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Covariant spin structure
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Dirac fermion fields associated with different tetrad gravitational fields and under
general covariant transformations are described by sections of the composite bundle
S→S→X4, which is both the Dirac spinor bundle over the tetrad bundleS and the
natural one overX4. As a natural bundle,S→X4 admits general covariant trans-
formations which are those of Dirac spin structures. A different way is to consider
a background spin structure. We find gauge transformations which preserve this
spin structure, but act on effective tetrad fields as general covariant transformations.
© 1998 American Institute of Physics.@S0022-2488~98!01109-8#

I. INTRODUCTION

Metric and metric-affine theories of gravity in the absence of fermion fields are formulate
the natural bundles over a world manifoldX4 such that there exist canonical lifts of diffeomo
phisms ofX4 onto these bundles. These lifts are general covariant transformations. The inva
of gravitational Lagrangians under general covariant transformations leads to the e
momentum conservation laws in these gravitation theories.1–5 A problem arises because of Dira
fermion fields.

Remark:Manifolds throughout are real, finite-dimensional, Hausdorff, second-countable
connected. By a world manifoldX4 is meant a four-dimensional noncompact oriented manif
which is parallelizable. Such a manifold admits a Dirac spin structure which module isomorp
is unique.6,7 This property remains true for all spin structures onX4 which are generated by th
twofold universal covering groups.8

Recall that a Dirac spin structure on a world manifoldX4 is said to be a pair (Ph,zh) of a
principal spin bundlePh→X4 with the structure spin groupLs5SL(2,C) and a principal bundle
morphism

zh :Ph→LX, ~1!

over X4 from Ph to the principal bundleLX→X4 of oriented linear frames in the tangent bund
TX of X4.9–11 The structure group ofLX is GL45GL1(4,R). Every Dirac spin structure factor
izes through the morphism

zh :Ph→LhX,LX,

whereLhX, called a reduced Lorentz structure, is a principal Lorentz sub-bundle of the f
bundleLX whose structure group is the proper Lorentz groupL5SO0(1,3). Note that a reduced
Lorentz structure is not preserved under general covariant transformations of the frame
LX. From the physical viewpoint, it means that a Dirac spin structure provides sponta
breaking of world symmetries.12,13

By the well-known theorem,14 there is one-to-one correspondence between the reduced
entz sub-bundlesLhX of the frame bundleLX and the global sections of the quotient bundle

S5LX/L→X4, ~2!

called the tetrad bundle. Its elements are oriented frames inTX module Lorentz transformations
The bundleS is the twofold covering of the bundleSg of pseudo-Euclidean bilinear forms inTX,
whose global sections are pseudo-Riemannian metrics onX4. Global sectionsh of S→X4 are
tetrad fields onX4. Accordingly, a Dirac spin structurePh which factorizes throughLhX is said to
be associated with the tetrad fieldh.
48740022-2488/98/39(9)/4874/17/$15.00 © 1998 American Institute of Physics
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Following the standard terminology of gauge theory,15–18 one may say that tetrad fields
associated with reduced Lorentz structures, are Higgs fields corresponding to spontaneous
ing of world symmetries.12,13,15

Dirac fermion fields in the presence of a tetrad fieldh are described by sections of th
Ph-associated spinor bundle

Sh5~Ph3V!/Ls→X4, ~3!

whose typical fiberV carries the spinor representation of the spin groupLs . To describe Dirac
fermion fields and, in particular, to be provided with the Dirac operator, the spinor bundleSh ~3!
must be represented as a sub-bundle of the bundle of Clifford algebras, that is, as a spinor s
on the cotangent bundleT* X in the terminology of Lawson and Michelson.9 The crucial point is
that, for differentSh andSh8, these representations are not equivalent though the spin struc
Ph and Ph8 are isomorphic~see Sec. IV!. Roughly speaking, for different tetrad fieldsh, the
Clifford representations

gh~dxl!5ha
lga,

of co-framesdxl by Dirac’s matrices are not equivalent.12,13

It follows that every Dirac fermion field must be described in a pair (sh ,h) with a certain
tetrad fieldh, and Dirac fermion fields in the presence of different tetrad fields fail to be give
sections of the same spinor bundle. This fact exhibits the physical nature of gravity as a
field.

There are two ways to describe Dirac fermion fields in the presence of different gravita
fields and under general covariant transformations.

~i! Gravitational fields are identified with different tetrad fields on a world manifoldX4, and
the totality of fermion-gravitation pairs (sh ,h) is examined. The goal is to construct a bundle ov
X4 whose sections exhaust all these pairs.

~ii ! A background spin structure~defined, e.g., by the whole fermion matter of the Univer!
and the associated tetrad field on a world manifoldX4 are considered, while different gravitation
fields lead to different effective tetrad~or metric! fields, which do not change the background sp
structure. The key point is to find gauge transformations over diffeomorphisms ofX4 which both
keep the background geometry and act on effective tetrad fields as general covariant trans
tions.

It should be emphasized that, in both variants, the equations of motion are equivalent a
locally, and so are the equations for a gravitational field if a Lagrangian is independen
background field.

Following the first variant, let us consider the universal twofold covering groupGL̃4 of the
groupGL4 and the corresponding twofold covering bundleLX̃ of the frame bundleLX.9,19–21The
bundleLX̃→X4 inherits the general covariant transformations of the frame bundleLX. However,
the spinor representation of the groupGL̃4 is infinite dimensional. Therefore, theLX̃-associated
spinor bundle describes infinite-dimensional ‘‘world’’ spinor fields, but not the Dirac ones.
theory of world spinors has been developed.22

In contrast with this world spinor model, our purpose here is to describe the totality of fam
Dirac fermion fields on a world manifold, without appealing to the spinor representation o
general linear group.

We use the fact that the frame bundleLX is the principal bundleLX→S over the tetrad
bundleS ~2! with the structure Lorentz groupL. Since the diagram

~4!
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commutes~see Sec. V!, the bundleLX̃ is anLs-principal bundle over the same tetrad bundleS

5LX̃/Ls . Then the commutative diagram

~5!

provides a Dirac spin structure on the tetrad bundleS. We will show that, for any tetrad fieldh,
the restrictionh* LX̃ of the Ls-principal bundleLX̃→S to h(X4),S is isomorphic to the
Ls-principal sub-bundlePh of the bundleLX̃→X4 such that the diagram

~6!

commutes. Then general covariant transformations of the bundleLX̃→X4 take the form of auto-
morphisms of the principal spin bundleLX̃→S over general covariant transformations of t
tetrad bundleS. These are desired general covariant transformations of Dirac spin structures~1! as
the restrictions toh(X),S of the diagram~5!, called the covariant spin structure.

Now let us consider the spinor bundle

S5~LX̃3V!/Ls→S, ~7!

associated with the principal spin bundleLX̃→S. Its typical fiber is the Dirac spinor spaceV.
Given a tetrad fieldh, the restrictionh* S of S→S to h(X),S is a sub-bundle of the composit
bundle

S→S→X4. ~8!

This sub-bundle is isomorphic to thePh-associated spinor bundleSh ~3! whose sectionssh de-
scribe Dirac fermion fields in the presence of the tetrad fieldh ~see Sec. II!. It follows that sections
of the composite bundle~8! projected onto different tetrad fieldsh:X4→S exhaust the totality of
pairs (sh ,h) of Dirac fermion fields and tetrad fields. The configuration space of this totality is
first order jet manifoldJ1S of the composite bundleS→X4.5,23 In this model, tetrad fields are
dynamic. They are treated as gravitational fields. We will construct the total Dirac operator a
total Lagrangian on the configuration spaceJ1S whose restrictions toh(X),S, for any tetrad
field h, recover the familiar Dirac operator and the familiar Dirac’s Lagrangian of fermion fi
in the presence of the tetrad fieldh and a general linear connectionK on X4.

Note that the bundleS→X4 is not a spinor bundle. It is provided with the structure of t
LX̃-associated bundle with the structure groupGL̃4 which acts on the typical fiber (GL̃4

3V)/Ls by the induced representation~see Sec. II!. Therefore, general covariant transformatio
of LX̃ yield the corresponding automorphisms of the bundleS→X4, which takes the form of
automorphisms of the spinor bundleS→S over the general covariant transformations of the tet
bundleS→X4. We will construct the canonical lift ontoS of vector fields onX4 which is the
generator of these transformations. Then the energy-momentum conservation law c
derived.5,23

Following the variant~ii !, we consider a background spin structurePh associated with a
background tetrad fieldh. In this model, gravitational fields are identified with the sections of
LX-associated group bundleQ→X. The canonical morphismQ3S→S restricted toh(X),S
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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defines effective tetrad fields.24 We will construct automorphisms ofLX over diffeomorphisms of
X which both preserve the background spin structurePh→LX and act on effective tetrad fields a
general covariant transformations.

II. REDUCED STRUCTURE

The reduced structure language provides the adequate mathematical formulation of
models with broken symmetries.15–18

Let pPX :P→X be a principal bundle with a structure groupG, which acts freely and transi
tively

Rg :p°pg, pPP, gPG, ~9!

on P on the right. Let

Y5~P3V!/G, ~10!

be aP-associated bundle with a typical fiberV on which the structure groupG acts on the left.
Recall that the quotient~10! is defined by identification of elements (p,v) and (pg,g21v) for all
gPG. Its elements will be denoted by (p,v)•G. To say more exactly, the bundleY ~10! is
canonically associated withP. In particular, every automorphismF of a principal bundleP
@which, by definition, is equivariantRg+F5F+Rg , ;gPG, under the canonical action~9!# yields
the corresponding automorphism

FY :~P3V!/G→~F~P!3V!/G,

of theP-associated bundleY ~10!. Recall that every vertical automorphismF of P takes the form
p→pf(p) wheref is a G-valued equivariant function onP, i.e., f(pg)5g21f(p)g, ;gPG.

Let H be a Lie subgroup ofG. We have the composite bundle

P→P/H→X,

wherepSX :P/H→X is a P-associated bundle, denoted byS, with the typical fiberG/H, and
pPS :P→P/H is a principal bundle with the structure groupH. A H-principal sub-bundlePh of P
is called a reduced structure.25,26 By the well-known theorem,14 there is one-to-one correspon
dence between the global sectionsh of the quotient bundleS→X and theH-principal sub-bundles
Ph of P. Such a sub-bundlePh is isomorphic to the pull-backh* P5pPS

21(h(X)) over X of the
bundleP→S by h. The following assertion takes place.5,26

Proposition 1:Every vertical automorphismF of the principal bundleP→X sends a reduced
sub-bundlePh onto a reduced sub-bundlePh8 which is isomorphic toPh as aH-principal bundle.
Conversely, let two reduced sub-bundlesPh andPh8 of a principal bundleP be isomorphic to each
other asH-principal bundles. Then every isomorphismF:Ph→Ph8 over X can be extended to a
vertical automorphism ofP.

If the quotientG/H is homeomorphic to an Euclidean space, allH-principal sub-bundles ofP
are isomorphic to each other asH-principal bundles.27 This also takes place ifP is a trivial bundle.

Given a reduced sub-bundlePh of a principal bundleP, let

Yh5~Ph3V!/H, ~11!

be thePh-associated bundle with a typical fiberV. If Ph8 is another reduced sub-bundle ofP

which is isomorphic toPh, the bundlesYh andYh8 are isomorphic, but not canonically isomorph
in general.

Proposition 2:Let Ph be aH-principal sub-bundle of aG-principal bundleP. Let Yh be the
Ph-associated bundle~11! with a typical fiberV. If V carries a representation of the whole gro
G, the fiber bundleYh is canonically isomorphic to theP-associated fiber bundle~10!.

Proof: Every element ofY can be represented as (p,y)•G, pPPh. Then the desired isomor
phism is
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Yh{~p,y!•H°~p,y!•GPY.

It follows that, given aH-principal sub-bundlePh of P, any P-associated bundleY with the
structure groupG is canonically equipped with a structure of thePh-associated fiber bundleYh

with the structure groupH. Briefly, we will write

Y5~P3V!/G>~Ph3V!/H5Yh.

However,Ph- andPh8-associated bundle structures onY are not equivalent because, given bund
atlasesCh of Ph andCh8 of Ph8, the union of the associated atlases ofY has necessarilyG-valued
transition functions between the charts fromCh andCh8.

In gauge theory on the principal bundleP, sectionsh of the quotient bundleS are treated as
Higgs fields, while sectionssh of the Ph-associated bundleYh ~11! describe matter fields in the
presence of the Higgs fieldsh. From the physical viewpoint, the structure groupG of P is said to
be the group of broken symmetries because matter fields carries only a representation
subgroupH, and a reduced structurePh,P which is not preserved under automorphisms ofP.

In general,Yh is not associated or canonically associated with otherH-principal sub-bundles
of P. It follows that matter fields can be represented only by pairs with Higgs fields.

To describe the totality of these pairs (sh ,h) for all Higgs fields, let us consider the composi
bundle

Y ——→
pYS

S ——→
pSX

X, ~12!

whereY→S is the bundle

YS5~P3V!/H,

associated with theH-principal bundleP→S.5,28 There is the canonical isomorphismi h :Yh

→h* Y of the Ph-associated bundleYh to the sub-bundle ofY→X which is the restriction

h* Y5~h* P3V!/H>~Ph3V!/H5Yh,

of the bundleYS to h(X),S, i.e.,

i h~Yh!5pYS
21~h~X!!. ~13!

Then every global sectionsh of Yh corresponds to the global sectioni h+sh of the composite bundle
~12!. Conversely, every global sections of the composite bundle~12! which projects onto a
sectionh5pYS+s of the bundleS→X takes its values into the sub-bundlei h(Yh),Y in accor-
dance with the relation~13!. Hence, there is one-to-one correspondence between the sectio
the bundleYh and the sections of the composite bundle~12! which coverh.

Remark:The total space of the composite bundleY→X ~12! has the structure of theP-
associated bundle

Y5~P3~G3V!/H !/G,

where the elements (p,g,y) and (pab,b21g,a21y) for all aPH and bPG are identified. Its
typical fiber is the quotient (G3V)/H of the productG3V by identification of the elements (g,y)
and (ag,a21y) for all aPH. The groupG act on this typical fiber by the rule

G{b:~g,y!•H→~bg,y!•H,

which is the induced representation ofG by the identic representation ofH. In particular, if the
typical fiberV of the composite bundleY→X admits the action of the groupG, these two bundle
structures onY are equivalent.
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The feature of the dynamics of field systems on composite bundles consists i
following.5,28 Let the composite bundleY ~12! be coordinated by (xl,sm,yi), where (xl,sm) are
bundle coordinates onS→X. Its first order jet manifold is provided with the adapted coordina
(xl,sm,yi ,sl

m ,yl
i ). Let

A5dxl
^ ~]l1Al

i ] i !1dsm
^ ~]m1Am

i ] i !, ~14!

be a principal connection on the bundleY→S. This connection defines the splitting

VY5VYS %

Y
~Y3

S

VS!,

ẏi] i1ṡm]m5~ ẏi2Am
i ṡm!] i1ṡm~]m1Am

i ] i !,

of vertical tangent bundles. Using this splitting, one can construct the first-order differe
operator

D̃:J1Y→T* X^

Y
VYS ,

~15!

D̃5dxl
^ ~yl

i 2Al
i 2Am

i sl
m!] i ,

on the composite bundleY. The operator~15! possesses the following important property. Giv
a global sectionh of S, its restriction

D̃h5D̃+J1i h :J1Yh→T* X^ VYh,
~16!

D̃h5dxl
^ ~yl

i 2Al
i 2Am

i ]lhm!] i ,

to Yh is exactly the familiar covariant differential relative to the principal connection

Ah5dxl
^ @]l1~Am

i ]lhm1Al
i !] i #,

on the bundleYh→X, which is induced by the principal connection~14! on the bundleY→S by
the imbeddingi h .

III. LORENTZ STRUCTURE

An example of a reduced structure is a Lorentz reduced structure in gravitation theories
is deduced from the equivalence principle,15 and accompanies a Dirac fermion matter.12,13

Let pLX :LX→X4 be the frame bundle. Given the holonomic frames$]m% in the tangent
bundleTX, every element$Ha% of LX takes the formHa5Ha

m]m , whereHa
m is a matrix element

of the groupGL4 . The frame bundleLX is provided with the bundle coordinates (xl,Ha
m). In

these coordinates, the canonical action of the structure groupGL4 on LX reads

Rg :Ha
m°Hb

mga
b , gPGL4 .

As is well-known, the frame bundleLX is equipped with the canonicalR4-valued one-form,
which is given by the coordinate expression

uLX5Hm
a dxm

^ ta , ~17!

where$ta% is a fixed basis forR4 andHm
b is the inverse matrix ofHa

m .
Since a world manifold is parallelizable, the structure groupGL4 of the frame bundleLX is

reducible to the Lorentz groupL. The correspondingL-principal sub-bundleLhX is a reduced
Lorentz structure. SinceLX is trivial, any two Lorentz sub-bundlesLhX andLh8X are isomorphic
to each other. By virtue of Proposition 1, there exists a vertical bundle automorphismF of LX

which sendsLhX onto Lh8X.
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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As was mentioned above, there is one-to-one correspondence between the Loren
bundlesLhX of LX and the global sectionsh of the tetrad bundleS ~2! with the typical fiber
GL4 /L.

Every tetrad fieldh defines an associated Lorentz atlasCh5$Uz ,zz
h% of the frame bundleLX

where the corresponding local sectionszz
h of LX take their values into the Lorentz sub-bund

LhX. Given a Lorentz atlasCh, the pull-back

zz
h* uLX5ha

^ ta5hl
adxl

^ ta , ~18!

of the canonical formuLX ~17! by a local sectionzz
h is said to be a~local! tetrad form. It

determines the tetrad coframes$ha% in the cotangent bundleT* X→X4. Their coefficientshm
a and

the inverse matrix elementsha
m5Ha

m+zz
h are called tetrad functions.

Given a Lorentz sub-bundleLhX, let us consider the associated bundle of Minkowski spa

MhX5~LhX3M !/L, ~19!

whereM is provided with the Minkowski metrich. By virtue of Proposition 2, this bundle i
isomorphic to the cotangent bundleT* X. However, the Minkowski structuresMhX andMh8X on
T* X for different tetrad fieldsh andh8 are not equivalent.

IV. DIRAC SPIN STRUCTURE

Every bundle of Minkowski spacesMhX ~19! over a world manifold is extended to the bund
of Clifford algebrasChX with the fibers generated by the fibers ofMhX.10 This bundleChX has
the structure group Aut(C1,3) of inner automorphisms of the Clifford algebraC1,3. In general,
ChX does not contain a spinor sub-bundle because a spinor subspaceV ~a minimal left ideal! of
C1,3 is not stable under inner automorphisms ofC1,3. As was shown,29,30 a spinor sub-bundle o
ChX exists if the transition functions ofChX can be lifted from Aut(C1,3) to the Clifford group
G1,3. This agrees with the usual condition of existence of a spin structure which holds foX4.
Such a spinor sub-bundle is the bundleSh ~3! associated with the universal twofold covering

zh :Ph→LhX, zh+Rg5RzL~g! , ;gPLs ,

of LhX. This is theh-associated Dirac spin structure on a world manifold.
There exists the bundle morphism

gh :T* X^ Sh5~Ph3~M ^ V!!/Ls→~Ph3g~M ^ V!!/Ls5Sh, ~20!

wherebyg is meant the left action ofM,C1,3 on V,C1,3.12,13One can think of~20! as being the
representation of covectors toX4 by the Diracg-matrices on elements of the spinor bundleSh.
Relative to an atlas$zz% of Ph and to the associated Lorentz atlas$zh+zz% of LX, the representation
~20! reads

yA~gh~ha~x! ^ y!!5gaA
ByB~y!, yPSx

h ,

whereyA are the corresponding bundle coordinates ofSh, andha are the tetrad coframes~18!. For
brevity, we will write

ĥa5gh~ha!5ga, d̂xl5gh~dxl!5ha
l~x!ga.

Let Ah be a principal connection onSh, and let

D:J1Sh→T* X^

Sh

Sh,

D5~yl
A2Aab

lLab
A

ByB!dxl
^ ]A

where
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Lab5 1
4@ga ,gb#, ~21!

be the corresponding covariant differential. The first-order differential Dirac operator is defin
Sh by the composition

Dh5gh+D:J1Sh→T* X^ Sh→Sh,
~22!

yA+Dh5ha
lgaA

B~yl
B2 1

2A
ab

lLab
A

ByB!.

The h-associated spinor bundleSh is equipped with the fiber spinor metric

ah~y,y8!5 1
2~y1g0y81y81g0y!, y,y8PSh.

Using this metric and the Dirac operator~22!, one can define Dirac’s Lagrangian

Lh5H i

2
hq

lFyA
1~g0gq!A

BS yl
B2

1

2
Al

abLab
B

CyCD
2S ylA

1 2
1

2
Al

abyC
1Lab

1 D ~g0gq!A
ByBG2myA

1~g0!A
ByBJ det~hm

a !, ~23!

on J1Sh which describes Dirac fermion fields in the presence of a tetrad fieldh and a principal
connectionAh on Sh .

We consider the general case of a principal connectionAh on Sh generated by a general linea
connection on a world manifold as follows. LetvK be a connection form onLX of a general linear
connection

K5dxl
^ S ]l1Kl

m
nẋn

]

] ẋmD , ~24!

on X4, called a world connection. By virtue of the well-known theorem,14 the pull-backzh* vL over
Ph of the Lorentz partvL of vK is the connection form of the spin connection

Kh5dxl
^ @]l1 1

4~hkbhm
a 2hkahm

b !~]lhk
m2hk

nKl
m

n!Lab
A

ByB]A#, ~25!

on Sh, whereLab are the generators~21!.23,31–33

Remark:There is one-to-one correspondence between the world connections and the s
of the quotient bundle

CK5J1LX/GL4 , ~26!

wherebyJ1LX implies the first-order jet manifold of the frame bundleLX→X4. With respect to
the holonomic frames inTX, the bundleCK is coordinated by (xl,kl

n
a) so that, for any section

K of CK→X4,

kl
n

a+K5Kl
n

a ,

are the coefficients of the world connectionK ~24!.
Motivated by the connection~25!, one can obtain the canonical lift

t̃5tl]l1 1
4~hkbhm

a 2hkahm
b !~tl]lhk

m2hk
n]ntm!Lab

A
ByB]A , ~27!

of vector fieldst on X onto the spinor bundleSh.5,23 The lift ~27! is brought into the form

t̃5t$%2
1
4~hkbhm

a 2hkahm
b !hk

n¹ntmLab
A

ByB]A ,

wheret$% is the horizontal lift oft by means of the spin Levi-Civita connection for the tetrad fie
h, and¹ntm are the covariant derivatives oft relative to the Levi-Civita connection.34,35
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The canonical lift~27! fails to be a generator of general covariant transformations becau
does not involve transformations of tetrad fields. To define general covariant transformation
must consider spinor structures associated with different tetrad fields. The difficulty arise
cause, though the principal spinor bundlesPh andPh8 are isomorphic, the associated structures
the bundles of Minkowski spacesMhX and Mh8X ~19! on the cotangent bundleT* X are not
equivalent, and so are the representationsgh andgh8 ~20!.12,13 Indeed, let

t* 5tmdxm5taha5ta8h8a,

be an element ofT* X. Its representationsgh andgh8 ~20! read

gh~ t* !5taga5tmha
mga, gh8~ t* !5ta8g

a5tmha8
mga.

There is no isomorphismFs of Sh onto Sh8 which can obey the condition

gh8~ t* !5Fsgh~ t* !Fs
21, ;t* PT* X.

We thus observe the phenomenon of symmetry breaking in gravitation theory which exhib
physical nature of gravity as a Higgs field.

V. COVARIANT SPIN STRUCTURE

We start from the following two facts.
Remark:The L-principal bundle

PLªGL4→GL4 /L, ~28!

is trivial. In accordance with the classification theorem,27 a G-principal bundle over ann-
dimensional sphereSn is trivial if the homotopy grouppn21(G) is trivial. The baseGL4 /L is
homeomorphic toS33R7. Let us consider the morphismf 1 of S3 into GL4 /L, f 1(p)5(p,0), and
the pull-back L-principal bundle f 1* PL→S3. Since L is homeomorphic toRP33R3 and
p2(L)50, this bundle is trivial. Letf 2 be the projection ofGL4 /L onto S3. Then the pull-back
L-principal bundlef 2* ( f 1* PL)→GL4 /L is also trivial. Since the compositionf 1+ f 2 of GL4 /L into
GL4 /L is homotopic to the identity morphism ofGL4 /L, the bundlef 2* ( f 1* PL)→GL4 /L is
equivalent to the bundlePL .27 It follows that the bundle~28! is also trivial.

Remark:The diagram~4! commutes. The restriction of the universal covering groupGL̃4

→GL4 to the Lorentz groupL is obviously a covering space ofL. Let us show that this is the
universal covering space. Indeed, any noncontractible cycle inGL4 belongs to some subgrou
SO(3),GL4 and the restriction of the covering bundleGL̃4→GL4 to SO(3) is the universal
covering of SO(3). Since theL is homotopic to its maximal compact subgroupSO(3), its
universal covering space belongs toGL̃4 .

As a consequence, we have the commutative diagram~6!36 and the covariant spin structur
~5!.

The covariant spin structure is unique. Since the bundleS→X4 is trivial, the set of non-
equivalent spin structures onS is in bijective correspondence with the cohomology gro
H1(S33R73X4;Z2). Since the cohomology groupH1(S3;Z2) is trivial and a spin structure onS3

is unique,37 one can show that nonequivalent spin structures onS are in bijective correspondenc
with those onX4.

Let us consider the composite spinor bundleS ~8! where S→S is the spinor bundle~7!

associated with theLs-principal bundleLX̃→S. Given a tetrad fieldh, there is the canonica
isomorphism

i h :Sh5~Ph3V!/Ls→~h* LX̃3V!/Ls ,

of the h-associated spinor bundleSh ~3! onto the restrictionh* S of the spinor bundleS→S to
h(X),S. Thence, every global sectionsh of the spinor bundleSh corresponds to the globa
 07 Apr 2002 to 193.204.11.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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sectioni h+sh of the composite spinor bundle~3!. Conversely, every global sections of the com-
posite spinor bundle~8!, which projects onto a tetrad fieldh, takes its values into the sub-bund
i h(Sh),S.

Let the frame bundleLX→X4 be provided with a holonomic atlas$Uz ,Tfz%, and let the
principal bundlesLX̃→S and LX→S have the associated atlases$Ue ,ze

s% and $Ue ,ze5 z̃+ze
s%,

respectively. With these atlases, the composite spinor bundleS is equipped with the bundle
coordinates (xl,sa

m ,yA), where (xl,sa
m) are coordinates onS such thatsa

m are the matrix com-
ponents of the group element (Tfz+ze)(s), sPUe , pSX(s)PUz . For any tetrad fieldh, we
have (sa

l+h)(x)5ha
l(x) whereha

l(x)5Ha
l+ze+h are the tetrad functions with respect to the Lo

entz atlas$ze+h% of LhX.
The spinor bundleS→S is the sub-bundle of the bundle of Clifford algebras which is g

erated by the bundle of Minkowski spaces

EM5~LX3M !/L→S,

associated with theL-principal bundleLX→S. Since the bundlesLX andPL ~28! are trivial, so
is the bundleEM→S. Hence, it is isomorphic to the productS3

X
T* X. Then there exists the

representation

gS :T* X^

S

S5~LX̃3~M ^ V!!/Ls→~LX̃3g~M ^ V!!/Ls5S, ~29!

given by the coordinate expression

d̂xl5gS~dxl!5sa
lga.

Restricted toh(X),ST , this representation recovers the morphismgh ~20!.
Using this representation, one can construct the total Dirac operator on the composite

bundleS as follows. Since the bundlesLX̃→S andS→X4 are trivial, let us consider a principa
connectionA ~14! on theLs-principal bundleLX̃→S given by the local connection form

A5~Al
abdxl1Am

kabdsk
m! ^ Lab , ~30!

Al
ab52 1

2~hkbsm
a 2hkasm

b !sk
nKl

m
n ,

~31!

Am
kab5 1

2~hkbsm
a 2hkasm

b !,

whereK is a world connection onX4. This connection defines the associated spin connectio

AS5dxl
^ ~]l1 1

2Al
abLab

A
ByB]A!1dsk

m
^ ~]m

k 1 1
2Am

kabLab
A

ByB]A!, ~32!

on the spinor bundleS→S. The choice of the connection~30! is motivated by the fact that, given
a tetrad fieldh, the restriction of the spin connection~32! to Sh is exactly the spin connection~25!.

The connection~32! yields the first order differential operatorD̃ ~15! on the composite spino
bundleS→X4 which reads

D̃:J1S→T* X^

S

S,

D̃5dxl
^ @yl

A2 1
2~Al

ab1Am
kabslk

m !Lab
A

ByB#]A

5dxl
^ @yl

A2 1
4~hkbsm

a 2hkasm
b !~slk

m 2sk
nKl

m
n!Lab

A
ByB#]A . ~33!

The corresponding restrictionD̃h ~16! of the operatorD̃ ~33! to J1Sh,J1S recovers the familiar
covariant differential on theh-associated spinor bundleSh→X4 relative to the spin connection
~27!.

Combining~29! and ~33!, we obtain the first-order differential operator
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D5gS+D̃:J1S→T* X^

S

S→S,

yB+D5sa
lgaB

A@yl
A2 1

4~hkbsm
a 2hkasm

b !~slk
m 2sk

nKl
m

n!Lab
A

ByB#, ~34!

on the composite spinor bundleS→X4. One can think ofD as being the total Dirac operator onS
since, for every tetrad fieldh, the restriction ofD to J1Sh,J1S is exactly the Dirac operatorDh

~22! on the spinor bundleSh in the presence of the tetrad fieldh and the spin connection~25!.
Thus, we come to the model of metric-affine gravity and Dirac fermion fields. The

configuration space of this model is the jet manifoldJ1Y of the bundle product

Y5CK3
S

S, ~35!

whereCK is the bundle of world connections~26!. It is coordinated by (xm,sa
m ,km

a
b ,yA), and

J1Y is provided with the adapted coordinates

~xm,sa
m ,km

a
b ,yA,sla

m ,klm
a

b ,yl
A!.

The bundle~35! can be endowed with the spin connection

AY5dxl
^ ~]l1Ãl

abLab
A

ByB]A!1dsk
m

^ ~]m
k 1Am

kabLab
A

ByB]A!, ~36!

whereAm
kab is given by the expression~31!, and

Ãl
ab52 1

2~hkbsm
a 2hkasm

b !sk
nkl

m
n .

Using the connection~36!, we obtain the first-order differential operator

D̃Y :J1Y→T* X^

S

S,

D̃Y5dxl
^ @yl

A2 1
4~hkbsm

a 2hkasm
b !~slk

m 2sk
nkl

m
n!Lab

A
ByB#]A , ~37!

and the total Dirac operator

DY5gS+D̃:J1Y→T* X^

S

S→S,

yB+DY5sa
lg aB

A@yl
A2 1

4~hkbsm
a 2hkasm

b !~slk
m 2sk

nkl
m

n!Lab
A

ByB#, ~38!

on the bundleY→X4. Given a sectionK:X→CK , the restrictions of the spin connectionAY ~36!,
the operatorD̃Y ~37! and the Dirac operatorDY ~38! to K* Y are exactly the spin connection~32!
and the operators~33! and ~34!, respectively.

The total Lagrangian on the configuration spaceJ1Y of metric-affine gravity and fermion
fields is the sum

L5LMA1LD . ~39!

A metric-affine LagrangianLMA depends on the metric coordinates

smn5sm
a sn

bhab ~40!

and the curvature

Rlm
a

b5klm
a

b2kml
a

b1km
a

ekl
e
b2kl

a
ekm

e
b .

Dirac’s Lagrangian is
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LD5H i

2
sq

lFyA
1~g0gq!A

BS yl
B2

1

4
~hkbsm

a 2hkasm
b !~slk

m 2sk
nkl

m
n!Lab

B
CyCD

2S ylA
1 2

1

4
~hkbsm

a 2hkasm
b !~slk

m 2sk
nkl

m
n!yC

1Lab
1 C

AD ~g0gq!A
ByBG

2myA
1~g0!A

ByBJAusu, s5det~smn!. ~41!

By construction, it is Hermitian. Note that, in fact, the LagrangianLD depends only on the torsio
kl

m
n2knl

m of a world connection, while the pseudo-Riemannian part is given by the deriv
coordinatesslk

m .

VI. GENERAL COVARIANT TRANSFORMATIONS

The frame bundleLX→X4 belongs to the category of natural bundles. Every diffeomorph
f of X4 gives rise canonically to the automorphism

f̃ :~xl,Hl
a!°~ f l~x!,]m f lHm

a!, ~42!

of LX and to the corresponding automorphisms~general covariant transformations!

f̃ :T5~LX3W!/GL4→~ f̃ ~LX!3W!/GL4 ,

of any LX-associated bundleT. In particular, if T5TX, the lift f̃ 5T f is the familiar tangent
morphism tof.

The lift ~42! yields the canonical horizontal liftt̃ of every vector fieldt on X4 onto

LX-associated bundles. For instance, such a lift onto a tensor bundle (^

m

TX) ^ ( ^

k

T* X) reads

t̃5tm]m1@]nta1ẋb1¯bk

na2¯am1¯2]b1
tnẋnb2¯bk

a1¯am 2¯#
]

] ẋb1¯bk

a1¯am
.

There also exists the canonical lift

t̃K5tm]m1@]ntakm
n

b2]btnkm
a

n2]mtnkn
a

b1]mbta#
2

]km
a

b
, ~43!

of t onto the bundle of world connectionsCK ~26!, though this is not aLX-associated bundle.
Since the covariant spin structure is unique, theGL̃4-principal bundleLX̃→X4 as well as the

frame bundleLX admits the lift of any diffeomorphismf of the baseX4.19

This lift is defined by the commutative diagram

The associated morphism of the spinor bundleS→S is given by the relation

f̃ S :~p,v !•Ls→~ f̃ ~p!,v !•Ls , pPLX̃, vPS.
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Becausef̃ is equivarient, this is a fiber-to-fiber automorphism of the bundleS→S over the
automorphismf̃ S of the tetrad bundleS→X4 induced by the diffeomorphismf of X4. Thus, we
have the commutative diagram

of general covariant transformations of the spinor bundleS.
Accordingly, there exists a canonical liftt̃S onto S of every vector fieldt on X4. The goal is

to find its coordinate expression. Difficulties arise because the tetrad coordinatessa
m of S depend

on the choice of an atlas of the bundleLX→S. Therefore, noncanonical vertical componen
appear in the coordinate expression oft̃S .

The lift tS of a vector fieldt on X4 onto the tetrad bundleS can be derived from the relatio
~40! and the canonical lift

t̃5tl]l1~]ntasnb1]ntbsna!
]

]sab , ~44!

of t onto the bundle of pseudo-Riemannian metricSg identified with an open sub-bundle of th

tensor bundle∨
2

TX, and provided with coordinates (xl,smn). We have

tS5tl]l1]ntmsc
n

]

]sc
m 1Qc

m ]

]sc
m ,

where the termsQc
m obey the condition

~Qa
msb

n1Qa
nsb

m!hab50.

Let us consider a horizontal lift of the vector fieldtS onto the spinor bundleS→S by means of
the spin connection~32!. It reads

ASt̃S5tl]l1]ntmsc
n

]

]sc
m 1

1

4
~hkbsm

a 2hkasm
b !sk

n~]ntm2Kl
m

ntn!~Lab
A

ByB]A1Lab
1 A

ByA
1]B!

1Qc
m ]

]sc
m 1

1

4
Qk

m~hkbsm
a 2hkasm

b !~Lab
A

ByB]A1Lab
1 A

ByA
1]B!.

This leads us to the desired canonical lift oft onto S:

t̃S5tl]l1]ntmsc
n

]

]sc
m 1Qc

m ]

]sc
m 1

1

4
Qk

m~hkbsm
a 2hkasm

b !~Lab
A

ByB]A1Lab
1 A

ByA
1]B!,

which can be brought into the form

t̃S5tl]l1]ntmsc
n

]

]sc
m 1q,
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q5 1
4Qk

m~hkbsm
a 2hkasm

b !F2Lab
d

csd
n

]

]sc
n 1Lab

A
ByB]A1Lab

1 A
ByA

1]BG ,
where Lab

d
c are generators of the Lorentz group in the Minkowski space. The termq is the

above-mentioned noncanonical part of this lift. The corresponding total vector field on the
productY ~35! reads

t̃Y5 t̃1q,

t̃5tl]l1]ntmsc
n

]

]sc
m 1 t̃K , ~45!

wheret̄K is the canonical lift~43! onto CK . Its canonical partt̄ ~45! is the generator of a loca
one-parameter group of general covariant transformations of the bundleY, whereas the vertica
vector fieldq is the generator of a local one-parameter group of vertical Lorentz automorph
of the bundleS→S. By construction, the total LagrangianL ~39! obeys the relations

L J1qLD50, ~46!

L J1t̃LMA50, L J1t̃LD50. ~47!

The relation~46! leads to the No¨ther conservation law, while the equalities~47! lead to the
energy-momentum one.23

VII. BACKGROUND SPIN STRUCTURE

Let us consider the case of a background spin structure and the corresponding back
tetrad fieldh.

Given a tetrad fieldh, any general covariant transformation of the frame bundleLX can be
written as the compositionf̃ 5F+ f̃ h of its automorphismf̃ h over f which preservesLhX and some
vertical automorphism

F:p°pf~p!, pPLX, ~48!

wheref is a GL4-valued equivariant function onLX. SinceLX is trivial, the automorphismf̃ h

exists. Indeed, letzh be a global section ofLhX. Put

f̃ h :LxX{p5zh~x!g°zh~ f ~x!!gPL f ~x!X.

The automorphismf̃ h restricted toLhX induces an automorphism of the principal bundlePh and
the corresponding automorphismf̃ s of the spinor bundleSh, which preserves the representati
~20!.

Turn now to the vertical automorphismF. Let us consider the group bundleQ→X associated
with LX. Its typical fiber is the groupGL4 which acts on itself by the adjoint representation. L
(xl,qm

l ) be coordinates onQ. There exist the left and right canonical actions ofQ on any
LX-associated bundleT:

r l ,r :Q3
X

T→T,

r l :~~p,g!•GL4 ,~p,w!•GL4!°~p,gw!•GL4 ,

r r :~~p,g!•GL4 ,~p,w!•GL4!°~p,g21w!•GL4 .

Given a vertical automorphismF ~48! of LX, the corresponding vertical automorphisms of
associated bundleT and the group bundleQ read

F:~p,w!•GL4°~p,f~p!w!•GL4 ,
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F:~p,g!•GL4°~p,f~p!gf21~p!!•GL4 .

For anyF ~48!, there exists the fiber-to-fiber morphism

F̄:~p,q!•GL4°~p,f~p!q!•GL4 ,

of the group bundleQ such that

r l~F̄~Q!3T!5F~r l~Q3T!!, ~49!

r r~F̄~Q!3F~T!!5r r~Q3T!. ~50!

For instance, ifT5T* X, the expressions~49! and ~50! take the coordinate form

r r :~xl,qm
l ,ẋm!°~xl,ẋlqm

l !,

F̄:~xl,qm
l !°~xl,Sn

lqm
n !,

r r~xl,Sn
lqm

n ,ẋa~S21!l
a!5~xl,ẋlqm

l !.

Hence, we obtain the representation

gQ :~Q3T* X! ^

Q
~Q3Sh!→~Q3Sh!,

gQ5gh+r r :~q,t* !° ẋlqm
l d̂xm5 ẋlqm

l ha
mga, ~51!

on elements of the spinor bundleSh. Let qe be the canonical global section of the group bun
Q→X4 whose values are the unit elements of the fibers ofQ. Then the representationgQ ~51!
restricted toqe(X

4) comes to the representationgh ~20!.
Let h be a background tetrad field, while sectionsq(x) of the group bundleQ are dynamic

variables treated as gravitational fields. There is the canonical morphism

r l :Q3
X

S→S,

r l :~~p,g!•GL4 ,~p,s!•GL4!°~p,gs!•GL4 , pPLX,

r l :~xl,qm
l ,sa

m!°~xl,qm
l sa

m!.

This morphism restricted toh(X4),S takes the form

rh :Q→S,

rh :~~p,g!•L,~p,s0!•L !→~p,gs0!•L, pPLhX,

rh :~xl,qm
l !°~xl,qm

l ha
m!, ~52!

wheres0 is the center of the quotientGL4 /L.
Let Sh , coordinated bys̄a

m , be the quotient of the bundleQ by the kernel Kerhrh of the
morphism~52! with respect to the sectionh. This is isomorphic to the tetrad bundleS provided
with the Lorentz structure of aLhX-associated bundle. Then the representation~51!, which is
constant on Kerhrh , reduces to the representation

~Sh3T* X! ^

Sh

~Sh3Sh!→~Sh3Sh!,

~ s̃,t* !° ẋls̃a
lga.
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Thence, one can think of a sectionh̃Þh of the bundleSh as being an effective tetrad field, and ca
treat g̃mn5h̃a

mh̃b
nhab as an effective metric. It should be emphasized that the Greek indice

down and go up by means of the background metricgmn5ha
mhb

nhab .
Given a general covariant transformationf̃ 5F+ f̃ h of the frame bundleLX, let us consider the

morphism

f̃ Q : Q→F̄+ f̃ h~Q!, Sh→ f̃ s~Sh!, T* X→ f̃ ~T* X!. ~53!

This preserves the representation~51!, i.e.,gQ+ f̃ Q5 f̃ s+gQ , and yields the general covariant tran
formation s̃a

l°]m f ls̃a
m of the bundleSh .

Using a spin connectionKh ~25! and the representationgQ ~51!, one can construct the Dira
operator

DQ5ql
mha

mgaDl .

Restricted toqe(X
4), this operator recovers the Dirac operatorDh ~22! on the spinor bundleSh in

the presence of the background tetrad fieldh and the world connectionK.
In particular, we come to the metric-affine generalization of Logunov’s model38 whose con-

figuration space is the jet manifoldJ1Y of the product

Y5Q3
X

CK3
X

Sh. ~54!

It is coordinated by (xm,qn
m ,ka

m
n ,yA). A total Lagrangian on this configuration space is the s

L5LMA1LD1Lq~q,g!, ~55!

whereLMA is a metric-affine Lagrangian expressed into the effective metrics̃mn5s̃a
ms̃b

nhab, LD

is Dirac’s Lagrangian~41!, expressed into the effective tetrad coordinatess̃a
l5qm

l ha
m , while the

LagrangianLq depends on gravitational fieldsq and the background metricg.
For the sake of simplicity, let us replace the bundleQ in the product~54! with the bundleSh .

There exists the canonical liftt̃Y8 onto Sh3CK3Sh of every vector fieldt on X4. It coincides
with the vector fieldt̃Y ~45! wheresa

l are replaced withs̃a
l . This lift is the generator of gauge

transformations induced by morphismsf̃ Q ~53!. Then using the standard procedure,5,23 obtain the
energy-momentum conservation law

]l~tlLq!1~]atmg̃an1]atng̃am!
]Lq

]g̃mn 'dlS 2tmg̃la
]Lq

]g̃am 1tlLq2dmUmlD , ~56!

where

U52
]LAM

]Rml
a

n
~]nta2ks

a
nts!,

is the generalized Komar superpotential.3,23 If Lq50, we obtain exactly the energy-momentu
conservation law of the metric-affine gravitation theory, but with an effective metric. In the
of the Logunov’s Lagrangian

Lq5l3gmns̃mnAus̃u,

the equality~56! comes to the well-known condition

¹a~ g̃amAug̃u!'0,

where ¹a are covariant derivatives relative to the Levi-Civita connection of the backgro
metric g.
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