
) as a P h-associated bundle with the same typical fiber G as for (P, Ψh), but the

action g → ρ′g in (17) of the structure group H on a typical fiber of the bundle (P, Ψh′
) is not equivalent

to its action g → ρg on a typical fiber of the bundle (P, Ψh), because they have different orbits in G.

4. Reductions of connections

We present compatibility conditions for connections on the principal fiber bundle with its reduction
structures [4], [18].

Theorem 5. Because connections on the principal fiber bundle are equivariant, every H-connection

Ah on an H-subbundle P h of the principal G-bundle P is extendible to a G-connection on P .

Theorem 6. Conversely, the connection A given by (5) on the principal G-bundle P is reducible

to an H-connection on the principal reduced H-subbundle P h of the fiber bundle P if and only if the

corresponding global section h of the fiber bundle P/H → X associated with P is an integral section of the

associated connection A given by (8) on P/H → X , i.e., DAh = 0, where DA is the covariant differential

determined by this connection.

In particular, a connection on P is not always reducible to a connection on P h under the following
condition [3], [18].

Theorem 7. Let the Lie algebra g of a Lie group G be a direct sum

g = h ⊕ f (18)

of the Lie algebra h of a Lie group H and its complement f such that we have the condition [h, f] ⊂ f for the

commutation relations. Let A be a G-connection on the principal fiber bundle P . We consider the principal

reduced fiber bundle P h with an atlas Ψh, which is simultaneously an atlas of the fiber bundle P . Then the

induction Āh = h∗Ah on P h of the h-valued constituent Ah of the connection form A given by (5) written

in terms of the atlas Ψh is an H-connection on P h.
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In this case, matter fields with an exact symmetry group can be written in the presence of gauge fields
with a larger group of spontaneously broken symmetries (see Sec. 6).

In particular, decomposition (18) occurs if H is the Cartan subgroup of G, and we therefore call this
the Cartan decomposition.

For example, in the gauge theory of gravity on the principal frame bundle LX of the Lie algebra, the
groups g = gl(4, R) and h = so(1, 3) satisfy condition (18), and for a given pseudo-Riemannian metric h, a
general linear connection can be decomposed into the sum of Christoffel symbols, the contorsion tensor, and
the nonmetricity tensor. Its first two terms constitute the Lorentzian connection on the reduced SO(1.3)-
subbundle LhX ⊂ LX , which allows describing Dirac spinor fields in the theory of gravity in the presence
of a general linear connection [10], [11], [19].

We can also generate connections on principal reduced subbundles in another way.
Let P → X be the principal fiber bundle. For a morphism of manifolds φ : X ′ → X , the induced fiber

bundle φ∗P → X ′ is the principal fiber bundle with the same structure group as for P . If A is a connection
on the principal fiber bundle P , then the induced connection φ∗A on φ∗P is a connection on it as on a
principal fiber bundle [4]. We hence obtain a result important in what follows [3], [4].

Theorem 8. We consider composition fiber bundle (9). Let AΣ be a connection on the principal

H-bundle P → Σ given by (10). Then for any principal reduced H-bundle ih : P h → P , the induced

connection i∗hAΣ on P h is an H-connection on this bundle.

We note that the Lagrangian of matter fields, as already mentioned in Sec. 1, is factored through the
vertical covariant differential determined just by a connection on the fiber bundle P → P/H (see Sec. 6).

5. Associated bundles and matter fields

By virtue of Theorem 1, we have a one-to-one correspondence between principal reduced H-subbundles
P h of the principal fiber bundle P and Higgs fields h. For a given such subbundle P h, we introduce the
notation

Y h = (P h × V )/H (19)

for the associated vector bundle with the typical fiber V admitting the left action of the exact symmetry
group H . Its sections sh describe matter fields in the presence of the Higgs field h and an H-connection
Ah on the principal fiber bundle P h.

Difference fiber bundles Y h and Y h′ �=h (19) are mutually related as follows. If the principal reduced
H-subbundles P h and P h′

of the principal G-bundle P are isomorphic by virtue of Theorem 4, then the
P h-associated fiber bundle Y h given by (19) is also associated as

Y h = (Φ(p) × V )/H (20)

to the subbundle P h′
. If its typical fiber V admits the action of the entire group G, then the P h-associated

fiber bundle Y h in (19) is also P -associated,

Y h = (P h × V )/H = (P × V )/G.

Such P -associated fiber bundles are equivalent as G-bundles but not equivalent as H-bundles, because
transition functions between their atlases are not H-valued (see Remark 3).

For example, in the gauge theory of gravity on a manifold X , the tangent bundle TX treated for a given
pseudo-Riemannian metric h as a LhX-associated bundle is a fibering into copies of the Minkowski space
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MhX . But for different pseudo-Riemannian metrics h and h′, the fiber bundles MhX and Mh′
X are not

equivalent; in particular, representations of their elements in terms of γ-matrices are not equivalent [11], [20].
Because different fiber bundles Y h and Y h′ �=h are not equivalent in a definite sense and are not as-

sociated in general, we can consider a V -valued matter field only in pair with a definite Higgs field. We
therefore encounter the problem of characterization of the set of all pairs (sh, h) of the matter and Higgs
fields.

To describe a matter field in the presence of different Higgs fields, we consider composition fiber
bundle (9) and the composition fiber bundle

Y −→πY Σ Σ −→πΣX X, (21)

where Y → Σ is a PΣ-associated bundle
Y = (P × V )/H (22)

with the structure group H . For a given global section h of the fiber bundle Σ → X given by (11) and
for the corresponding principal reduced H-bundle P h = h∗P , fiber bundle (19) associated with P h is a
restriction

Y h = h∗Y = (h∗P × V )/H (23)

of the fiber bundle Y → Σ on h(X) ⊂ Σ.
We can then prove the following statement [3], [9].

Proposition 1. Every global section sh of the fiber bundle Y h given by (23) is a global section of

composition fiber bundle (21) projected onto the section h = πY Σ ◦ s of the fiber bundle Σ → X . Conversely,

any global section s of the composition fiber bundle Y → X given by (21), when projected onto the section

h = πY Σ ◦ s of the fiber bundle Σ → X , takes values in the subbundle Y hY given by (23). Hence, we have a

one-to-one correspondence between sections of the fiber bundle Y h given by (19) and those of composition

bundle (21) that cover h.

Proposition 2. An atlas

ΨPΣ = {(UΣι, zι), �ικ} (24)

of the principal H-bundle P → Σ and correspondingly of the associated fiber bundle Y → Σ determines

the atlas

Ψh = {(πPΣ(UΣι), zι ◦ h), �ικ ◦ h} (25)

of the reduced H-subbundle P h and hence of the bundle Y h. Atlas (25) is simultaneously an atlas of P

with H-valued transition functions.

Given an atlas ΨP of the principal fiber bundle P , which determines the atlas of the associated fiber
bundle Σ → X in (11), and an atlas ΨY Σ of the fiber bundle Y → Σ, we can endow the composition fiber
bundle Y → X in (21) with the corresponding coordinate system (xλ, σm, yi), where (σm) are fiberwise
coordinates on Σ → X and (yi) are those on Y → Σ.

Proposition 3. Let

AΣ = dxλ ⊗ (∂λ + Aa
λea) + dσm ⊗ (∂m + Aa

mea) (26)

be a connection on the principal H-bundle P → Σ, and let

AY Σ = dxλ ⊗ (∂λ + Aa
λ(xμ, σk)Ii

a∂i) + dσm ⊗ (∂m + Aa
m(xμ, σk)Ii

a∂i) (27)
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be the associated connection on Y → Σ, where {Ia} is a representation of the right Lie algebra hr of the

group H in V . Then for any H-subbundle Y h → X of the composition fiber bundle Y → X , the induced

connection

Ah = h∗AY Σ = dxλ ⊗ [∂λ + (Aa
m(xμ, hk)∂λhm + Aa

λ(xμ, hk))Ii
a∂i] (28)

on Y h is associated with the induced connection h∗AΣ on the principal reduced H-subbundle P h in Theo-

rem 8.

Every connection AΣ given by (26) on the fiber bundle Y → Σ determines the first-order differential
operator

˜D : J1Y → T ∗X ⊗
Y

VΣY, ˜D = dxλ ⊗ (yi
λ −Ai

λ −Ai
mσm

λ )∂i, (29)

acting on the composition fiber bundle Y → X , where VΣY is the vertical tangent bundle to the fiber
bundle Y → Σ. It is called the vertical covariant differential and has the following important property.

Proposition 4. For any section h of a fiber bundle Σ → X , the restriction of the vertical differential
˜D given by (29) on the fiber bundle Y h given by (23) coincides with the differential DAh on Y h that is

covariant with respect to the induced connection Ah given by (28).

We thus find that those are the sections of the composition fiber bundle Y → X given by (21) that
describe the pairs (sh, h) of the matter and Higgs fields in a classical gauge theory with spontaneous
symmetry breaking.

The following fact is essential when constructing a gauge theory with spontaneous symmetry breaking.

Theorem 9. The composition fiber bundle Y → X given by (21) is a P -associated fiber bundle whose

structure group is G and whose typical fiber is an H-bundle

W = (G × V )/H, (30)

associated with the principal H-bundle G → G/H given by (12).

Proof. We represent the fiber bundle P → X as a P -associated fiber bundle

P = (P × G)/G, (pg′, g) = (p, g′g), p ∈ P, g, g′ ∈ G,

whose typical fiber is the group space of G on which the group G acts by left multiplications. We can then
represent quotient (22) in the form

Y = (P × (G × V )/H)/G,

(pg′, (gρ, v)) = (pg′, (g, ρv)) = (p, g′(g, ρv)) = (p, (g′g, ρv)).

Therefore, Y given by (22) is a P -associated bundle with the typical fiber W given by (30) on which the
structure group G acts according to the law

g′ : (G × V )/H → (g′G × V )/H. (31)
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This is the so-called induced representation of a group G by its subgroup H [21]. Given an atlas {(Ua, za)}
of the principal H-bundle G → G/H , induced representation (31) becomes

g′ : (σ, v) = (za(σ), v)/H → (σ′, v′) = (g′za(σ), v)/H =

= (zb(πGH(g′za(σ)))ρ′, v)/H =

= (zb(πGH(g′za(σ))), ρ′v)/H,

ρ′ = z−1
b (πGH(g′za(σ)))g′za(σ) ∈ H, σ ∈ Ua, πGH(g′za(σ)) ∈ Ub.

For example, if H is the Cartan subgroup of G, then induced representation (31) is a known nonlinear
realization of the group G [3], [22], [23].

6. The Lagrangian of matter fields

Propositions 3 and 4 and Theorem 9 imply the following peculiarity of formulating a Lagrangian gauge
theory with spontaneous symmetry breaking.

Let P → X be the principal fiber bundle whose structure group G is reduced to a closed subgroup
H . Let Y be the PΣ-associated fiber bundle (22). The total configuration space of the gauge theory of
G-connections on P in the presence of matter and Higgs fields is

J1C ×
X

J1Y, (32)

where C is connection bundle (4) and J1Y is the manifold of jets of the fiber bundle Y → X . The total
Lagrangian on configuration space (32) is the sum

Ltot = LA + Lm + Lσ (33)

of the gauge field Lagrangian LA, the matter field Lagrangian Lm, and the Higgs field Lagrangian Lσ.
Because we do not specify the gauge and Higgs fields and because their Lagrangians can take very

different forms depending on a model, for instance, in the gauge theory of gravity and in a theory of the
Yang–Mills type, we here consider only the matter field Lagrangan Lm. By Proposition 4, it factors into

Lm : J1C ×
X

J1Y
eD→T ∗X ⊗

Y
VΣY →

n
∧ T ∗X (34)

through the vertical differential ˜D given by (29). Moreover, we can demonstrate that such a factorization
is a necessary condition for the gauge invariance of Lm under automorphisms of the principal G-bundle
P → X [3].

But the problem is that connection AΣ given by (26) on the fiber bundle Y → P/H , which determines
˜D, is not a dynamical variable in the gauge theory. We therefore assume that the Lie algebra of the group G

admits Cartan decomposition (18). In this case, any G-connection A on the principal fiber bundle P → X

determines the H-connection Āh on every reduced subbundle P h (Theorem 7). We can then prove the
following theorem.

Theorem 10. We have the connection AΣ given by (26) on the fiber bundle Y → P/H whose restric-

tion Ah = h∗AΣ to the P h-associated fiber bundle Y h coincides with the connection Āh generated on P h

by the connection A on the principal fiber bundle P → X .
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Proof. Let a principal reduced subbundle P h ⊂ P be given, and let Āh be the H-connection on P h

(see Theorem 7) generated by the G-connection A on the principal fiber bundle P → X . By Theorem 5, we
can extend this connection to the G-connection on P for which h is the integral section of the associated
connection

Āh = dxλ ⊗ (∂λ + Ap
λJm

p ∂m)

on the P -associated fiber bundle Σ → X . With respect to the atlas Ψh given by (14) of the fiber bundle P

with H-valued transition functions, the Higgs field h takes values in the center of the homogeneous space
G/H , and the connection Āh is

Āh = dxλ ⊗ (∂λ + Aa
λea). (35)

We then obtain
A = Āh + Θ = dxλ ⊗ (∂λ + Aa

λea) + Θb
λdxλ ⊗ eb, (36)

where {ea} is the basis of the right Lie algebra hr and {eb} is the basis of its complement fr. Decomposi-
tion (36) with respect to an arbitrary atlas of the fiber bundle P has the form

A = Āh + Θ, Θ = Θp
λdxλ ⊗ ep,

and satisfies the relation Θp
λJm

p = DA
λ hm, where DA

λ are the covariant derivatives with respect to the
associated connection A on the fiber bundle Σ → X . We consider the covariant differential

D = Dm
λ dxλ ⊗ ∂m = (σm

λ − Ap
λJm

p )dxλ ⊗ ∂m

with respect to the associated connection A on Σ → X . We can represent this differential as a V Σ-valued
form on the jet manifold J1Σ of the fiber bundle Σ → X . Because decomposition (36) holds for any section
h of the fiber bundle Σ → X , we obtain a VGP -valued form Θ = Θp

λdxλ ⊗ ep on J1Σ, which satisfies the
equation

Θp
λJm

p = Dm
λ . (37)

As a result, we obtain a VGP -valued form

AH = dxλ ⊗ (∂λ + (Ap
λ − Θp

λ)ep)

on J1Σ whose induction to every submanifold J1h(X) ⊂ J1Σ is the connection Āh given by (35) written
with respect to the atlas Ψh given by (25). Because decomposition (36) holds, Eq. (37) has a solution for
any G-connection A. We therefore have the VGP -valued form

AH = dxλ ⊗ (∂λ + (ap
λ − Θp

λ)ep) (38)

on the product J1Σ ×X J1C such that for any connection A and for any Higgs field h, the restriction of
AH given by (38) to

J1h(X) × A(X) ⊂ J1Σ×
X

J1C

is a connection Āh given by (35) written with respect to the atlas Ψh given by (25). Now let AΣ in (26) be
a connection on the principal H-bundle P → Σ. This connection determines the VΣY -valued form

˜D = dxλ ⊗
(

yi
λ − (Aa

mσm
λ + Aa

λ)Ii
a

)

∂i (39)
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(covariant differential (29)) on configuration space (32). We now assume that for a given connection A on
the principal G-bundle P → X , the induced connection Ah = h∗AY Σ given by (28) on Y h coincides with
Āh given by (35) for any h ∈ Σ(X). By Proposition 4, we can then define components of form (39) as
follows. For a given point

(xλ, ar
μ, ar

λμ, σm, σm
λ , yi, yi

λ) ∈ J1C ×
X

J1Y, (40)

let h be a section of the fiber bundle Σ → X whose jet j1
xh in x ∈ X is (σm, σm

λ ), i.e.,

hm(x) = σm, ∂λhm(x) = σm
λ .

Let the connection fiber bundle C and the Lie algebra fiber bundle VGP be endowed with atlases associated
with the atlas Ψh given by (25). We can then write

Ah = Āh, Aa
mσm

λ + Aa
λ = aa

λ − Θa
λ. (41)

These equations for the functions Aa
m and Aa

λ at point (40) have a solution because Θa
λ are affine functions

of the jet coordinates σm
λ .

Having the solution of Eq. (41), we substitute it in the covariant differential ˜D given by (39) requiring
that the matter field Lagrangian be factored in form (34) through the form ˜D given by (39), called the
universal covariant differential determined by the G-connection A on the principal fiber bundle P . As a
result, we obtain a gauge theory of gauge potentials of the group G, of matter fields with the symmetry
subgroup H ⊂ G, and of classical Higgs fields on configuration space (40).

As mentioned above, an example of a classical Higgs field is the gravitational field of the metric in
the gauge theory of gravity on natural fiber bundles with the spontaneous symmetry breaking due to the
existence of Dirac spinor fields with the Lorentz group of symmetries or by the geometric equivalence
principle [5], [10], [11]. Describing spinor fields in terms of composition bundle (21), we obtain their
Lagrangian (34) in the presence of the general linear connection; this Lagrangian is invariant under general
covariance transformations [3], [11].

In a more general form, classical Higgs fields were also considered in the theory of spinor fields on the
so-called gauge-natural fiber bundles [24].

7. Conclusion

In conclusion, we summarize the main features of the description of spontaneous symmetry breaking
in a classical gauge theory on the principal fiber bundle P → X with the structure group G:

1. The spontaneous symmetry breaking in such a gauge theory is characterized by the reduction of the
structure group G of the fiber bundle P to its closed subgroup H .

2. This reduction is ensured by the existence of global sections of the quotient bundle P/H → X

interpreted as classical Higgs fields.

3. Matter fields with the exact symmetry group H in such a gauge theory are described in pairs with
the Higgs fields, which are sections of a composition bundle Y → P/H → X , where Y → P/H is the
fiber bundle associated with P → P/H and has the structure group H .

4. The fiber bundle Y → X , as was shown, is associated with the initial fiber bundle P → X and has
the structure group G, while the gauge-invariant Lagrangian of matter fields is factored through the
vertical covariant differential determined by an H-connection on the principal fiber bundle P → P/H .
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5. In the case of Cartan decomposition (18) of the Lie algebra of the group G, this connection can be
expressed in terms of the G-connection on the principal fiber bundle P → X , i.e., in terms of the
gauge potentials for the group of broken symmetries G.

As a result, we obtain a gauge theory of gauge potentials of the group G, matter fields with the symmetry
subgroup H ⊂ G, and classical Higgs fields.
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