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The key point of the study of constraints in Hamiltonian time-dependent mechanics
lies in the fact that a Poisson structure does not provide dynamic equations and a
Poisson bracket of constraints with a Hamiltonian is ill-defined. We describe
Hamiltonian dynamics in terms of Hamiltonian forms and connections on the ver-
tical cotangent bundl&/* Q—R seen as a momentum phase space. A Poisson
bracket{,}y on V*Q is induced by the canonical Poisson brackgt; on the
cotangent bundler*Q. With {,}y, an algebra of first and second class time-
dependent constraints is described, but we use the pull-back of the evolution equa-
tion onto T* X and the bracke{,} in order to extend the constraint algorithm to
time-dependent constraints. The case of Lagrangian constraints of a degenerate
almost regular Lagrangian is studied in detail. One can assign to this Lagrdngian

a set of Hamiltonian formsgwhich are not necessarily degenejagach that any
solution of the corresponding Hamilton equations which lives in the Lagrangian
constraint space is a solution of the Lagrange equations.fon the case of an
almost regular quadratic Lagrangian, the complete set of global nondegenerate
Hamiltonian forms with the above-mentioned properties is described. We construct
the Koszul-Tate resolution of the Lagrangian constraints for this Lagrangian in an
explicit form. © 2000 American Institute of Physidss0022-2488)0)03205-9

I. INTRODUCTION

We study holonomic constraints in Hamiltonian mechanics subject to time-dependent
transformations:? In contrast to the existent formulations of time-dependent mechariigge do
not imply any preliminary splitting of its momentum phase spblce RXZ. From the physical
viewpoint, this splitting characterizes a certain reference frame, and is violated by time-dependent
transformations, including inertial frame transformations.

Recall that, given such a splitting], is endowed with the product of the zero Poisson structure
on R and the Poisson structure @ A HamiltonianH is defined as a real function di. The
corresponding Hamiltonian vector fieléh,, on I1 is vertical with respect to the fibratiold — R.

Due to the natural imbeddind X s TR— TII one introduces the vector fielgh,= d;+ ¥, where

d; is the standard vector field dR. The Hamilton equations are equations for the integral curves
of the vector fieldyy, while the evolution equation on the Poisson algeBf¢Il) of smooth
functions onll is given by the Lie derivative

L, f=af+{H.f}.

However, the splitting on the right-hand side of this expression is violated by time-dependent
transformations, and a Hamiltoniai is not scalar under these transformations. Its Poisson
bracket with functionsf e C*(II) is ill-defined, and is not maintained under time-dependent

3E|ectronic mail: mangiaro@camserv.unicam.it
BElectronic mail: sard@grav.phys.msu.su

0022-2488/2000/41(5)/2858/19/$17.00 2858 © 2000 American Institute of Physics

Downloaded 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 41, No. 5, May 2000 Constraints in Hamiltonian time-dependent mechanics 2859

transformations. This fact is the key point of the study of constraints in Hamiltonian time-
dependent mechanics. Therefore, we need something more than a Poisson strutture on
A generic momentum phase space of time-dependent mechanics is a fiber blundke
endowed with a regular Poisson structure whose characteristic distribution belongs to the vertical
tangent bundi&/TT of IT—R.8 The problem is that this Poisson structure cannot provide dynamic
equations. A first-order dynamic equation Bh— R, by definition, is a section of the affine jet
bundleJ'II—TI, i.e., a connection obl —R. Being a horizontal vector field, such a connection
cannot be a Hamiltonian vector field with respect to the above-mentioned Poisson strudtlire on
Let us consider time-dependent mechanics on a configuration bQndlB. The correspond-
ing momentum phase space is the vertical cotangent buidie/* Q, called the Legendre
bundle. It is provided with the canonical Poisson strucfyfe such that

sHfghv={f.0%gfr,  f,9eCH(V*Q), @)

where{ is the natural fibration
{T*Q—V*Q, )

and{,}1 is the nondegenerate Poisson structure on the cotangent buh@edefined by the
canonical symplectic fordZE on T* Q. The characteristic distribution §f}, coincides with the
vertical tangent bundl®V* Q of V*Q—R.

Given a sectiorh of the fiber bundlg?2), let us consider the pull-back forms

O=h*(E/\dt), Q=h*(dE/\dt) 3

onV*Q. It is readily observed that these forms are independeht ahd are canonical ov* Q.
Then a Hamiltonian vector field; for a functionf on V*Q is given by the relation

¢ Q=—df/dt,
while the Poisson brackét) is written as
{f ,g}vdt: ﬁgj'ﬂfjﬂ

Thus, the three-forn€2 (3) providesV* Q with the Poisson structurg}y in an equivalent way,
but gives something more as follow4° A connectiony on the Legendre bundle*Q—R is
said to be a Hamiltonian connection if

y|Q=h*d= =dH,

whereh is some section of the fiber bund®). The formH=h*Z is called a Hamiltonian form.
Given a Hamiltonian fornH and the associated Hamiltonian connectigp, the kernel of the
corresponding covariant differentiyH provides the Hamilton equations on the Legendre bundle

V*Q—R, while the Lie derivative
def =L, f=yuldf @

defines the evolution equation on the Poisson alg€ig/* Q).

Remark 1:A generic momentum phase spalde—R of time-dependent mechanics can be
seen locally as the Poisson product oReof a Legendre bundl¥* Q— R and some fiber bundle
over R, equipped with the zero Poisson structure.

With the Poisson bracket},, the conventional notion of first and second class constraints
can be extended to constraints in Hamiltonian time-dependent mechanics, and the classical BRST
techniqué®!? can be applied to these constraints. At the same time, sjfcis not a vertical
vector field, the right-hand side of the evolution equatidhis not expressed in the Poisson
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bracket unless a reference frame is given. To overcome this difficulty, we consider the pull-back
of the equality(4) onto the cotangent bundlE* Q where its right-hand side takes the form of the
Poisson bracketH*,¢* f}+ of the pull-back function* f and the functiort{* = 4,|(E — {*H) on
T*Q. This Poisson bracket enables us to extend the constraint algorithm of conservative mechan-
ics (and time-dependent mechanics on a prodietz®’) to mechanical systems subject to time-
dependent transformations. An essential difference between constraints in conservative mechanics
and time-dependent mechanics also lies in the fact that Hamiltonian vector fields of first class
time-dependent constraints are not generators of gauge symmetries of a Hamiltoniath. f&tm
the same time, we show that gauge symmetries of a Hamiltonian Fbganerate a coisotropic
ideal of first class constraints. Therefore, the BRST technique may be applied to them.

Lagrangian constraints are one of the most important class of constraints studied in quantum
theory. If a Lagrangiar of time-dependent mechanics is degenerate, it defines the Lagrangian
constraint subspacl, of the Legendre bundl&* Q. We show that, for a degenerate almost
regular Lagrangiah, there exists at least locally a complete set of weakly associated Hamiltonian
forms H such that solutions of the Hamilton equations Fbwhich live in the Lagrangian con-
straint spaceN; exhaust all solutions of the Lagrange equationslfoitt is important that, in
contrast to associated Hamiltonian forms studied in our previous Wdrkisese Hamiltonian
forms are not necessarily degenerate. Furthermore, we find a complete set of nondegenerate
Hamiltonian forms with the above-mentioned properties for a generic almost regular quadratic
Lagrangian. We also show that, in this case, the Legendre bwitg admits the splitting
V*Q=Keroc®N, overQ, whereo is some morphism. Using the corresponding projection opera-
tors, we construct the Koszul-Tate resolution for the Lagrangian constidjnisf a generic
almost regular quadratic Lagrangiann an explicit form.

The plan of the paper is as follows. Section Il presents some technical preliminaries. In Sec.
Ill, we compile the basic facts of Hamiltonian time-dependent mechanics from our previous
works. Section IV is devoted to two useful constructions which are the Lagrahgi&hl) on the
jet manifold J'V*Q and the above-mentioned brackKét*,¢* f} (15) on the cotangent bundle
T*Q. We use them for the study of an evolution equation in time-dependent mechanics. The
LagrangiarnL also enables us to follow the standard procedure of Lagrangian formalism in order
to describe gauge symmetries in Hamiltonian mechanics. In Sec. V, an ideal of time-dependent
constraints is described in algebraic terms. In Sec. VI, we extend our analysis of degenerate
Lagrangian and Hamiltonian systems in the previous works weakly associated Hamiltonian
forms, which are not necessarily degenerate. Section VII provides the detailed exposition of the
case of an almost regular quadratic Lagrangian, appropriate for application to many physical
models. One of the results is the existence of a complete set of nondegenerate Hamiltonian forms
weakly associated with this Lagrangian; that may be important for quantization. Another one is the
splittings (453 and (463 of the velocity and momentum phase spaces. Based on these splittings,
we obtain the Koszul-Tate resolution for the Lagrangian constraints of an almost regular qua-
dratic Lagrangian. These constraints are reducible in general. Section VIl is devoted to the
geometric description of the corresponding antighost fields. In Sec. IX, the above-mentioned
Koszul-Tate resolution and the corresponding BRST charge are constructed.

II. TECHNICAL PRELIMINARIES

The following peculiarities of fiber bundles over should be emphasizédTheir baseR is
parametrized by the Cartesian coordinatesith the transition functiong’=t+ const, and is
provided with the standard vector fielgland the standard one-fordt. A vector fieldu on a fiber
bundleY—R is said to be projectable if|dt is constant. From now on, by vector fields on fiber
bundles oveR are meant only projectable vector fields.

Let Y—R be a fiber bundle coordinated by,y*) and J'Y its first-order jet manifold,
equipped with the adapted coordinateglf,yf). There is the canonical imbedding

A=+ Yroa: Y =TY
Y
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whose image is the affine subbundle of elemenésTY such thatv |dt=1. This subbundle is
modeled over the vertical tangent bundl&—Y. As a consequence, there is one-to-one corre-
spondence between the connections on the fiber biniei® and the vector field§ on Y such
thatI"|dt=1. The corresponding covariant differential reads

Dr=A-T:J'Y=VY, yRDp=yr-TA
Y

A connectionT” on Y—R vyields a one-dimensional distribution ory transversal to the
fibration Y—R. As a consequence, it defines an atlas of local constant trivializatioi¥s-dR
whose transition functions are independenttadnd I'=¢,. Conversely, every atlas of local
constant trivializations of a fiber bund¥é— R sets a connection oi—R which is 4, relative to
this atlas. In particular, every trivialization 8f— R yields a complete connectidhon Y, andvice
versa

Recall the total derivativelt=&t+y{*aA+--- and the exterior algebra homomorphism

ho: ¢ dt+ g dy —(p+ payr)dt,

which sends exterior forms ovi— R onto the horizontal forms od'Y—R.

Ill. HAMILTONIAN TIME-DEPENDENT DYNAMICS

In this section, we compile some basic facts of Hamiltonian time-dependent mechaHics.
Let the momentum phase space of time-dependent mechanics

TQ -

V*Q —— Q—R

be provided with holonomic coordinatesd', p;). These coordinates are canonical for the Poisson
structure(1) on V* Q such that

Q=dp,/A\dqg/\dt,

_ _ )
{f,gly=4'fo,g—d'ga,f, f,geC*(V*Q).

Lemma 132 A vector fieldu on V*Q is canonical for the Poisson structyréy, iff the form
ujQ is closed. The closed form|Q is exact.

With respect to the Poisson brackBj, the Hamiltonian vector field; for a functionf on the
Legendre bundl&/*Q is

ﬁf=(7if(9i—(9if(9i .

It is vertical. Conversely, one can show that every vertical canonical vector field on the Legendre
bundleV* Q—R is locally a Hamiltonian vector field.

Proposition 2:Let a connectiony on the Legendre bundle¢* Q— R be a canonical vector
field for the Poisson structurg}y,,. Then y|Q=dH, whereH is locally a Hamiltonian form.
Conversely, any Hamiltonian form

H=h*Z=p;dq —Hdt (6)
on the momentum phase spa¢&Q admits a uniqgue Hamiltonian connection
=0+ d"HI— dHJ'. 7)

Remark 2:A glance at expressio(6) shows that, given a trivialization of the configuration
bundle Q—R, the Hamiltonian formH (6) is the well-known integral invariant of Poincare
Cartan wherée{ is a Hamiltonian.
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Hamiltonian forms constitute an affine space modeled over the vector space of horizontal
densitiesf dt onV*Q—R, i.e., overC”(V* Q). Accordingly, Hamiltonian connectiong, make
up an affine space modeled over the vector space of Hamiltonian vector fields.

Remark 3:Any bundle morphism

O:V*Q—-JIQCTQ, Pd=4,+d's,
called a Hamiltonian map, defines the Hamiltonian form
He=—®]|0=p; dy'—p;®' dt

on V*Q. Conversely, every Hamiltonian form yields the Hamiltonian map

F= Tmos vV Qo 01Q,  qleFi= . ®

Let I' be a connection o®@— R. It characterizes a reference frame in nonrelativistic time-
dependent mechani¢$:*3Indeed, the vector fiell sets a tangent vector at each pointpivhose
vertical part can be seen as the velocity of an “observer” at this point. Accordingly, the atlas of
local constant trivializations o — R associated with a connectidn and, in particular, every
trivialization of Q—R can also be regarded as a reference frame. Every conndctimm Q
—R, by definition, is a section of the affine bund®, and defines the frame Hamiltonian form

Hr=T*E=p,dq—p,I" dt.
The corresponding Hamiltonian connection is the canonical lift
V*I =3 +T19,—p;g;["'d
of I onto V* Q—R. Then any Hamiltonian forn on V* Q admits the splittings
H=Hp—Hpdt, H=pl'+H, (9)
whereH is the energy function with respect to the reference frahisee(18) below].

Given a Hamiltonian fornH (6) and the associated Hamiltonian connectjgn(7), the kernel
of the covariant differentiaDyH defines the Hamilton equations

ai=dH, (109
P = —diH. (10b)
IV. THE EVOLUTION EQUATION AND SYMMETRY CURRENTS
A Hamiltonian formH (6) is the PoincareCartan form for the Lagrangian
Lu=ho(H)=(pigi—H)dt (1D
on the jet manifoldJ*V* Q. This Lagrangian is a convenient tool in order to apply the standard
Lagrangian technique to Hamiltonian time-dependent mechanics. Given a vectou field)
—R and its lift
U=u'g,+u'9,— aulp;d
onto the Legendre bundé* Q— R, we have

LH=L;rLp=(—u'dH+pidu' —u'g;H+ d;u’p; @ H)dt. (12
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Applying the first variational formula t¢12), we observe that the Hamilton equatioi®a and
(10b) for H are exactly the Lagrange equations Eqy.

Furthermore, given a functiohe C*(V* Q) and its pull-back ontd*V* Q, let us consider the
bracket

(f.Lp)=68foly—afdLy=L, f—df,

whereé', &, are variational derivative@n the spirit of the Batalin—Vilkovisky antibracketThen
the equation {,L,) =0 is the evolution equation

dif=L, f=af+{Hf}y (13

in time-dependent mechanics. Note that, taken separately, the terms on its right-hand side are
ill-behaved objects under reference frame transformations. With the spli@nghe evolution
equation(13) is brought into the frame-covariant form

L, f=V*TH+{Hp T}y,

but its right-hand side does not reduce to a Poisson bracket.

The following construction enables us to represent the right-hand side of the evolution equa-
tion (13) as a pure Poisson bracket. Given a Hamiltonian fétm h* =, let us consider its
pull-back *H onto the contangent bundlE* Q. It is readily observed that the differenée
—{*H is a horizontal one-form oi* Q— R, while

H*=a)(E—{*H)=p+H (14)
is a function onT* Q. Then the relation
(L P ={H* " iy (15

holds for any functiorf e C*(V* Q). In particular,f is an integral of motion iff its bracketl5)
vanishes. Note thag,=T{(94+) whered, is the Hamiltonian vector field for the functidr*
(14) with respect to the canonical Poisson structyte on T* Q.

Relation(12) enables us to obtain the conservation laws in Hamiltonian time-dependent me-
chanics in accordance with the standard procedure in Lagrangian fornt&irifThe first varia-
tional formula applied to the Lagrangidn, (11) leads to the weak identityzH~d(u|H)dt. If
the Lie derivative(12) vanishes, we have the conserved symmetry current

Jy=uldH=p;u' —u'H, (16)
alongu. If uis a vertical vector fieldJ, is the Noether current
Ju@=ulg=pu’, g=p;dgeV*Q. (17)
If u=T"is a connection,

JF:piFi_H:_ﬂ[‘ (18)
is the energy function with respect to the reference frdimeken with the minus sigh?1®Note
that the currendl, (16) is conserved iff its brackgtH*,(* J,}+ (15) vanishes.

Proposition 3:Given a Hamiltonian fornH, the symmetry currentsl6) make up a subalge-

bra of the Poisson algeb@*(V*Q):

{‘]u’Ju’}V:J[u,u’]- (19
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The proof follows from a direct computation.
Remark 4t is readily observed that all Noether currefis) also constitute a subalgebra of
the Poisson algebr@”(V* Q) with respect to the brackeél9).

V. TIME-DEPENDENT CONSTRAINTS

With the Poisson brackel,}y,, an algebra of time-dependent constraints can be described
similarly to that in conservative Hamiltonian mechanics, but we should use reldfsim order
to extend the constraint algorithm to time-dependent constraints.

Let N be a closed imbedded subbundjg:N—V*Q of the Legendre bundl&/* Q—R,
treated as a constraint space. Note tas neither Lagrangian nor symplectic submanifold with
respect to the Poisson structyr, . Let us consider the ide&d|C C*(V* Q) of functionsf on
V*Q which vanish orN, i.e.,i{f=0. Its elements are said to be constraints. There is the isomor-
phism

C*(V*Q)/Iy=C*(N) (20

of associative commutative algebras. By the normaﬁ;@f the ideall y is meant the subset of
functions of C*(V* Q) whose Hamiltonian vector fields restrict to vector fieldshyi? i.e.,

In={feC*(V*Q):{f,glveln.Vgely} (21)

It follows from the Jacobi identity that the normaliz&l) is a Poisson subalgebra 6f°(V* Q).
Put

=Ny (22)

This is also a Poisson subalgebrad gf Its elements are called the first class constraints, while the
remaining elements dfy are the second class constraints. It is readily observed ity .

Remark 5:Let N be a coisotropic submanifold &t*Q. ThenlyCly andIy=1(, i.e., all
constraints are of first class.

Let H be a Hamiltonian form on the momentum phase sp&at®. In accordance with the
relation (15), a constrainf e | is preserved with respect to a Hamiltonian foHrif the bracket
(15) vanishes on the constraint space. It follows that solutions of the Hamilton equéitasnd
(10b) do not leave the constraint spaieif

{H*, F I+ C L Iy (23

If this relation does not hold, let us introduce secondary constréfits (* f}1, fely, which
belong to ¢* (C*(V*Q)). If the set of primary and secondary constraints is not closed with
respect to relatiori23), one can add the tertiary constraigtg* ,{H*,¢* f}1}+, and so on.

Let us assume thall is a final constraint space for a Hamiltonian foith If H satisfies
relation(23), so is a Hamiltonian form

Hi=H—fdt, (24)

wheref el is a first class constraint. Though Hamiltonian forfhisand H; coincide with each
other on the constraint spabk the corresponding Hamilton equations have different solutions in
N becausedH|y#dHq|y. At the same timed(i§H)=d(i§H;). Therefore, let us consider the
pull-back, called the constrained Hamiltonian form,

Hy=iNHy, (25

which is the same for alf e 1. Note thatHy (25) is not a true Hamiltonian form oN—R in
general. On sectionsof the bundleN— R, we can write
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r*(unJdHy) =0, (26)

whereuy is an arbitrary vertical vector field odN— R. They are called the constrained Hamilton
equations. It is readily observed that, for any Hamiltonian féim(24), every solution of the
Hamilton equations which lives in the constraint spbids a solution of the constrained Hamilton
equationsg26).

Let us mention the problem of constructing a generalized Hamiltonian system, similar to that
for a Dirac constraint system in conservative mechanics. Hetsatisfy the condition
{H*, 51+ Cly, wheread H*,{* I }+E 1y . The goal is to find a constrairite Iy such that the
modified HamiltoniarH — f dt would satisfy the condition

{H*+ 76,7 1 C Dy

This is an equation for a second-class constraint

The above construction, except the isomorphi&f), can be applied to any ideal of
C*(V*Q), treated as an ideal of constraiftdn particular, an ideal is said to be coisotropic if
it is a Poisson algebra. In this casés a Poisson subalgebra of the normaliz21), and coincides
with I” (22).

For instance, sincg* (L 5 H) #{{*f,{*}1, the constraint$ Iy preserved with respect to a
Hamiltonian formH (i.e., {{*f,H*}+ely) are not generators of gauge symmetriesHofin
general. At the same time, the generators of gauge symmetries of a HamiltoniaH fdefme an
ideal of constraints as follows. Let be a Lie algebra of generatousof gauge symmetries of a
Hamiltonian formH. In accordance with relatiofil9), the corresponding symmetry currerdts
(16) on V*Q constitute a Lie algebra with respect to the Poisson brack&t*@p. Let | , denote
the ideal ofC*(V* Q) generated by these symmetry currents. It is readily observed that this ideal
is coisotropic. Then one can think bf as being an ideal of first class constraints compatible with
the Hamiltonian fornH, i.e.,

{H* Tl Ly (27)

Note that any Hamiltonian forn ,=H—J,dt, ue A, obeys the same relatioi27), but other
currentsJ,, are not conserved with respecthly,, unlesgu,u’]=0.

Now let A be an arbitrary Lie algebra of vertical vector field®n the configuration bundle
Q—R. As was mentioned in Remark 4, the corresponding symmetry curdenis?) on V* Q
constitute a Lie algebra and generate the corresponding coisotropicl igeflC*(V* Q) with
respect to the Poisson bracKe}, on V* Q.

Proposition 4:Let A be a finite-dimensional Lie algebra of vertical vector fields on the
configuration bundleQ—R. If there exists a reference framieon Q—R such thafI',.4]=0,
then there exists a nonframe Hamiltonian farhon the Legendre bundé* Q such thatA is the
algebra of gauge symmetries ldf

Proof: Let A be the universal enveloping algebra of the Lie algebra of the symmetry currents
Ju, ue A, (17). Then each nonzero eleme@tof its center of order>1 can be written as a
polynomial inJ,, and defines the desired Hamiltonian fok=H— C dt.

VI. LAGRANGIAN CONSTRAINTS

Lagrangian constraints are one of the most important classes of constraints studied in quantum
theory. If a Lagrangian of time-dependent mechanics is degenerate, we have the Lagrangian
constraint subspace of the Legendre bundl&€) and a set of Hamiltonian forms associated with
the same Lagrangial? Here, we consider weakly associated Hamiltonian forms. In comparison
with the above-mentioned associated Hamiltonian forms, a degenerate Lagrangian may admit a
nondegenerate weakly associated Hamiltonian form that is essential for quantization.

Remark 6:Let L= £ dt:J'Q—R be a Lagrangian on the velocity phase spat@. It yields
the Legendre map
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L:J'Q—V*Q, pi=m=4dL,
Q
whose imageN, =L (J'Q)CV*Q is called a Lagrangian constraint space. Besides the Lagrange
equations
(= did}) L=0, (28)

we will also refer to the Cartan equations, which can be introduced as follows. Being the Lepagean
equivalent of the Lagrangian on J'Q [i.e.,L=hy(H,)], the PoincareCartan form

H =L+ m(dq —q}dt) (29)
is also the Lepagean equivalent of the Lagrangian

L=ho(H)=(L+(g—apm)dt, ho(dg)=§;dt, (30)

on the repeated jet manifolttJQ, coordinated byt,q',q; 8} qin). The Lagrange equations for
L are the above-mentioned Cartan equations
dimi(el—aD)=0, ¢L—dym+(gl—al)gm=0. (31)

They are equivalent to the Lagrange equatit#® on holonomic sections=¢ of J'\Q—R and
in the case of regular Lagrangians.

Given a Lagrangiah. on the velocity phase spad@Q, a Hamiltonian formH on the mo-
mentum phase spad& Q is said to be associated withif H satisfies the relations

LoHoL=L, (329
H=Hp+H*L, (32b
whereH is the Hamiltonian may8). A glance at relation32a shows that.cH is the projector
pi(2)=m(t,q,dH(2)), zeN(,

from V* Q onto the Lagrangian constraint spadg. Accordingly,HoL is the projector fromJY

onto I:|(N,_). A Hamiltonian form is called weakly associated with a Lagrandiaifi condition
(32b) holds on the Lagrangian constraint spage.
Proposition 5% |f a Hamiltonian maqu:V*Q—>QJ1Q obeys relation(32a, then the

Hamiltonian formH=H 4+ ®* L is weakly associated with the Lagrangianif ®=H, thenH is
associated with..

The difference between associated and weakly associated Hamiltonian forms lies in the fol-
lowing. LetH be an associated Hamiltonian form, i.e., equal@gh) holds everywhere oR'* Q.
It takes the coordinate form

H=pid H—L(t,q),d'H).
The exterior differential of this equality leads to the relation
(pi— (3'L£)(t,9',01H)) 3,02H=0,

which shows that an associated Hamiltonian form is degenerate outside the Lagrangian constraint
spaceN;, .
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Let us restrict our consideration to almost regular Lagranglanse., (i) the Lagrangian
constraint spac®l, is a closed imbedded subbundlg:N, —V*Q of the bundleV* Q—Q, (ii)
the Legendre map:J'Q—N, is a fibered manifold, andii) the inverse imagé ~(z) of any
point ze N, is a connected submanifold 6tQ.

Proposition 6:A Hamiltonian formH weakly associated with an almost regular Lagrandian
exists iff the fibered manifold'Q— N, admits a global section.

This fact is an immediate consequence of the above-mentioned condibiofis and Propo-
sition 5. Condition(iii ) leads to the following property.

Lemma 7%1°The PoincareCartan formH, for an almost regular Lagrangianis constant on
the connected inverse imadie (z) of any pointze N, .

Corollary 8: All Hamiltonian forms weakly associated with an almost regular Lagranbian
coincide with each other on the Lagrangian constraint sphceand the PoincareCartan form
H,_ (29) for L is the pull-back

Ho=L*H, mq—L=H(t,q,m)), (33

of any such Hamiltonian forni.
It follows that, given Hamiltonian formsl andH’ weakly associated with an almost regular

LagrangianL, their difference isf dt, f <1y . However,H|y #H’|y_in general. Therefore, the
Hamilton equations foH andH’ do not coincide necessarily on the Lagrangian constraint space
N, . Their solutions can leave the Lagrangian constraint spicei.e., relation(23) fails to hold
in general.

Theorem 9: Let a sectiorr of V*Q—R be a solution of the Hamilton equatiof0a and
(10b) for a Hamiltonian formH weakly associated with an almost regular Lagrangialf r lives
in the Lagrangian constraint spadg , the sectionc=mqger of Q—R satisfies the Lagrange
equationg28), while = Her obeys the Cartan equatiof3l).

The proof is based on the relatidn= (J'L)* Ly, whereL is the Lagrangiari30), while L,
is the Lagrangiarill). This relation is derived from the equali{®@3). The converse assertion is
more intricate.

Theorem 10: Given an almost regular Lagrangian let a sectiorc of the jet bundleJ*Q
—R be a solution of the Cartan equatiof8l). Let H be a Hamiltonian form weakly associated
with L, and letH satisfy the relation

HoLoc=c¢,

wherec is the projection oft onto Q. Then, the sectiom=_Loc of the Legendre bundl¥* Q
—R is a solution of the Hamilton equatioi$0a and(10b) for H.

We will say that a set of Hamiltonian formd weakly associated with an almost regular
LagrangianL is complete if, for each solutioa of the Lagrange equations, there exists a solution
r of the Hamilton equations for a Hamiltonian fordrhfrom this set such that= mger. By virtue
of Theorem 10, a set of weakly associated Hamiltonian forms is complete if, for every satution
on R of the Lagrange equations far, there is a Hamiltonian formil from this set which fulfills
the relation

Holoc=c¢. (34)

In accordance with Proposition 6, on an open neighborhodd*i@ of each pointze N, , there
exists a complete set of local Hamiltonian forms weakly associated with an almost regular La-
grangianL.

Given a Hamiltonian formH weakly associated with an almost regular Lagrandiafet us
consider the corresponding constrained Hamiltonian fbign(25). By virtue of Corollary 8,H

is the same for all Hamiltonian forms weakly associated WwjtandH, = L*H,, . Furthermore, for
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any Hamiltonian formH weakly associated with an almost regular Lagrandia@very solution of
the Hamilton equations which lives in the Lagrangian constraint sphces a solution of the

constrained Hamilton equatior®6). Using the equalityH, =L*H,, one can show that the
constrained Hamilton equatiori26) are quasiequivalent to the Cartan equations, i.e., there is a
surjection of the set of solutions of the Cartan equations onto the set of solutions of the constrained
Hamilton equation$:*°

VII. QUADRATIC DEGENERATE SYSTEMS

Let us study the physically relevant case of almost regular quadratic Lagrangians. We show
that, in this case, there always exists a complete set of nondegenerate weakly associated Hamil-
tonian forms.

Given a configuration bundl®— R, let us consider a quadratic Lagrangiamvhich has the
coordinate expression

£=3ay;01q! +bigi+c, (35)

wherea, b, andc are local functions o®. This property is coordinate independent due to the
affine transformation law of the coordinatgs. The associated Legendre map

piol::aijq{"'bi (36)
is an affine morphism ove®. It defines the corresponding linear morphism

LVQ-V*Q, preL=a;d. (37
Q

Let the Lagrangiarh. (35) be almost regular, i.e., the matrix functiaf) is of constant rank.
Then the Lagrangian constraintipa‘dg (36) is an affine subbundle of the bundi& Q—Q,

modeled over the vector subbundlg (37) of V* Q— Q. Hence N, —Q has a global section. For
the sake of simplicity, let us assume that it is the canonical zero sectioh & V* Q— Q. Then
N_=N_ . Accordingly, the kernel of the Legendre m&gb) is an affine subbundle of the affine jet

bundle J'Q—Q, modeled over the kernel of the linear morphist_n(37). Then there exists a
connection

I:Q—KerLcJ'Q, &;I+Db;=0, (39)

on Q—R. Connectiong38) constitute an affine space modeled over the linear space of vertical
vector fieldsv on Q— R, satisfying the conditions

a;jvi=0 (39

and, as a consequence, the conditiofi=0.

The matrixa in the LagrangiarL (35) can be seen as a degenerate fiber metric of constant
rank inVQ— Q. Then the following corollary of the well-known theorem on a splitting of exact
sequences of vector bundles takes place.

Lemma 1%:Given ak-dimensional vector bundlE—Z, let a be a section of rank of the

tensor bundldJE* —Z. There is a splittinge=Kera® E' whereE’'=E/Kera is the quotient
bundle, anda is a nondegenerate fiber metric k.
Theorem 12: There exists a linear bundle map

o:V*Q—VQ, qioa'=a'ijpj , (40)
Q

such thatLogoiy=iy.
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Proof: The map(40) is a solution of the algebraic equations
a.ijO'jkakb:aib. (41)
By virtue of Lemma 11, there exist the bundle slitting

VQ=Kera®E' (42
Q

and an atlas of this bundle such that transition functions ofeKendE’ are independent. Since
a is a nondegenerate fiber metric &, there is an atlas oE’ such thata is brought into a
diagonal matrix with nonvanishing componergg,. Due to the splitting(42), we have the
corresponding bundle splitting

V*Q=(Kera)*®Ima. (43
Q

Then the desired mag is represented by a direct sum@ o of an arbitrary sectiowr; of the

bundIeDKera —>Q and the sectiomr of the bundIeDE’—>Q which has nonvanishing compo-
nentsa”"=(a,,) ! with respect to the above-mentioned atlasz6f Moreover,o satisfies the
particular relations

Uo:Uo"f"Uo, aco1=0, oca=0. (44)

Corollary 13: The splitting(42) leads to the splitting

JQ=83'Q)e F(I'Q)=KerL®Im(ool), (453
Q Q
0y =5+ F'=[a— 0p (akal + b 1+ [og (@gat+ b, (45b)

while the splitting(43) can be written as

V*Q=R(V*Q)®P(V*Q)=Keroo®N,, (463
Q Q
pi=Ri+Pi=[pi—a; 0Pl +[a;;obPil. (46b)

It is readily observed that, with respect to the coordinatésind F' (45b), the Lagrangian
(35) reads

L=3a;;F Fl+c/,
while the Lagrangian constraint space is given by the reducible constraints
Ri:pi_aij(r%}kpkzo- (47)

Given the linear map (40) and the connectioh (38), let us consider the affine Hamiltonian
map

d=T+0:V*Q—J'Q, ®'=T'+0o'lp,, (48)

and the Hamiltonian form
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H=Hg+®*L
=pidg —[pil"+ 300 pip; + ol pip;—c']dt
=(Ri+P)dd
~L(Ri+P)T'+ 3o PP+ ol pip;—c'1dt. (49)

Theorem 14:The Hamiltonian formg49) parametrized by connectiords (38) are weakly
associated with the Lagrangi@B5) and constitute a complete set.

Proof: By the very definitions of" and o, the Hamiltonian mayg48) satisfies the condition
(32a. ThenH is weakly associated with (35) in accordance with Proposition 5. Let us write the
corresponding Hamilton equatioi$0a for a sectionr of the Legendre bundl¥* Q—R. They
are

c=(C+o)or, c=mger. (50)
Due to the surjection$ and F (45a), the Hamilton equation&0) break in two parts

Sec=Toc, i'—a'*(ayil+by)=I"ec,
_ _ _ (52)
foé:o—or, (le(akjl.'J‘i‘bk):O'Ikrk.

Let ¢ be an arbitrary section d@— R, e.g., a solution of the Lagrange equations. There exists a
connectionl” (38) such that relatior{51) holds, namely]'=SeI"” whereI'" is a connection on
Q—R which hasc as an integral section. It is easily seen that, in this case, the Hamiltonian map
(48) satisfies relatior{34) for c. Hence, the Hamiltonian form@9) constitute a complete set.

It is readily observed that, if;=0, then® =H and the Hamiltonian form&t9) are associated
with the Lagrangian(35) in accordance with Proposition 5. i#f; is nondegenerate, so is the
Hamiltonian form(49). Hence, we have different complete sets of Hamiltonian fo(4® for
different o, . Hamiltonian formsH (49) of such a complete set differ from each other in the term
v'R;, wherev are vertical vector field$39). If follows from the splitting (463 that this term
vanishes on the Lagrangian constraint space. The corresponding constrained Hamiltonian form
Hy=inH and the constrained Hamilton equatid@6) can be written.

VIIl. GEOMETRY OF ANTIGHOSTS

We aim to obtain the Koszul-Tate resolution for the constrgihfs Since these constraints
are reducible, we need an infinite number of antighost fields in getieralVe follow the termi-
nology of Ref. 12. They are graded by the antighost numlserd the Grassmann paritynod2.
Therefore, the following construction generalizes that of simple graded marifatdsommuta-
tive graded algebras generated both by odd and even elements. We use an @stédoiskhe
Grassmann parity.

Let E=Eq®E;—Z be the Whitney sum of vector bundl&—Z andE;—Z over a para-
compact manifoldZ. One can think ok as being a bundle of vector superspaces with a typical
fiber V=V,®V, where transition functions of, and E, are independent. Let us consider the
exterior bundle

o0 k
OE* = D (AE*),
k=0 Z

which is the tensor bundl@ E* modulo elements

€080~ €p€0, €181+ eje;, €ge;—eiey, €g,e0eEp,, e;,e1eEl,, zeZ
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One can think of JE* as being the fiber bundle of commutative superalgebMswhich is the
tensor productlEg ® OET modulo elements

eoel_eleo, eoe ESZ’ ele EIZ’ Ze Z

Global sections of [E* constitute a commutative graded algebtéZ) modeled on the locally
free C*(Z)-moduleEg (Z) ® E7 (Z) of global sections oE*. This is the product of the commu-
tative algebrady(Z) of global sections of the symmetric bundli; —Z and the graded algebra
A1(Z) of global sections of the exterior bundl¢E} —Z.

Remark 7:Let A; be the sheaf of sections of the exterior bundi€; . The pair €, A;) is a
graded manifold’ By the well-known Batchelor theorem, any graded manifold is isomorphic to a
sheaf of sections of some exterior bundl€, but not in a canonical way. If an exterior bundlé&
is given, one speaks about a simple graded manifold. Therefore, the construction below can be
extended to an arbitrary commutative graded algebra modeled on a locallZ (&g -module
A= Aqy® A, of finite rank. For the sake of brevity, we agree to call4) a graded manifold,
though its generating set contains an even suldgetAccordingly, elements oA(Z) are called
graded functions.

Let us study theAd(Z)-module Detd(Z) of graded derivations ofA(Z). Recall that by a
graded derivation of the commutative graded algel(Z) is meant an endomorphism gf(Z)
such that

u(Ff)=u(f)f’ +(—21)MHfucfr) (52)

for the homogeneous elements Der A(Z) andf, f' € A(Z).
Proposition 15:Graded derivationgs2) are represented by sections of a vector bundle.
Proof: Let {c?} be the holonomic bases f&* —Z with respect to some bundle atlaz(v')
of E—Z with transition functiongpg}, i.e., c’3=pg(z)c®. Then graded functions read

1
f= go W fa,.. aC%Co%, (53

wherefal..‘ak are local functions o, and we omit the symbol of an exterior product of elements
c. The coordinate transformation law of graded functi@dd) is obvious. Due to the canonical

splitting VE=E X E, the vertical tangent bundME— E can be provided with the fiber basgs,}
dual of {c?®}. These are fiber bases for,pfE=E. Then any derivationu of A(U) on a trivial-
ization domainU of E reads
u=urds+udd,, (54
whereu”?,u? are local graded functions andacts onf e A(U) by the rule
U(fa,...a % M) =UAGA(fy g ) CHL - CF UM, o da (O C). (55)
This rule implies the corresponding coordinate transformation law
uA=uh, U= plul+utda(pf)c! (56)

of derivations(54). Let us consider the vector bundig —Z which is locally isomorphic to the
vector bundle

Velu=CE*® (pr,VESTZ)|y ,
z z

and has the transition functions
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A —lag o —lag A
Zi1-~ik_pi1 i Zalmak’

: . k! :
ri by =1y i A i
Ui i le ka pjvbl--'bk+ (k—1)! Zbl~~~bk71‘9A(pbk)

of the bundle coordinateail,,,a1 b ..p.), k=0,.... These transition functions fulfill the cocycle
k 1 k

relations. It is readily observed that, for any trivialization domajrihe A-module Det4(U) with

the transition functiong56) is isomorphic to thed-module of local sections dfg|,— U. One can
show that, ifU’CU are open sets, there is the restriction morphism. &) —Der A(U'). It
follows that, restricted to an open subgktevery derivatioru of A(Z) coincides with some local
sectionuy of Vg|y—U, whose collection{u,,UCZ} defines uniquely a global section dt
—Z, called a graded vector field oi Graded vector fields constitute a Lie superalgebra with
respect to the bracket

[u,u’]=uu’ +(— 1)+ 1yry,
Corollary 16: The sheaf of sections 8f-— Z is isomorphic to the sheaf of graded derivations
of the sheafA.

There is the exact sequence oveof vector bundles

0—A\E*®@pr,VE—=V—/\E*®TZ—0.
z z

Its splitting
V: 249> 2N 9at+Fa0a) (57)
transforms every vector field on Z into a graded vector field
7=V = M (Ip+V2da),
which is the derivatiorV , of A(Z) such that
VA(sf)=(r1d9)f+sV(f), feA(Z), seC*(2).

Thus, one can think of the splitting7) as being a graded connection @nFor instance, every
linear connection

y=dZ2'® (dp+ Ya%p0 ")
on the vector bundl&— Z yields the graded connection

ys=d 2'® (dpt 7Aabcb‘9a)
on Z such that, for any vector fieldon Z and any graded functiofy the graded derivatioNW (f)
is exactly the covariant derivative dfrelative to the connectios.

The DE* -dual VE of Vg is a vector bundle ovez which is locally isomorphic to the vector
bundle
VE|U%/\E* ®(pl‘2VE* @T*Z)|U .
z z

Global sections of this vector bundle constitute th€Z)-module of exterior graded one-forms
¢=ppdZ*+ ¢,dc®. Then the morphismp:u— A(Z) can be seen as the interior product
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ulgp=ulpa+(—1) %, (58)
Gradedk-forms ¢ can be defined as sections of the graded exterior bub§ié such that
pOo=(—1)lllol+lellolg N\ g,

where[*| is the form degree. The interior produ&s) is extended to higher graded forms by the
rule

ul(¢Oo) =(ulg)Oo+(—1)¢Hlgnule).

The graded exterior differentiadl of BRST functions is introduced by the conditianidf
=u(f) for an arbitrary BRST vector field, and is extended uniquely to higher BRST forms by
the rules

d(¢/N\o)=(d¢p)\o+(—1)?¢p/\(do), ded=0.
It takes the coordinate form
dp=dZ*\ () +dcN\, (),

where the left derivativeg, ,d, act on the coefficients of graded forms by r(&), and they are
graded commutative with the forngz*,dc?. The Lie derivative of a graded formp along a
graded vector fieldi is given by the familiar formula

Lyp=uldg+d(ule).

IX. THE KOSZUL-TATE RESOLUTION

To construct the vector bundEe of antighosts, let us consider the vertical tangent bundle
Vo(V*Q) of V¥*Q—Q. Let us choose the bundEe as the Whitney sum of the bundl&s® E,
over V*Q which are the infinite Whitney sum ové&f* Q of the copies oVo(V*Q). We have

E=Vo(V*Q) & Vo(V* Q)& .
V*Q

This bundle is provided with the holonomic coordinatesqi(,pi,'i(r)), r=0,1,..., where

(t,q',pi,p'?") are coordinates oB,, while (t,q',p;,p!* ")) are those ofE;. By r is meant the

antighost number. The dual &—V*Q is

E*=V5(V*Q) & V&(V* Q)@- -
V*Q

It is endowed with the associated fiber basel®}, r=1,2,..., such that{" have the same linear

coordinate transformation law as the coordingiesThe corresponding graded vector fields and

graded forms are introduced &t Q as sections of the vector bundlgs and VE , respectively.
The C*(V* Q)-module A(V* Q) of graded functions is graded by the antighost number as

A(V*Q)zéj\/f, NO=C*(V*Q).
r=0

Its termsA/" constitute a complex
0—C*(V*Q) N1 ... (59)

with respect to the Koszul-Tate differential
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5:C*(V*Q)—0,

s(c?)=ajolc? Y, 1>0,
_ (60)
s(c? )= (5 —a;ob)c?, 1>0,

s(cM)= (5~ aj; o) px.

The nilpotency propertye 5=0 of this differential is the corollary of relation@1) and (44).
Proposition 17:The complex(59) with respect to the differential60) is the Koszul-Tate
resolution, i.e., its homology groups are

Hiz1=0, Ho=C*(V*Q)/lIy =C"(Ny).

Note that, in different particular cases of the degenerate quadratic LagraB8gjathe com-
plex (59) may have a subcomplex, which is also the Koszul-Tate resolution. For instance, if the
fiber metrica in VQ— Q is diagonal with respect to a holonomic atlasvs), the constraint$47)
a(re) irreducible and the complé®9) contains a subcomplex which consists only of the antighosts
cM,

Now let us construct the BRST char@esuch that

o(f)={Q.f}, feAV*Q),

with respect to some Poisson bracket. The problem is to find the Poisson bracket such that
{f,g}=0 for all f,ge C*(V*Q).

To overcome this difficulty, one can consider the vertical extension of Hamiltonian formalism
onto the configuration bundi¢ Q— R.%!® The corresponding Legendre bundf& (VQ) is iso-
morphic toV(V*Q), and is provided with the holonomic coordinatesq(,p;,q',p;) such that
(q',p;) and @',p;) are conjugate pairs of canonical coordinates. The momentum phase space
V(V*Q) is endowed with the canonical exterior three-form

Q,=4d,Q=[dp/\dq +dp,/A\dg ]/ dt, (61)
where we use the compact notation

d 5 _9 i e
ZW, 0 =— (9V=q (9i+pi(9.

al =T,
Ip;

The corresponding Poisson bracket\é¢V* Q) reads
{f.glw=0'fa,g+d'fa,g—dgaf—ad ga;f.

To extend this bracket to graded functions, let us consider the following graded extension of
Hamiltonian formalisnf:'° We will assume tha@—R is a vector bundle, and will further denote
m=v*Q.

Let us consider the vertical tangent bun®¥TI. It admits the canonical decomposition

pry

VVIT=VII&VIT — VII. (62
R

Let us choose the bundEe as the Whitney sum of the bundl&® E, over VII which are the
infinite Whitney sum oveWII of the copies o VII. In view of the decompositiof62), we have
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pry
E=VIleVIl®--- —— VII.
R

(t.9',pi .Gz . DY) are coordinates oy and ¢,q',p; 4 1).p* ) are those orE;. The
dual of E—VII is

This bundle is provided with the holonomic coordinatesqp; ,qi(?,pf”), r=0,1,..., where
i (21+1)

E*=VIleVII*®---.
R

It is endowed with the associated fiber bagek, c{"”,c|,,.c{”}, r=1,.... The corresponding
graded vector fields and graded forms are introducedldnas sections of the vector bundlgs
and Vg, respectively. Let us complexify these bundles as

CeVWwn, C&WVoun-
R R
The BRST extension of the forit61) on V* Q is the three-form
Q=0 +i X, (dg"Adc(,,—dc"AdC,,)Adt.
r=1

The corresponding bracket of graded functionsvirQQ reads

- g of a9  of ag
fots={f.0hw—i > (-1 =~ + (- 1)
{f.ols=if.glv ';52 =1 gei") aci, =1 dc(,, aci” aci” iy,

of  dg

—(=1)'

It satisfies the conditiofif,g}s=—(—1)l'119l{g,fl5. Then the desired BRST charge takes the
form

e}

| jk ; jk (21— 1) =i K jky (2]
Q=i Ezl)(ﬁik_aij‘fé)pk‘L;l(Ezzmaijaé) il P+l (8 —aab)e) |-

Due to the bracket63), one can use this charge in order to obtain the BRST complex for
antighostsc{"” and ghost&{,, such that

— ij=k — i i\ =k
Cla-1&jogClany»  Cla> ~ (—aj0g)Co141), 1>0.
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