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Constraints in Hamiltonian time-dependent mechanics
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The key point of the study of constraints in Hamiltonian time-dependent mechanics
lies in the fact that a Poisson structure does not provide dynamic equations and a
Poisson bracket of constraints with a Hamiltonian is ill-defined. We describe
Hamiltonian dynamics in terms of Hamiltonian forms and connections on the ver-
tical cotangent bundleV* Q→R seen as a momentum phase space. A Poisson
bracket $,%V on V* Q is induced by the canonical Poisson bracket$,%T on the
cotangent bundleT* Q. With $,%V , an algebra of first and second class time-
dependent constraints is described, but we use the pull-back of the evolution equa-
tion ontoT* X and the bracket$,%T in order to extend the constraint algorithm to
time-dependent constraints. The case of Lagrangian constraints of a degenerate
almost regular Lagrangian is studied in detail. One can assign to this LagrangianL
a set of Hamiltonian forms~which are not necessarily degenerate! such that any
solution of the corresponding Hamilton equations which lives in the Lagrangian
constraint space is a solution of the Lagrange equations forL. In the case of an
almost regular quadratic Lagrangian, the complete set of global nondegenerate
Hamiltonian forms with the above-mentioned properties is described. We construct
the Koszul–Tate resolution of the Lagrangian constraints for this Lagrangian in an
explicit form. © 2000 American Institute of Physics.@S0022-2488~00!03205-9#

I. INTRODUCTION

We study holonomic constraints in Hamiltonian mechanics subject to time-depe
transformations.1,2 In contrast to the existent formulations of time-dependent mechanics,3–7 we do
not imply any preliminary splitting of its momentum phase spaceP5R3Z. From the physical
viewpoint, this splitting characterizes a certain reference frame, and is violated by time-depe
transformations, including inertial frame transformations.

Recall that, given such a splitting,P is endowed with the product of the zero Poisson struct
on R and the Poisson structure onZ. A HamiltonianH is defined as a real function onP. The
corresponding Hamiltonian vector fieldqH on P is vertical with respect to the fibrationP→R.
Due to the natural imbeddingP3RTR→TP one introduces the vector fieldgH5] t1qH , where
] t is the standard vector field onR. The Hamilton equations are equations for the integral cur
of the vector fieldgH , while the evolution equation on the Poisson algebraC`(P) of smooth
functions onP is given by the Lie derivative

LgHf 5] t f 1$H, f %.

However, the splitting on the right-hand side of this expression is violated by time-depe
transformations, and a HamiltonianH is not scalar under these transformations. Its Pois
bracket with functionsf PC`(P) is ill-defined, and is not maintained under time-depend

a!Electronic mail: mangiaro@camserv.unicam.it
b!Electronic mail: sard@grav.phys.msu.su
28580022-2488/2000/41(5)/2858/19/$17.00 © 2000 American Institute of Physics

 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ime-

ertical
mic
t
on
on

dle

be

ints
l BRST

n

2859J. Math. Phys., Vol. 41, No. 5, May 2000 Constraints in Hamiltonian time-dependent mechanics

Downloaded
transformations. This fact is the key point of the study of constraints in Hamiltonian t
dependent mechanics. Therefore, we need something more than a Poisson structure onP.

A generic momentum phase space of time-dependent mechanics is a fiber bundleP→R
endowed with a regular Poisson structure whose characteristic distribution belongs to the v
tangent bundleVP of P→R.8 The problem is that this Poisson structure cannot provide dyna
equations. A first-order dynamic equation onP→R, by definition, is a section of the affine je
bundleJ1P→P, i.e., a connection onP→R. Being a horizontal vector field, such a connecti
cannot be a Hamiltonian vector field with respect to the above-mentioned Poisson structureP.

Let us consider time-dependent mechanics on a configuration bundleQ→R. The correspond-
ing momentum phase space is the vertical cotangent bundleP5V* Q, called the Legendre
bundle. It is provided with the canonical Poisson structure$,%V such that9

z* $ f ,g%V5$z* f ,z* g%T , f ,gPC`~V* Q!, ~1!

wherez is the natural fibration

z:T* Q→V* Q, ~2!

and $,%T is the nondegenerate Poisson structure on the cotangent bundleT* Q defined by the
canonical symplectic formdJ on T* Q. The characteristic distribution of$,%V coincides with the
vertical tangent bundleVV* Q of V* Q→R.

Given a sectionh of the fiber bundle~2!, let us consider the pull-back forms

Q5h* ~J`dt!, V5h* ~dJ`dt! ~3!

on V* Q. It is readily observed that these forms are independent ofh, and are canonical onV* Q.
Then a Hamiltonian vector fieldq f for a functionf on V* Q is given by the relation

q f cV52d f`dt,

while the Poisson bracket~1! is written as

$ f ,g%Vdt5qgcq f cV.

Thus, the three-formV ~3! providesV* Q with the Poisson structure$,%V in an equivalent way,
but gives something more as follows.1,2,10 A connectiong on the Legendre bundleV* Q→R is
said to be a Hamiltonian connection if

g cV5h* dJ5dH,

whereh is some section of the fiber bundle~2!. The formH5h* J is called a Hamiltonian form.
Given a Hamiltonian formH and the associated Hamiltonian connectiongH , the kernel of the
corresponding covariant differentialDgH

provides the Hamilton equations on the Legendre bun
V* Q→R, while the Lie derivative

dt f 5LgH
f 5gHcd f ~4!

defines the evolution equation on the Poisson algebraC`(V* Q).
Remark 1:A generic momentum phase spaceP→R of time-dependent mechanics can

seen locally as the Poisson product overR of a Legendre bundleV* Q→R and some fiber bundle
over R, equipped with the zero Poisson structure.

With the Poisson bracket$,%V , the conventional notion of first and second class constra
can be extended to constraints in Hamiltonian time-dependent mechanics, and the classica
technique11,12 can be applied to these constraints. At the same time, sincegH is not a vertical
vector field, the right-hand side of the evolution equation~4! is not expressed in the Poisso
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bracket unless a reference frame is given. To overcome this difficulty, we consider the pul
of the equality~4! onto the cotangent bundleT* Q where its right-hand side takes the form of th
Poisson bracket$H* ,z* f %T of the pull-back functionz* f and the functionH* 5] tc(J2z* H) on
T* Q. This Poisson bracket enables us to extend the constraint algorithm of conservative m
ics ~and time-dependent mechanics on a productR3Z6,7! to mechanical systems subject to tim
dependent transformations. An essential difference between constraints in conservative me
and time-dependent mechanics also lies in the fact that Hamiltonian vector fields of first
time-dependent constraints are not generators of gauge symmetries of a Hamiltonian formH. At
the same time, we show that gauge symmetries of a Hamiltonian formH generate a coisotropic
ideal of first class constraints. Therefore, the BRST technique may be applied to them.

Lagrangian constraints are one of the most important class of constraints studied in qu
theory. If a LagrangianL of time-dependent mechanics is degenerate, it defines the Lagra
constraint subspaceNL of the Legendre bundleV* Q. We show that, for a degenerate almo
regular LagrangianL, there exists at least locally a complete set of weakly associated Hamilto
forms H such that solutions of the Hamilton equations forH which live in the Lagrangian con
straint spaceNL exhaust all solutions of the Lagrange equations forL. It is important that, in
contrast to associated Hamiltonian forms studied in our previous works,1,2 these Hamiltonian
forms are not necessarily degenerate. Furthermore, we find a complete set of nondeg
Hamiltonian forms with the above-mentioned properties for a generic almost regular qua
Lagrangian. We also show that, in this case, the Legendre bundleV* Q admits the splitting
V* Q5Kers % NL overQ, wheres is some morphism. Using the corresponding projection op
tors, we construct the Koszul–Tate resolution for the Lagrangian constraintsNL of a generic
almost regular quadratic LagrangianL in an explicit form.

The plan of the paper is as follows. Section II presents some technical preliminaries. In
III, we compile the basic facts of Hamiltonian time-dependent mechanics from our pre
works. Section IV is devoted to two useful constructions which are the LagrangianLH ~11! on the
jet manifoldJ1V* Q and the above-mentioned bracket$H* ,z* f %T ~15! on the cotangent bundle
T* Q. We use them for the study of an evolution equation in time-dependent mechanics
LagrangianLH also enables us to follow the standard procedure of Lagrangian formalism in
to describe gauge symmetries in Hamiltonian mechanics. In Sec. V, an ideal of time-dep
constraints is described in algebraic terms. In Sec. VI, we extend our analysis of dege
Lagrangian and Hamiltonian systems in the previous works1,2 to weakly associated Hamiltonia
forms, which are not necessarily degenerate. Section VII provides the detailed exposition
case of an almost regular quadratic Lagrangian, appropriate for application to many ph
models. One of the results is the existence of a complete set of nondegenerate Hamiltonian
weakly associated with this Lagrangian; that may be important for quantization. Another one
splittings~45a! and~46a! of the velocity and momentum phase spaces. Based on these split
we obtain the Koszul–Tate resolution for the Lagrangian constraints of an almost regula
dratic Lagrangian. These constraints are reducible in general. Section VIII is devoted
geometric description of the corresponding antighost fields. In Sec. IX, the above-men
Koszul–Tate resolution and the corresponding BRST charge are constructed.

II. TECHNICAL PRELIMINARIES

The following peculiarities of fiber bundles overR should be emphasized.2 Their baseR is
parametrized by the Cartesian coordinatest with the transition functionst85t1const, and is
provided with the standard vector field] t and the standard one-formdt. A vector fieldu on a fiber
bundleY→R is said to be projectable ifucdt is constant. From now on, by vector fields on fib
bundles overR are meant only projectable vector fields.

Let Y→R be a fiber bundle coordinated by (t,yA) and J1Y its first-order jet manifold,
equipped with the adapted coordinates (t,yA,yt

A). There is the canonical imbedding

l5] t1yt
A]A :J1Y�

Y
TY
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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whose image is the affine subbundle of elementsvPTY such thatv cdt51. This subbundle is
modeled over the vertical tangent bundleVY→Y. As a consequence, there is one-to-one co
spondence between the connections on the fiber bundleY→R and the vector fieldsG on Y such
that G cdt51. The corresponding covariant differential reads

DG5l2G:J1Y→
Y

VY, ẏA+DG5yt
A2GA.

A connectionG on Y→R yields a one-dimensional distribution onY, transversal to the
fibration Y→R. As a consequence, it defines an atlas of local constant trivializations ofY→R
whose transition functions are independent oft and G5] t . Conversely, every atlas of loca
constant trivializations of a fiber bundleY→R sets a connection onY→R which is ] t relative to
this atlas. In particular, every trivialization ofY→R yields a complete connectionG on Y, andvice
versa.

Recall the total derivativedt5] t1yt
A]A1¯ and the exterior algebra homomorphism

h0 :f dt1fA dyA°~f1fAyt
A!dt,

which sends exterior forms onY→R onto the horizontal forms onJ1Y→R.

III. HAMILTONIAN TIME-DEPENDENT DYNAMICS

In this section, we compile some basic facts of Hamiltonian time-dependent mechanic1,2,10

Let the momentum phase space of time-dependent mechanics

V* Q ——→
pQ

Q→
p

R

be provided with holonomic coordinates (t,qi ,pi). These coordinates are canonical for the Pois
structure~1! on V* Q such that

V5dpi`dqi`dt,
~5!

$ f ,g%V5] i f ] ig2] ig] i f , f ,gPC`~V* Q!.

Lemma 1:1,2 A vector fieldu on V* Q is canonical for the Poisson structure$,%V iff the form
ucV is closed. The closed formucV is exact.

With respect to the Poisson bracket~5!, the Hamiltonian vector fieldq f for a functionf on the
Legendre bundleV* Q is

q f5] i f ] i2] i f ]
i .

It is vertical. Conversely, one can show that every vertical canonical vector field on the Leg
bundleV* Q→R is locally a Hamiltonian vector field.

Proposition 2:Let a connectiong on the Legendre bundleV* Q→R be a canonical vecto
field for the Poisson structure$,%V . Then g cV5dH, whereH is locally a Hamiltonian form.
Conversely, any Hamiltonian form

H5h* J5pi dqi2H dt ~6!

on the momentum phase spaceV* Q admits a unique Hamiltonian connection

gH5] t1] iH] i2] iH] i . ~7!

Remark 2:A glance at expression~6! shows that, given a trivialization of the configuratio
bundle Q→R, the Hamiltonian formH ~6! is the well-known integral invariant of Poincare´–
Cartan whereH is a Hamiltonian.
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Hamiltonian forms constitute an affine space modeled over the vector space of hori
densitiesf dt on V* Q→R, i.e., overC`(V* Q). Accordingly, Hamiltonian connectionsgH make
up an affine space modeled over the vector space of Hamiltonian vector fields.

Remark 3:Any bundle morphism

F:V* Q→J1Q,TQ, F5] t1F i] i ,

called a Hamiltonian map, defines the Hamiltonian form

HF52F cQ5pi dyi2piF
i dt

on V* Q. Conversely, every Hamiltonian form yields the Hamiltonian map

Ĥ5J1pQ+gH :V* Q→J1Q, qt
i+Ĥ5] iH. ~8!

Let G be a connection onQ→R. It characterizes a reference frame in nonrelativistic tim
dependent mechanics.1,2,13Indeed, the vector fieldG sets a tangent vector at each point ofQ whose
vertical part can be seen as the velocity of an ‘‘observer’’ at this point. Accordingly, the atl
local constant trivializations ofQ→R associated with a connectionG and, in particular, every
trivialization of Q→R can also be regarded as a reference frame. Every connectionG on Q
→R, by definition, is a section of the affine bundle~2!, and defines the frame Hamiltonian form

HG5G* J5pi dqi2piG
i dt.

The corresponding Hamiltonian connection is the canonical lift

V* G5] t1G i] i2pi] jG
i] j

of G onto V* Q→R. Then any Hamiltonian formH on V* Q admits the splittings

H5HG2H̃G dt, H5piG
i1H̃G , ~9!

whereH̃G is the energy function with respect to the reference frameG @see~18! below#.
Given a Hamiltonian formH ~6! and the associated Hamiltonian connectiongH ~7!, the kernel

of the covariant differentialDgH
defines the Hamilton equations

qt
i5] iH, ~10a!

pti52] iH. ~10b!

IV. THE EVOLUTION EQUATION AND SYMMETRY CURRENTS

A Hamiltonian formH ~6! is the Poincare´–Cartan form for the Lagrangian

LH5h0~H !5~piqt
i2H!dt ~11!

on the jet manifoldJ1V* Q. This Lagrangian is a convenient tool in order to apply the stand
Lagrangian technique to Hamiltonian time-dependent mechanics. Given a vector fieldu on Q
→R and its lift

ũ5ut] t1ui] i2] iu
j pj]

i

onto the Legendre bundleV* Q→R, we have

L ũH5L j i ũLH5~2ut] tH1pi] tu
i2ui] iH1] ju

ipi]
jH!dt. ~12!
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Applying the first variational formula to~12!, we observe that the Hamilton equations~10a! and
~10b! for H are exactly the Lagrange equations forLH .

Furthermore, given a functionf PC`(V* Q) and its pull-back ontoJ1V* Q, let us consider the
bracket

~ f ,LH!5d i f d iLH2d i f d
iLH5LgH

f 2dt f ,

whered i , d i are variational derivatives~in the spirit of the Batalin–Vilkovisky antibracket!. Then
the equation (f ,LH)50 is the evolution equation

dt f 5LgH
f 5] t f 1$H, f %V ~13!

in time-dependent mechanics. Note that, taken separately, the terms on its right-hand s
ill-behaved objects under reference frame transformations. With the splitting~9!, the evolution
equation~13! is brought into the frame-covariant form

LgH
f 5V* G cH1$H̃G , f %V ,

but its right-hand side does not reduce to a Poisson bracket.
The following construction enables us to represent the right-hand side of the evolution

tion ~13! as a pure Poisson bracket. Given a Hamiltonian formH5h* J, let us consider its
pull-back z* H onto the contangent bundleT* Q. It is readily observed that the differenceJ
2z* H is a horizontal one-form onT* Q→R, while

H* 5] tc~J2z* H !5p1H ~14!

is a function onT* Q. Then the relation

z* ~LgH
f !5$H* ,z* f %T ~15!

holds for any functionf PC`(V* Q). In particular,f is an integral of motion iff its bracket~15!
vanishes. Note thatgH5Tz(qH* ) whereqH* is the Hamiltonian vector field for the functionH*
~14! with respect to the canonical Poisson structure$,%T on T* Q.

Relation~12! enables us to obtain the conservation laws in Hamiltonian time-dependen
chanics in accordance with the standard procedure in Lagrangian formalism.1,2,10,14The first varia-
tional formula applied to the LagrangianLH ~11! leads to the weak identityL ũH'dt(ucH)dt. If
the Lie derivative~12! vanishes, we have the conserved symmetry current

Ju5ucdH5piu
i2utH, ~16!

alongu. If u is a vertical vector field,Ju is the Noether current

Ju~q!5ucq5piu
i , q5pi dqiPV* Q. ~17!

If u5G is a connection,

JG5piG
i2H52H̃G ~18!

is the energy function with respect to the reference frameG, taken with the minus sign.1,2,15Note
that the currentJu ~16! is conserved iff its bracket$H* ,z* Ju%T ~15! vanishes.

Proposition 3:Given a Hamiltonian formH, the symmetry currents~16! make up a subalge
bra of the Poisson algebraC`(V* Q):

$Ju ,Ju8%V5J@u,u8#. ~19!
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The proof follows from a direct computation.
Remark 4:It is readily observed that all Noether currents~17! also constitute a subalgebra o

the Poisson algebraC`(V* Q) with respect to the bracket~19!.

V. TIME-DEPENDENT CONSTRAINTS

With the Poisson bracket$,%V , an algebra of time-dependent constraints can be descr
similarly to that in conservative Hamiltonian mechanics, but we should use relation~15! in order
to extend the constraint algorithm to time-dependent constraints.

Let N be a closed imbedded subbundlei N :N�V* Q of the Legendre bundleV* Q→R,
treated as a constraint space. Note thatN is neither Lagrangian nor symplectic submanifold w
respect to the Poisson structure$,%V . Let us consider the idealI N,C`(V* Q) of functionsf on
V* Q which vanish onN, i.e., i N* f 50. Its elements are said to be constraints. There is the isom
phism

C`~V* Q!/I N>C`~N! ~20!

of associative commutative algebras. By the normalizeĪ N of the idealI N is meant the subset o
functions ofC`(V* Q) whose Hamiltonian vector fields restrict to vector fields onN,12 i.e.,

Ī N5$ f PC`~V* Q!:$ f ,g%VPI N ,;gPI N%. ~21!

It follows from the Jacobi identity that the normalizer~21! is a Poisson subalgebra ofC`(V* Q).
Put

I N8 5 Ī NùI N . ~22!

This is also a Poisson subalgebra ofĪ N . Its elements are called the first class constraints, while
remaining elements ofI N are the second class constraints. It is readily observed thatI N

2 ,I N8 .
Remark 5:Let N be a coisotropic submanifold ofV* Q. Then I N, Ī N and I N5I N8 , i.e., all

constraints are of first class.
Let H be a Hamiltonian form on the momentum phase spaceV* Q. In accordance with the

relation~15!, a constraintf PI N is preserved with respect to a Hamiltonian formH if the bracket
~15! vanishes on the constraint space. It follows that solutions of the Hamilton equations~10a! and
~10b! do not leave the constraint spaceN if

$H* ,z* I N%T,z* I N . ~23!

If this relation does not hold, let us introduce secondary constraints$H* ,z* f %T , f PI N , which
belong toz* (C`(V* Q)). If the set of primary and secondary constraints is not closed w
respect to relation~23!, one can add the tertiary constraints$H* ,$H* ,z* f a%T%T , and so on.

Let us assume thatN is a final constraint space for a Hamiltonian formH. If H satisfies
relation ~23!, so is a Hamiltonian form

H f5H2 f dt, ~24!

where f PI N8 is a first class constraint. Though Hamiltonian formsH andH f coincide with each
other on the constraint spaceN, the corresponding Hamilton equations have different solution
N becausedHuNÞdHf uN . At the same time,d( i N* H)5d( i N* H f). Therefore, let us consider th
pull-back, called the constrained Hamiltonian form,

HN5 i N* H f , ~25!

which is the same for allf PI N8 . Note thatHN ~25! is not a true Hamiltonian form onN→R in
general. On sectionsr of the bundleN→R, we can write
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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r * ~uNcdHN!50, ~26!

whereuN is an arbitrary vertical vector field onN→R. They are called the constrained Hamilto
equations. It is readily observed that, for any Hamiltonian formH f ~24!, every solution of the
Hamilton equations which lives in the constraint spaceN is a solution of the constrained Hamilto
equations~26!.

Let us mention the problem of constructing a generalized Hamiltonian system, similar t
for a Dirac constraint system in conservative mechanics. LetH satisfy the condition
$H* ,z* I N8 %T,I N , whereas$H* ,z* I N%TúI N . The goal is to find a constraintf PI N such that the
modified HamiltonianH2 f dt would satisfy the condition

$H* 1z* f ,z* I N%T,z* I N .

This is an equation for a second-class constraintf.
The above construction, except the isomorphism~20!, can be applied to any idealI of

C`(V* Q), treated as an ideal of constraints.12 In particular, an idealI is said to be coisotropic if
it is a Poisson algebra. In this case,I is a Poisson subalgebra of the normalizeĪ ~21!, and coincides
with I 8 ~22!.

For instance, sincez* (Lq f
H)Þ$z* f ,H* %T , the constraintsf PI N preserved with respect to

Hamiltonian form H ~i.e., $z* f ,H* %TPI N) are not generators of gauge symmetries ofH in
general. At the same time, the generators of gauge symmetries of a Hamiltonian formH define an
ideal of constraints as follows. LetA be a Lie algebra of generatorsu of gauge symmetries of a
Hamiltonian formH. In accordance with relation~19!, the corresponding symmetry currentsJu

~16! on V* Q constitute a Lie algebra with respect to the Poisson bracket onV* Q. Let I A denote
the ideal ofC`(V* Q) generated by these symmetry currents. It is readily observed that this
is coisotropic. Then one can think ofI A as being an ideal of first class constraints compatible w
the Hamiltonian formH, i.e.,

$H* ,z* I A%T,z* I A . ~27!

Note that any Hamiltonian formHu5H2Ju dt, uPA, obeys the same relation~27!, but other
currentsJu8 are not conserved with respect toHu , unless@u,u8#50.

Now let A be an arbitrary Lie algebra of vertical vector fieldsu on the configuration bundle
Q→R. As was mentioned in Remark 4, the corresponding symmetry currentsJu ~17! on V* Q
constitute a Lie algebra and generate the corresponding coisotropic idealI A of C`(V* Q) with
respect to the Poisson bracket$,%V on V* Q.

Proposition 4: Let A be a finite-dimensional Lie algebra of vertical vector fields on
configuration bundleQ→R. If there exists a reference frameG on Q→R such that@G,A#50,
then there exists a nonframe Hamiltonian formH on the Legendre bundleV* Q such thatA is the
algebra of gauge symmetries ofH.

Proof: Let Ā be the universal enveloping algebra of the Lie algebra of the symmetry cur
Ju , uPA, ~17!. Then each nonzero elementC of its center of order.1 can be written as a
polynomial inJu , and defines the desired Hamiltonian formH5HG2C dt.

VI. LAGRANGIAN CONSTRAINTS

Lagrangian constraints are one of the most important classes of constraints studied in qu
theory. If a Lagrangian of time-dependent mechanics is degenerate, we have the Lagr
constraint subspace of the Legendre bundleV* Q and a set of Hamiltonian forms associated w
the same Lagrangian.1,2 Here, we consider weakly associated Hamiltonian forms. In compar
with the above-mentioned associated Hamiltonian forms, a degenerate Lagrangian may a
nondegenerate weakly associated Hamiltonian form that is essential for quantization.

Remark 6:Let L5L dt:J1Q→R be a Lagrangian on the velocity phase spaceJ1Q. It yields
the Legendre map
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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L̂:J1Q→
Q

V* Q, pi5p i5] i
tL,

whose imageNL5L̂(J1Q),V* Q is called a Lagrangian constraint space. Besides the Lagr
equations

~] i2dt] i
t!L50, ~28!

we will also refer to the Cartan equations, which can be introduced as follows. Being the Lep
equivalent of the LagrangianL on J1Q @i.e., L5h0(HL)], the Poincare´–Cartan form

HL5L1p i~dqi2qt
i dt! ~29!

is also the Lepagean equivalent of the Lagrangian

L̄5ĥ0~HL!5~L1~ q̂t
i2qt

i !p i !dt, ĥ0~dqi !5q̂t
i dt, ~30!

on the repeated jet manifoldJ1J1Q, coordinated by (t,qi ,qt
i ,q̂t

i ,qtt
i ). The Lagrange equations fo

L̄ are the above-mentioned Cartan equations

] i
tp j~ q̂t

j2qt
j !50, ] iL2d̂tp i1~ q̂t

j2qt
j !] ip j50. ~31!

They are equivalent to the Lagrange equations~28! on holonomic sectionsc̄5 ċ of J1Q→R and
in the case of regular Lagrangians.

Given a LagrangianL on the velocity phase spaceJ1Q, a Hamiltonian formH on the mo-
mentum phase spaceV* Q is said to be associated withL if H satisfies the relations

L̂+Ĥ+L̂5L̂, ~32a!

H5HĤ1Ĥ* L, ~32b!

whereĤ is the Hamiltonian map~8!. A glance at relation~32a! shows thatL̂+Ĥ is the projector

pi~z!5p i~ t,qi ,] jH~z!!, zPNL ,

from V* Q onto the Lagrangian constraint spaceNL . Accordingly,Ĥ+L̂ is the projector fromJ1Y

onto Ĥ(NL). A Hamiltonian form is called weakly associated with a LagrangianL if condition
~32b! holds on the Lagrangian constraint spaceNL .

Proposition 5:10,16 If a Hamiltonian mapF:V* Q→
Q

J1Q obeys relation~32a!, then the

Hamiltonian formH5HF1F* L is weakly associated with the LagrangianL. If F5Ĥ, thenH is
associated withL.

The difference between associated and weakly associated Hamiltonian forms lies in th
lowing. Let H be an associated Hamiltonian form, i.e., equality~32b! holds everywhere onV* Q.
It takes the coordinate form

H5pi]
iH2L~ t,qj ,] jH!.

The exterior differential of this equality leads to the relation

~pi2~] i
tL!~ t,qj ,] t

jH!!] t
i] t

aH50,

which shows that an associated Hamiltonian form is degenerate outside the Lagrangian co
spaceNL .
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Let us restrict our consideration to almost regular LagrangiansL, i.e., ~i! the Lagrangian
constraint spaceNL is a closed imbedded subbundlei N :NL→V* Q of the bundleV* Q→Q, ~ii !
the Legendre mapL̂:J1Q→NL is a fibered manifold, and~iii ! the inverse imageL̂21(z) of any
point zPNL is a connected submanifold ofJ1Q.

Proposition 6:A Hamiltonian formH weakly associated with an almost regular LagrangiaL
exists iff the fibered manifoldJ1Q→NL admits a global section.

This fact is an immediate consequence of the above-mentioned conditions~i!, ~ii ! and Propo-
sition 5. Condition~iii ! leads to the following property.

Lemma 7:2,10 The Poincare´–Cartan formHL for an almost regular LagrangianL is constant on
the connected inverse imageL̂21(z) of any pointzPNL .

Corollary 8: All Hamiltonian forms weakly associated with an almost regular LagrangiaL
coincide with each other on the Lagrangian constraint spaceNL , and the Poincare´–Cartan form
HL ~29! for L is the pull-back

HL5L̂* H, p iqt
i2L5H~ t,qj ,p j !, ~33!

of any such Hamiltonian formH.
It follows that, given Hamiltonian formsH andH8 weakly associated with an almost regul

LagrangianL, their difference isf dt, f PI NL
. However,ĤuNL

ÞĤ8uNL
in general. Therefore, the

Hamilton equations forH andH8 do not coincide necessarily on the Lagrangian constraint sp
NL . Their solutions can leave the Lagrangian constraint spaceNL , i.e., relation~23! fails to hold
in general.

Theorem 9: Let a sectionr of V* Q→R be a solution of the Hamilton equations~10a! and
~10b! for a Hamiltonian formH weakly associated with an almost regular LagrangianL. If r lives
in the Lagrangian constraint spaceNL , the sectionc5pQ+r of Q→R satisfies the Lagrange
equations~28!, while c̄5Ĥ+r obeys the Cartan equations~31!.

The proof is based on the relationL̄5(J1L̂)* LH , whereL̄ is the Lagrangian~30!, while LH

is the Lagrangian~11!. This relation is derived from the equality~33!. The converse assertion i
more intricate.

Theorem 10: Given an almost regular LagrangianL, let a sectionc̄ of the jet bundleJ1Q
→R be a solution of the Cartan equations~31!. Let H be a Hamiltonian form weakly associate
with L, and letH satisfy the relation

Ĥ+L̂+ c̄5 ċ,

wherec is the projection ofc̄ onto Q. Then, the sectionr 5L̂+ c̄ of the Legendre bundleV* Q
→R is a solution of the Hamilton equations~10a! and ~10b! for H.

We will say that a set of Hamiltonian formsH weakly associated with an almost regul
LagrangianL is complete if, for each solutionc of the Lagrange equations, there exists a solut
r of the Hamilton equations for a Hamiltonian formH from this set such thatc5pQ+r . By virtue
of Theorem 10, a set of weakly associated Hamiltonian forms is complete if, for every soluc
on R of the Lagrange equations forL, there is a Hamiltonian formH from this set which fulfills
the relation

Ĥ+L̂+ ċ5 ċ. ~34!

In accordance with Proposition 6, on an open neighborhood inV* Q of each pointzPNL , there
exists a complete set of local Hamiltonian forms weakly associated with an almost regula
grangianL.

Given a Hamiltonian formH weakly associated with an almost regular LagrangianL, let us
consider the corresponding constrained Hamiltonian formHN ~25!. By virtue of Corollary 8,HN

is the same for all Hamiltonian forms weakly associated withL, andHL5L̂* HN . Furthermore, for
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any Hamiltonian formH weakly associated with an almost regular LagrangianL, every solution of
the Hamilton equations which lives in the Lagrangian constraint spaceNL is a solution of the
constrained Hamilton equations~26!. Using the equalityHL5L̂* HN , one can show that the
constrained Hamilton equations~26! are quasiequivalent to the Cartan equations, i.e., there
surjection of the set of solutions of the Cartan equations onto the set of solutions of the cons
Hamilton equations.2,10

VII. QUADRATIC DEGENERATE SYSTEMS

Let us study the physically relevant case of almost regular quadratic Lagrangians. We
that, in this case, there always exists a complete set of nondegenerate weakly associated
tonian forms.

Given a configuration bundleQ→R, let us consider a quadratic LagrangianL which has the
coordinate expression

L5 1
2ai j qt

iqt
j1biqt

i1c, ~35!

wherea, b, andc are local functions onQ. This property is coordinate independent due to
affine transformation law of the coordinatesqt

i . The associated Legendre map

pi+L̂5ai j qt
j1bi ~36!

is an affine morphism overQ. It defines the corresponding linear morphism

L̄:VQ→
Q

V* Q, pi+L̄5ai j q̇
j . ~37!

Let the LagrangianL ~35! be almost regular, i.e., the matrix functionai j is of constant rank.
Then the Lagrangian constraint spaceNL ~36! is an affine subbundle of the bundleV* Q→Q,
modeled over the vector subbundleN̄L ~37! of V* Q→Q. Hence,NL→Q has a global section. Fo
the sake of simplicity, let us assume that it is the canonical zero section 0ˆ (Q) of V* Q→Q. Then
N̄L5NL . Accordingly, the kernel of the Legendre map~36! is an affine subbundle of the affine je
bundleJ1Q→Q, modeled over the kernel of the linear morphismL̄ ~37!. Then there exists a
connection

G:Q→Ker L̂,J1Q, ai j G
j1bi50, ~38!

on Q→R. Connections~38! constitute an affine space modeled over the linear space of ve
vector fieldsv on Q→R, satisfying the conditions

ai j v
j50 ~39!

and, as a consequence, the conditionsv ibi50.
The matrixa in the LagrangianL ~35! can be seen as a degenerate fiber metric of cons

rank in VQ→Q. Then the following corollary of the well-known theorem on a splitting of ex
sequences of vector bundles takes place.

Lemma 11:Given ak-dimensional vector bundleE→Z, let a be a section of rankr of the

tensor bundle∨
2
E* →Z. There is a splittingE5Kera% ZE8 whereE85E/Kera is the quotient

bundle, anda is a nondegenerate fiber metric inE8.
Theorem 12: There exists a linear bundle map

s:V* Q→
Q

VQ, q̇i+s5s i j pj , ~40!

such thatL̄+s+ i N5 i N .
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Proof: The map~40! is a solution of the algebraic equations

ai j s
jkakb5aib . ~41!

By virtue of Lemma 11, there exist the bundle slitting

VQ5Kera%

Q
E8 ~42!

and an atlas of this bundle such that transition functions of Kera andE8 are independent. Sinc
a is a nondegenerate fiber metric inE8, there is an atlas ofE8 such thata is brought into a
diagonal matrix with nonvanishing componentsaAA . Due to the splitting~42!, we have the
corresponding bundle splitting

V* Q5~Kera!* %

Q
Im a. ~43!

Then the desired maps is represented by a direct sums1% s0 of an arbitrary sections1 of the

bundle∨
2
Kera* →Q and the sections0 of the bundle∨

2
E8→Q, which has nonvanishing compo

nentssAA5(aAA)21 with respect to the above-mentioned atlas ofE8. Moreover,s satisfies the
particular relations

s05s0+L̄+s0 , a+s150, s1+a50. ~44!

Corollary 13: The splitting~42! leads to the splitting

J1Q5S~J1Q! %

Q
F~J1Q!5Ker L̂ %

Q
Im~s+L̂ !, ~45a!

qt
i5Si1F i5@qt

i2s0
ik~ak jqt

j1bk!#1@s0
ik~ak jqt

j1bk!#, ~45b!

while the splitting~43! can be written as

V* Q5R~V* Q! %

Q
P~V* Q!5Kers0%

Q
NL , ~46a!

pi5Ri1Pi5@pi2ai j s0
jkpk#1@ai j s0

jkpk#. ~46b!

It is readily observed that, with respect to the coordinatesS i andF i ~45b!, the Lagrangian
~35! reads

L5 1
2ai j F iF j1c8,

while the Lagrangian constraint space is given by the reducible constraints

Ri5pi2ai j s0
jkpk50. ~47!

Given the linear maps ~40! and the connectionG ~38!, let us consider the affine Hamiltonia
map

F5Ĝ1s:V* Q→J1Q, F i5G i1s i j pj , ~48!

and the Hamiltonian form
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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H5HF1F* L

5pidqi2@piG
i1 1

2s0
i j pipj1s1

i j pipj2c8#dt

5~Ri1Pi !dqi

2@~Ri1Pi !G
i1 1

2 s0
i j PiPj1s1

i j pipj2c8#dt. ~49!

Theorem 14:The Hamiltonian forms~49! parametrized by connectionsG ~38! are weakly
associated with the Lagrangian~35! and constitute a complete set.

Proof: By the very definitions ofG ands, the Hamiltonian map~48! satisfies the condition
~32a!. ThenH is weakly associated withL ~35! in accordance with Proposition 5. Let us write th
corresponding Hamilton equations~10a! for a sectionr of the Legendre bundleV* Q→R. They
are

ċ5~ Ĝ1s!+r , c5pQ+r . ~50!

Due to the surjectionsS andF ~45a!, the Hamilton equations~50! break in two parts

S+ ċ5G+c, ṙ i2s ik~ak jṙ
j1bk!5G i+c,

~51!
F+ ċ5s+r , s ik~ak jṙ

j1bk!5s ikr k .

Let c be an arbitrary section ofQ→R, e.g., a solution of the Lagrange equations. There exis
connectionG ~38! such that relation~51! holds, namely,G5S+G8 whereG8 is a connection on
Q→R which hasc as an integral section. It is easily seen that, in this case, the Hamiltonian
~48! satisfies relation~34! for c. Hence, the Hamiltonian forms~49! constitute a complete set.

It is readily observed that, ifs150, thenF5Ĥ and the Hamiltonian forms~49! are associated
with the Lagrangian~35! in accordance with Proposition 5. Ifs1 is nondegenerate, so is th
Hamiltonian form~49!. Hence, we have different complete sets of Hamiltonian forms~49! for
differents1 . Hamiltonian formsH ~49! of such a complete set differ from each other in the te
v iRi , wherev are vertical vector fields~39!. If follows from the splitting~46a! that this term
vanishes on the Lagrangian constraint space. The corresponding constrained Hamiltonia
HN5 i N* H and the constrained Hamilton equations~26! can be written.

VIII. GEOMETRY OF ANTIGHOSTS

We aim to obtain the Koszul–Tate resolution for the constraints~47!. Since these constraint
are reducible, we need an infinite number of antighost fields in general.11,12 We follow the termi-
nology of Ref. 12. They are graded by the antighost numberr and the Grassmann parityr mod2.
Therefore, the following construction generalizes that of simple graded manifolds17 to commuta-
tive graded algebras generated both by odd and even elements. We use an asterisk~* ! for the
Grassmann parity.

Let E5E0% E1→Z be the Whitney sum of vector bundlesE0→Z and E1→Z over a para-
compact manifoldZ. One can think ofE as being a bundle of vector superspaces with a typ
fiber V5V0% V1 where transition functions ofE0 and E1 are independent. Let us consider th
exterior bundle

∧E* 5 %
k50

`

~`
Z

k

E* !,

which is the tensor bundlê E* modulo elements

e0e082e08e0 , e1e181e18e1 , e0e12e1e0 , e0 ,e08PE0z* , e1 ,e18PE1z* , zPZ.
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One can think of∧E* as being the fiber bundle of commutative superalgebras∧V, which is the
tensor product∨E0* ^ ∧E1* modulo elements

e0e12e1e0 , e0PE0z* , e1PE1z* , zPZ.

Global sections of∧E* constitute a commutative graded algebraA(Z) modeled on the locally
free C`(Z)-moduleE0* (Z) % E1* (Z) of global sections ofE* . This is the product of the commu
tative algebraA0(Z) of global sections of the symmetric bundle∨E0* →Z and the graded algebr
A1(Z) of global sections of the exterior bundle∧E1* →Z.

Remark 7:Let A1 be the sheaf of sections of the exterior bundle∧E1* . The pair (Z,A1) is a
graded manifold.17 By the well-known Batchelor theorem, any graded manifold is isomorphic
sheaf of sections of some exterior bundle∧F, but not in a canonical way. If an exterior bundle∧F
is given, one speaks about a simple graded manifold. Therefore, the construction below
extended to an arbitrary commutative graded algebra modeled on a locally freeC`(Z)-module
A5A0% A1 of finite rank. For the sake of brevity, we agree to call (Z,A) a graded manifold,
though its generating set contains an even subsetA0 . Accordingly, elements ofA(Z) are called
graded functions.

Let us study theA(Z)-module DerA(Z) of graded derivations ofA(Z). Recall that by a
graded derivation of the commutative graded algebraA(Z) is meant an endomorphism ofA(Z)
such that

u~ f f 8!5u~ f ! f 81~21!@u#@ f # f u~ f 8! ~52!

for the homogeneous elementsuPDerA(Z) and f, f 8PA(Z).
Proposition 15:Graded derivations~52! are represented by sections of a vector bundle.
Proof: Let $ca% be the holonomic bases forE* →Z with respect to some bundle atlas (zA,v i)

of E→Z with transition functions$rb
a%, i.e., c8a5rb

a(z)cb. Then graded functions read

f 5 (
k50

1

k!
f a1 ...ak

ca1
¯cak, ~53!

wheref a1¯ak
are local functions onZ, and we omit the symbol of an exterior product of eleme

c. The coordinate transformation law of graded functions~53! is obvious. Due to the canonica
splitting VE5E3E, the vertical tangent bundleVE→E can be provided with the fiber bases$]a%
dual of $ca%. These are fiber bases for pr2VE5E. Then any derivationu of A(U) on a trivial-
ization domainU of E reads

u5uA]A1ua]a , ~54!

whereuA,ua are local graded functions andu acts onf PA(U) by the rule

u~ f a1¯ak
ca1

¯cak!5uA]A~ f a1¯ak
!ca1

¯cak1uaf a1¯ak
]a4~ca1

¯cak!. ~55!

This rule implies the corresponding coordinate transformation law

u8A5uA, u8a5r j
auj1uA]A~r j

a!cj ~56!

of derivations~54!. Let us consider the vector bundleVE→Z which is locally isomorphic to the
vector bundle

VEuU'∧E* ^

Z
~pr2VE%

Z
TZ!uU ,

and has the transition functions
 14 Jun 2002 to 193.204.9.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



le

l

ith

ns

r

s

2872 J. Math. Phys., Vol. 41, No. 5, May 2000 L. Mangiarotti and G. Sardanashvily

Downloaded
zi 1¯ i k
8A 5r i 1

21a1
¯r i k

21akza1¯ak

A ,

v j 1¯ j k
8 i 5r j 1

21b1
¯r j k

21bkFr j
i vb1¯bk

j 1
k!

~k21!!
zb1¯bk21

A ]A~rbk

i !G
of the bundle coordinates (za1¯ak

A ,vb1¯bk

i ), k50,... . These transition functions fulfill the cocyc

relations. It is readily observed that, for any trivialization domainU, theA-module DerA(U) with
the transition functions~56! is isomorphic to theA-module of local sections ofVEuU→U. One can
show that, ifU8,U are open sets, there is the restriction morphism DerA(U)→DerA(U8). It
follows that, restricted to an open subsetU, every derivationu of A(Z) coincides with some loca
sectionuU of VEuU→U, whose collection$uU ,U,Z% defines uniquely a global section ofVE

→Z, called a graded vector field onZ. Graded vector fields constitute a Lie superalgebra w
respect to the bracket

@u,u8#5uu81~21!@u#@u8#11u8u.

Corollary 16: The sheaf of sections ofVE→Z is isomorphic to the sheaf of graded derivatio
of the sheafA.

There is the exact sequence overZ of vector bundles

0→`E* ^

Z
pr2VE→VE→`E* ^

Z
TZ→0.

Its splitting

g̃: żA]A° żA~]A1g̃A
a]a! ~57!

transforms every vector fieldt on Z into a graded vector field

t5tA]A°¹t5tA~]A1g̃A
a]a!,

which is the derivation¹t of A(Z) such that

¹t~s f !5~t4ds! f 1s¹t~ f !, f PA~Z!, sPC`~Z!.

Thus, one can think of the splitting~57! as being a graded connection onZ. For instance, every
linear connection

g5dzA
^ ~]A1gA

a
bvb]a!

on the vector bundleE→Z yields the graded connection

gs5dzA
^ ~]A1gA

a
bcb]a!

on Z such that, for any vector fieldt on Z and any graded functionf, the graded derivation¹t( f )
is exactly the covariant derivative off relative to the connectiong.

The ∧E* -dual VE* of VE is a vector bundle overZ which is locally isomorphic to the vecto
bundle

VE* uU'`E* ^

Z
~pr2VE* %

Z
T* Z!uU .

Global sections of this vector bundle constitute theA(Z)-module of exterior graded one-form
f5fAdzA1fadca. Then the morphismf:u→A(Z) can be seen as the interior product
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u4f5uAfA1~21!@fa#uafa . ~58!

Gradedk-forms f can be defined as sections of the graded exterior bundle∧Z
kVE* such that

f∧s5~21! ufuusu1@f#@s#s`f,

whereu* u is the form degree. The interior product~58! is extended to higher graded forms by th
rule

u4~f∧s!5~u4f!∧s1~21! ufu1@f#@u#f∧~u4s!.

The graded exterior differentiald of BRST functions is introduced by the conditionu4d f
5u( f ) for an arbitrary BRST vector fieldu, and is extended uniquely to higher BRST forms
the rules

d~f`s!5~df!`s1~21! ufuf`~ds!, d+d50.

It takes the coordinate form

df5dzA`]A~f!1dca`]a~f!,

where the left derivatives]A ,]a act on the coefficients of graded forms by rule~55!, and they are
graded commutative with the formsdzA,dca. The Lie derivative of a graded formf along a
graded vector fieldu is given by the familiar formula

Luf5u4df1d~u4f!.

IX. THE KOSZUL–TATE RESOLUTION

To construct the vector bundleE of antighosts, let us consider the vertical tangent bun
VQ(V* Q) of V* Q→Q. Let us choose the bundleE as the Whitney sum of the bundlesE0% E1

over V* Q which are the infinite Whitney sum overV* Q of the copies ofVQ(V* Q). We have

E5VQ~V* Q! %

V* Q

VQ~V* Q! %¯ .

This bundle is provided with the holonomic coordinates (t,qi ,pi ,ṗi
(r )), r 50,1,..., where

(t,qi ,pi ,ṗi
(2l )) are coordinates onE0 , while (t,qi ,pi ,ṗi

(2l 11)) are those onE1 . By r is meant the
antighost number. The dual ofE→V* Q is

E* 5VQ* ~V* Q! %

V* Q

VQ* ~V* Q! %¯ .

It is endowed with the associated fiber bases$ci
(r )%, r 51,2,..., such thatci

(r ) have the same linea
coordinate transformation law as the coordinatespi . The corresponding graded vector fields a
graded forms are introduced onV* Q as sections of the vector bundlesVE andVE* , respectively.

The C`(V* Q)-moduleA(V* Q) of graded functions is graded by the antighost number a

A~V* Q!5 %
r 50

`

N t, N 05C`~V* Q!.

Its termsN r constitute a complex

0←C`~V* Q!←N 1←... ~59!

with respect to the Koszul–Tate differential
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d:C`~V* Q!→0,

d~ci
~2l !!5ai j s0

jkck
~2l 21!, l .0,

~60!
d~ci

~2l 11!!5~d i
k2ai j s0

jk!ck
~2l ! , l .0,

d~ci
~1!!5~d i

k2ai j s0
jk!pk .

The nilpotency propertyd+d50 of this differential is the corollary of relations~41! and ~44!.
Proposition 17:The complex~59! with respect to the differential~60! is the Koszul–Tate

resolution, i.e., its homology groups are

Hk.150, H05C`~V* Q!/I NL
5C`~NL!.

Note that, in different particular cases of the degenerate quadratic Lagrangian~35!, the com-
plex ~59! may have a subcomplex, which is also the Koszul–Tate resolution. For instance,
fiber metrica in VQ→Q is diagonal with respect to a holonomic atlas ofVQ, the constraints~47!
are irreducible and the complex~59! contains a subcomplex which consists only of the antigho
ci

(1) .
Now let us construct the BRST chargeQ such that

d~ f !5$Q, f %, f PA~V* Q!,

with respect to some Poisson bracket. The problem is to find the Poisson bracket suc
$ f ,g%50 for all f ,gPC`(V* Q).

To overcome this difficulty, one can consider the vertical extension of Hamiltonian forma
onto the configuration bundleVQ→R.2,18 The corresponding Legendre bundleV* (VQ) is iso-
morphic toV(V* Q), and is provided with the holonomic coordinates (t,qi ,pi ,q̇i ,ṗi) such that
(qi ,ṗi) and (q̇i ,pi) are conjugate pairs of canonical coordinates. The momentum phase
V(V* Q) is endowed with the canonical exterior three-form

VV5]VV5@dṗi`dqi1dpi`dq̇i #`dt, ~61!

where we use the compact notation

]̇ i5
]

]q̇i , ]̇ i5
]

] ṗi
, ]V5q̇i] i1 ṗi]

i .

The corresponding Poisson bracket onV(V* Q) reads

$ f ,g%VV5 ]̇ i f ] ig1] i f ]̇ ig2] ig]̇ i f 2 ]̇ ig] i f .

To extend this bracket to graded functions, let us consider the following graded extens
Hamiltonian formalism.2,19 We will assume thatQ→R is a vector bundle, and will further denot
P5V* Q.

Let us consider the vertical tangent bundleVVP. It admits the canonical decomposition

VVP5VP %

R
VP ——→

pr1

VP. ~62!

Let us choose the bundleE as the Whitney sum of the bundlesE0% E1 over VP which are the
infinite Whitney sum overVP of the copies ofVVP. In view of the decomposition~62!, we have
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E5VP %

R
VP %¯ ——→

pr1

VP.

This bundle is provided with the holonomic coordinates (t,qi ,pi ,q̇(r )
i ,ṗi

(r )), r 50,1,..., where
(t,qi ,pi ,q̇(2l )

i ,ṗi
(2l )) are coordinates onE0 and (t,qi ,pi ,q̇(2l 11)

i ,ṗi
(2l 11)) are those onE1 . The

dual of E→VP is

E* 5VP %

R
VP* %¯ .

It is endowed with the associated fiber bases$c̄(r )
i ,c̄i

(r ) ,c(r )
i ,ci

(r )%, r 51,... . The corresponding
graded vector fields and graded forms are introduced onVP as sections of the vector bundlesVE

andVE* , respectively. Let us complexify these bundles as

C^

R
VVVP , C^

R
VVVP* .

The BRST extension of the form~61! on V* Q is the three-form

VS5VV1 i (
r 51

`

~dc̄i
~r !`dc~r !

i 2dci
~r !`dc̄~r !

i !`dt.

The corresponding bracket of graded functions onV* Q reads

$ f ,g%S5$ f ,g%VV2 i (
r 51

`

~21!r @ f #F ] f

] c̄i
~r !

]g

]c~r !
i 1~21!r

] f

] c̄~r !
i

]g

]ci
~r !2

] f

]ci
~r !

]g

] c̄~r !
i

2~21!r
] f

]c~r !
i

]g

] c̄i
~r !G . ~63!

It satisfies the condition$ f ,g%S52(21)@ f #@g#$g, f %S . Then the desired BRST charge takes t
form

Q5 i F c̄~1!
i ~d i

k2ai j s0
jk!pk1(

l 51

`

~ c̄~2l !
i ai j s0

jkck
~2l 21!1 c̄~2l 11!

i ~d i
k2ai j s0

jk!ck
~2l !!G .

Due to the bracket~63!, one can use this charge in order to obtain the BRST complex
antighostsci

(r ) and ghostsc̄(r )
i such that

c̄~2l 21!
i °ak js0

i j c̄~2l !
k , c̄~2l !

i °2~dk
i 2ak js0

i j !c̄~2l 11!
k , l .0.
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