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Dirac fermion fields associated with different tetrad gravitational fields and under
general covariant transformations are described by sections of the composite bundle
S—3—X*, which is both the Dirac spinor bundle over the tetrad buidénd the
natural one oveX®. As a natural bundleS— X* admits general covariant trans-
formations which are those of Dirac spin structures. A different way is to consider

a background spin structure. We find gauge transformations which preserve this
spin structure, but act on effective tetrad fields as general covariant transformations.
© 1998 American Institute of Physids$0022-24888)01109-§

I. INTRODUCTION

Metric and metric-affine theories of gravity in the absence of fermion fields are formulated on
the natural bundles over a world manifoid such that there exist canonical lifts of diffeomor-
phisms ofX* onto these bundles. These lifts are general covariant transformations. The invariance
of gravitational Lagrangians under general covariant transformations leads to the energy-
momentum conservation laws in these gravitation thedfiA. problem arises because of Dirac
fermion fields.

Remark:Manifolds throughout are real, finite-dimensional, Hausdorff, second-countable and
connected. By a world manifold* is meant a four-dimensional noncompact oriented manifold
which is parallelizable. Such a manifold admits a Dirac spin structure which module isomorphisms
is unique®’ This property remains true for all spin structuresXthwhich are generated by the
twofold universal covering grougs.

Recall that a Dirac spin structure on a world manif¥dl is said to be a pairR",z,) of a
principal spin bundleP"— X* with the structure spin groups=SL(2,C) and a principal bundle
morphism

zy:P"—LX, (1)

over X* from P" to the principal bundlé.X— X* of oriented linear frames in the tangent bundle
TX of X*.°1 The structure group df X is GL,=GL" (4,R). Every Dirac spin structure factor-
izes through the morphism

z,:P'—L"XCLX,

whereL"X, called a reduced Lorentz structure, is a principal Lorentz sub-bundle of the frame
bundleLX whose structure group is the proper Lorentz graupS°(1,3). Note that a reduced
Lorentz structure is not preserved under general covariant transformations of the frame bundle
LX. From the physical viewpoint, it means that a Dirac spin structure provides spontaneous
breaking of world symmetrie&:13

By the well-known theorem? there is one-to-one correspondence between the reduced Lor-
entz sub-bundlek"X of the frame bundlé.X and the global sections of the quotient bundle

S =LX/L—X*, 2

called the tetrad bundle. Its elements are oriented fram@s<imodule Lorentz transformations.
The bundleX is the twofold covering of the bundl, of pseudo-Euclidean bilinear forms WX,
whose global sections are pseudo-Riemannian metric¥“orGlobal sections of 3 —X* are
tetrad fields orX*. Accordingly, a Dirac spin structur@” which factorizes through"X is said to
be associated with the tetrad figid
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Following the standard terminology of gauge thebty!® one may say that tetrad fields,
associated with reduced Lorentz structures, are Higgs fields corresponding to spontaneous break-
ing of world symmetried?1315

Dirac fermion fields in the presence of a tetrad fiélcare described by sections of the
PM-associated spinor bundle

S'=(P"XV)/L—X*4, ©)

whose typical fibeV carries the spinor representation of the spin grayp To describe Dirac
fermion fields and, in particular, to be provided with the Dirac operator, the spinor b8hdB)

must be represented as a sub-bundle of the bundle of Clifford algebras, that is, as a spinor structure
on the cotangent bundfE* X in the terminology of Lawson and Michels8he crucial point is

that, for differentS" andS"', these representations are not equivalent though the spin structures

P" and P" are isomorphic(see Sec. Y. Roughly speaking, for different tetrad fieldls the
Clifford representations

Ya(dxM) =h}v?,

of co-framesdx* by Dirac’s matrices are not equivaleit:®

It follows that every Dirac fermion field must be described in a paj, Q) with a certain
tetrad fieldh, and Dirac fermion fields in the presence of different tetrad fields fail to be given by
sections of the same spinor bundle. This fact exhibits the physical nature of gravity as a Higgs
field.

There are two ways to describe Dirac fermion fields in the presence of different gravitational
fields and under general covariant transformations.

(i) Gravitational fields are identified with different tetrad fields on a world mani#idand
the totality of fermion-gravitation pairssf ,h) is examined. The goal is to construct a bundle over
X* whose sections exhaust all these pairs.

(ii) A background spin structur@efined, e.g., by the whole fermion matter of the Univgrse
and the associated tetrad field on a world maniftdare considered, while different gravitational
fields lead to different effective tetradr metrig fields, which do not change the background spin
structure. The key point is to find gauge transformations over diffeomorphisix$ which both
keep the background geometry and act on effective tetrad fields as general covariant transforma-
tions.

It should be emphasized that, in both variants, the equations of motion are equivalent at least
locally, and so are the equations for a gravitational field if a Lagrangian is independent of a
background field.

Following the first variant, let us consider the universal twofold covering ggﬁg of the
groupGL, and the corresponding twofold covering bunti)é of the frame bundlé X.%19-21The
bundleLX— X* inherits the general covariant transformations of the frame bundleHowever,
the spinor representation of the groapf_“ is infinite dimensional. Therefore, theX-associated
spinor bundle describes infinite-dimensional “world” spinor fields, but not the Dirac ones. The
theory of world spinors has been developéd.

In contrast with this world spinor model, our purpose here is to describe the totality of familiar
Dirac fermion fields on a world manifold, without appealing to the spinor representation of the
general linear group.

We use the fact that the frame bundl&X is the principal bundld X— 3, over the tetrad
bundleZ, (2) with the structure Lorentz group. Since the diagram

51//4 — GL4

I

L, 2% L

(4)
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commutegsee Sec. Y, the bundleLX is an L¢-principal bundle over the same tetrad bundle
=LX/Ls. Then the commutative diagram

ILX 2 LX

o’ ©)
z

provides a Dirac spin structure on the tetrad burkiléVe will show that, for any tetrad field,
the restrictionh*LX of the Lg-principal bundleLX—3 to h(X*)CZY is isomorphic to the
L .-principal sub-bundle?" of the bundleL X— X* such that the diagram

X 2 LX

I :

ph 2, IhX

commutes. Then general covariant transformations of the bundle X* take the form of auto-
morphisms of the principal spin bundleX—3. over general covariant transformations of the
tetrad bundle. These are desired general covariant transformations of Dirac spin struduass
the restrictions th(X)C3 of the diagram(5), called the covariant spin structure.

Now let us consider the spinor bundle

S=(LXXV)/L—3, @)

associated with the principal spin bundlX— 3. Its typical fiber is the Dirac spinor spasé
Given a tetrad fieldh, the restrictiorh* S of S—3, to h(X)CZX is a sub-bundle of the composite
bundle

S—3 X4 (8)

This sub-bundle is isomorphic to tHe-associated spinor bund®" (3) whose sections;, de-
scribe Dirac fermion fields in the presence of the tetrad figlske Sec. )L It follows that sections
of the composite bundIé8) projected onto different tetrad fieldts X*— 3, exhaust the totality of
pairs (s, ,h) of Dirac fermion fields and tetrad fields. The configuration space of this totality is the
first order jet manifoldJ!S of the composite bundi&— X*.>2% In this model, tetrad fields are
dynamic. They are treated as gravitational fields. We will construct the total Dirac operator and the
total Lagrangian on the configuration spat& whose restrictions tt(X)C3, for any tetrad
field h, recover the familiar Dirac operator and the familiar Dirac’'s Lagrangian of fermion fields
in the presence of the tetrad figdhdand a general linear connectighon X*.

Note that the bundi&— X* is not a spinor bundle It is provided with the structure of the
L X-associated bundle with the structure gro(m_4 which acts on the typical flberGL4
><V)/L by the induced representatigsee Sec. )l Therefore, general covariant transformations

of LX yield the corresponding automorphisms of the bur@le X*, which takes the form of
automorphisms of the spinor bundde- 3, over the general covariant transformations of the tetrad
bundle> — X*. We will construct the canonical lift ont8 of vector fields onX* which is the
generator of these transformations. Then the energy-momentum conservation law can be
derived>?

Following the variant(ii), we consider a background spin structi®® associated with a
background tetrad fieltl. In this model, gravitational fields are identified with the sections of the
L X-associated group bundi@— X. The canonical morphism® X 3, — 3, restricted toh(X)C3
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defines effective tetrad field§ We will construct automorphisms &fX over diffeomorphisms of
X which both preserve the background spin struc®fte-LX and act on effective tetrad fields as
general covariant transformations.

IIl. REDUCED STRUCTURE

The reduced structure language provides the adequate mathematical formulation of gauge
models with broken symmetriés:18

Let mpy:P— X be a principal bundle with a structure gro@p which acts freely and transi-
tively

Ry:p—pg, peP, geG, 9
on P on the right. Let
Y=(PXV)/G, (10

be aP-associated bundle with a typical fib¥ron which the structure grou@ acts on the left.
Recall that the quotier(tL0) is defined by identification of elementp,p) and (pg,g~ tv) for all

geG. Its elements will be denoted byp(v)-G. To say more exactly, the bund (10) is

canonically associated witR. In particular, every automorphisi® of a principal bundleP

[which, by definition, is equivariaye® =Ry, Vge G, under the canonical actiaf)] yields

the corresponding automorphism

Dy (PXV)/G—(D(P)XV)/G,

of the P-associated bund (10). Recall that every vertical automorphisinof P takes the form
p—pé(p) Where ¢ is aG-valued equivariant function oR, i.e., ¢(pg)=9g ¢(p)g, VgeG.
Let H be a Lie subgroup o6. We have the composite bundle

P—P/H—-X,

where sy :P/H—X is a P-associated bundle, denoted By with the typical fiberG/H, and
mps :P— P/H is a principal bundle with the structure grobip A H-principal sub-bund|é" of P
is called a reduced structuf®?® By the well-known theoren’ there is one-to-one correspon-
dence between the global sectidnsf the quotient bundl& — X and theH-principal sub-bundles
P" of P. Such a sub-bundl®" is isomorphic to the pull-back* P= 55 (h(X)) over X of the
bundleP—3 by h. The following assertion takes placé®

Proposition 1:Every vertical automorphisi® of the principal bundld®— X sends a reduced
sub-bundleP" onto a reduced sub-bundR® which is isomorphic tP" as aH-principal bundle.
Conversely, let two reduced sub-bundifsandP" of a principal bundld® be isomorphic to each
other asH-principal bundles. Then every isomorphistn P"— P"" over X can be extended to a
vertical automorphism oP.

If the quotientG/H is homeomorphic to an Euclidean space Hafbrincipal sub-bundles d?
are isomorphic to each other Hisprincipal bundleg’ This also takes place R is a trivial bundle.

Given a reduced sub-bundR" of a principal bundleP, let

Yh=(P"xV)/H, (11

be thePM-associated bundle with a typical fibt If P" is another reduced sub-bundle Bf
which is isomorphic td", the bundleg" andY" are isomorphic, but not canonically isomorphic
in general.

Proposition 2:Let P" be aH-principal sub-bundle of &-principal bundleP. Let Y" be the
PM-associated bundlél1) with a typical fiberV. If V carries a representation of the whole group
G, the fiber bundleY" is canonically isomorphic to thB-associated fiber bundig.0).

Proof: Every element ofY can be represented ag,¢)- G, p e P". Then the desired isomor-
phism is
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Y"s (p,v)-H—(p,v)-GeY.

It follows that, given aH-principal sub-bundle®" of P, any P-associated bundl¥ with the
structure groupG is canonically equipped with a structure of tR8-associated fiber bundhé”
with the structure groupl. Briefly, we will write

Y=(PXV)/G=(P"XV)/H=Y".

However,P"- andP" -associated bundle structures ¥@are not equivalent because, given bundle
atlasesP" of P" andW¥"’ of P"', the union of the associated atlase¥dfas necessaril@-valued

transition functions between the charts frol and "'

In gauge theory on the principal bundke sectionsh of the quotient bundl&, are treated as
Higgs fields, while sections;, of the PM-associated bundl¥" (11) describe matter fields in the
presence of the Higgs fields From the physical viewpoint, the structure gra@mf P is said to
be the group of broken symmetries because matter fields carries only a representation of its
subgroupH, and a reduced structuR"C P which is not preserved under automorphismd$of

In general,Y" is not associated or canonically associated with ok@rincipal sub-bundles
of P. It follows that matter fields can be represented only by pairs with Higgs fields.

To describe the totality of these pairs;, (h) for all Higgs fields, let us consider the composite

bundle
7YY, 73X
Y — 3 ——X, 12
whereY—3%, is the bundle
Ys=(PXV)/H,

associated with théd-principal bundleP—3.>?8 There is the canonical isomorphisip:Y"
—h*Y of the P"-associated bundl¥" to the sub-bundle 0¥ — X which is the restriction

h*Y=(h*PXV)/H=(P"xXV)/H=Y",
of the bundleYy to h(X)CZ, i.e.,
in(YM =7y (h(X)). (13

Then every global sectics, of Y" corresponds to the global sectinps;, of the composite bundle
(12). Conversely, every global secti@gof the composite bundl€12) which projects onto a
sectionh= 7rys°s of the bundleX — X takes its values into the sub-bund|g¢Y" CY in accor-
dance with the relatiofi13). Hence, there is one-to-one correspondence between the sections of
the bundleY" and the sections of the composite bun€lg) which coverh.

Remark: The total space of the composite bundle~X (12) has the structure of the-
associated bundle

Y=(PX(GXV)/H)IG,
where the elementsp(g,v) and (pab,b 1g,a lv) for all acH andbe G are identified. Its
typical fiber is the quotient& X V)/H of the produciG X V by identification of the elementg(v)
and (ag,a”1v) for all ac H. The groupG act on this typical fiber by the rule
Gab:(g,v)'H—?(bg,v)'H,
which is the induced representation @fby the identic representation &f. In particular, if the

typical fiberV of the composite bundl¥ — X admits the action of the group, these two bundle
structures or¥ are equivalent.
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The feature of the dynamics of field systems on composite bundles consists in the
following.>?® Let the composite bund (12) be coordinated byx*,™,y"), where &*,o™) are
bundle coordinates ok — X. Its first order jet manifold is provided with the adapted coordinates
(x* o™y, ol ,y)). Let

A=dxX'® (dy+ Al 5;)+do™® (dpm+ Al ), (14)
be a principal connection on the bundfe-3,. This connection defines the splitting

VY=VYs®(YXVY),
Y 3
Y o+ 0= (V' = Ao ™) 3+ 6™+ Andi),
of vertical tangent bundles. Using this splitting, one can construct the first-order differential
operator
D:JYT*X®VYs,
Y
(15
D=dx"®(y\— A\ ~Anoi)d;,
on the composite bundlé. The operatof15) possesses the following important property. Given
a global sectiorh of 3, its restriction
Dp=Dodli, 1 Y - T* X VY,
h h - (16)
Dp=dx*® (yy— A, —Ahah™)4;,

to Y" is exactly the familiar covariant differential relative to the principal connection
Ap=dxX*®[d, + (Al 9, h™+Al) 4],

on the bundler"— X, which is induced by the principal connecti@hd) on the bundleY —3, by
the imbedding, .

lll. LORENTZ STRUCTURE

An example of a reduced structure is a Lorentz reduced structure in gravitation theories which
is deduced from the equivalence principteand accompanies a Dirac fermion mattet?

Let 7 y:LX—X* be the frame bundle. Given the holonomic fram{@g} in the tangent
bundleTX, every elemenfH.} of LX takes the forrH,=H4d,,, whereH is a matrix element
of the groupGL,. The frame bundldX is provided with the bundle coordinateg*(H~). In
these coordinates, the canonical action of the structure g&dupon LX reads

Ry:H4—>HEQ), geGLy,.

As is well-known, the frame bundleX is equipped with the canonic&t*-valued one-form,
which is given by the coordinate expression

0Lx:H2dXM®ta, (17)

where{t,} is a fixed basis foR* and HZ is the inverse matrix oH% .

Since a world manifold is parallelizable, the structure gr@ip, of the frame bundld.X is
reducible to the Lorentz group. The correspondind.-principal sub-bundld."X is a reduced
Lorentz structure. SinceX is trivial, any two Lorentz sub-bundlds'X andL"' X are isomorphic
to each other. By virtue of Proposition 1, there exists a vertical bundle automorgdhisfrL X
which sendd_"X onto L"'X.
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As was mentioned above, there is one-to-one correspondence between the Lorentz sub-
bundlesL"X of LX and the global sectionis of the tetrad bundI& (2) with the typical fiber
GL,/L.

Every tetrad fielch defines an associated Lorentz atiad={U, ,z?} of the frame bundlé. X
where the corresponding local sectiozibof LX take their values into the Lorentz sub-bundle
L"X. Given a Lorentz atla¥", the pull-back

2" 6 x=h®t,=hidx*ot,, (19

of the canonical formf, x (17) by a local sectionz? is said to be a(local) tetrad form. It
determines the tetrad cofram@¥} in the cotangent bundi&* X— X*. Their coefficientsh?, and
the inverse matrix elementg; = Hgoz*{1 are called tetrad functions.

Given a Lorentz sub-bundle™X, let us consider the associated bundle of Minkowski spaces

M"X = (L"XxM)/L, (19

whereM is provided with the Minkowski metriey. By virtue of Proposition 2, this bundle is

isomorphic to the cotangent bundlé& X. However, the Minkowski structurdd "X andM" X on
T* X for different tetrad field$ andh’ are not equivalent.

IV. DIRAC SPIN STRUCTURE

Every bundle of Minkowski spaced "X (19) over a world manifold is extended to the bundle
of Clifford algebrasC"X with the fibers generated by the fibersf'X.'° This bundleC"X has
the structure group Aug; ;) of inner automorphisms of the Clifford algeb@ ;. In general,
C"X does not contain a spinor sub-bundle because a spinor subggacainimal left ideal of
C,3is not stable under inner automorphismsQyf;. As was showrt?"*°a spinor sub-bundle of
CMX exists if the transition functions aE"X can be lifted from AutC, 5 to the Clifford group
G, 3. This agrees with the usual condition of existence of a spin structure which hola€* for
Such a spinor sub-bundle is the bun@e(3) associated with the universal twofold covering

2,:P"—L"X, zpRy=R, (g, Vgels,
of L"X. This is theh-associated Dirac spin structure on a world manifold.
There exists the bundle morphism

Yh:T*X@S'=(P"}X (M&V))/L—(P"X y(M&V))/Ls=5", (20)

wherebyy is meant the left action d1CC; ;onVC C1,3.12'13One can think of20) as being the
representation of covectors ¥ by the Diracy-matrices on elements of the spinor bun@lfe
Relative to an atlagz,} of P" and to the associated Lorentz af{agz,} of LX, the representation
(20) reads

YA(rn(h () ®v)) =y gy®(v), veS],

wherey” are the corresponding bundle coordinateShfandh? are the tetrad coframé48). For
brevity, we will write

he=yn(h®) =72, dx*= yp(dx) =hj(x)¥2.
Let A, be a principal connection o&", and let

D: IS = T*X® S,
Sh

D=(yr— A% Loy sy?)dx* @ da

where
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Lab=4{ ¥a . ¥b], (21)

be the corresponding covariant differential. The first-order differential Dirac operator is defined on
S" by the composition

Ap= YD IS - T* X S"— S,

(22)
yReAp=h3y*g(y; — 5A%"\ Lap"sy®).-
The h-associated spinor bund®' is equipped with the fiber spinor metric
ap(v,v")=2v" Y +v T Y%), v eS.
Using this metric and the Dirac operat@?2), one can define Dirac’s Lagrangian
Lh= [IE hg YX(YOYq)AB( YR % AxabLabchc)
—| YA~ % AEYE L§b) (Y°7)%8y®| —mya( 7°)AByB] deth?), 23

on J'S" which describes Dirac fermion fields in the presence of a tetrad ffigldd a principal
connectionA, on S, .

We consider the general case of a principal connedipon S;, generated by a general linear
connection on a world manifold as follows. Lek be a connection form ohX of a general linear
connection

K=dx*®| g, + K,» x" (24)
A N v

w_ﬂ)'

onX*, called a world connection. By virtue of the well-known theorétthe pull-backz} w, over
P of the Lorentz pariw, of wy is the connection form of the spin connection

Kp=dx*@[d,+ 3 7*°h’ — ﬂkahz)(ath:_ heKy ) Lap 8y 2dal, (25
on S", whereL,,, are the generator@1).2331-33
Remark:There is one-to-one correspondence between the world connections and the sections
of the quotient bundle
Ck=JLX/GL,, (26)
wherebyJ*LX implies the first-order jet manifold of the frame bundlX— X*. With respect to
the holonomic frames i X, the bundleC is coordinated by x*,k,”,) so that, for any section
K of Cx— X4,
k)\VaOK: K)\Va ’

are the coefficients of the world connecti&n(24).
Motivated by the connectio(®5), one can obtain the canonical lift

T=7 0\ +3(7°h ﬂkahz)( P o\hE—hgd, ™) Loy 8YPda, 27
of vector fieldsr on X onto the spinor bundI&".>23 The lift (27) is brought into the form
== 3 7% — )NV, 7 L ey B A,

wherery, is the horizontal lift ofr by means of the spin Levi-Civita connection for the tetrad field
h, andV ,7* are the covariant derivatives ofrelative to the Levi-Civita connectiotf:>®
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The canonical lift(27) fails to be a generator of general covariant transformations because it
does not involve transformations of tetrad fields. To define general covariant transformations, one
must consider spinor structures associated with different tetrad fields. The difficulty arises be-
cause, though the principal spinor bundfsand P" are isomorphic, the associated structures of
the bundles of Minkowski spaced "X and MP X (19) on the cotangent bundl&* X are not
equivalent, and so are the representatighgnd vy, (20).3>*3Indeed, let

t* =t dx*=t,h?=t;h'?,
be an element of * X. Its representationsg,, and v, (20) read
() =tay*=t,h5y% v (1) =tiy?=t,h "
There is no isomorphisib of S" onto S which can obey the condition
Y () =Dgyp(t*)P L, V¥ e T*X.

We thus observe the phenomenon of symmetry breaking in gravitation theory which exhibits the
physical nature of gravity as a Higgs field.

V. COVARIANT SPIN STRUCTURE

We start from the following two facts.
Remark:The L-principal bundle

P :=GL,—GL,/L, (28

is trivial. In accordance with the classification theor&ma G-principal bundle over am-

dimensional spher&" is trivial if the homotopy groupm,_,(G) is trivial. The baseGL,/L is

homeomorphic t&*x R’. Let us consider the morphisfg of S% into GL,/L, f;(p)=(p,0), and
the pull-back L-principal bundle f} P, —S3®. Since L is homeomorphic toRP*xR*® and

m,(L)=0, this bundle is trivial. Lef, be the projection ofsL,/L onto S°. Then the pull-back
L-principal bundlef} (f3 P )—GL,4/L is also trivial. Since the compositidnef, of GL,/L into

GL,/L is homotopic to the identity morphism d&&L,/L, the bundlef} (f;P.)—GL,/L is

equivalent to the bundl®, .? It follows that the bundlg28) is also trivial.

Remark: The diagram(4) commutes. The restriction of the universal covering gr@@
—GL, to the Lorentz groupl is obviously a covering space &f Let us show that this is the
universal covering space. Indeed, any noncontractible cycl@lip belongs to some subgroup
SO(3)CGL, and the restriction of the covering bunoﬂi’?_4—>GL4 to SQO(3) is the universal
covering of SQ(3). Since thelL is homotopic to its maximal compact subgro®gX3), its
universal covering space beIongsﬁm

As a consequence, we have the commutative diadfffi and the covariant spin structure
(5).

The covariant spin structure is unique. Since the buiileX* is trivial, the set of non-
equivalent spin structures oB is in bijective correspondence with the cohomology group
HY(S*x R"xX* Z,). Since the cohomology group(S*;Z,) is trivial and a spin structure o&®
is unique®’ one can show that nonequivalent spin structure¥ a@me in bijective correspondence
with those onx*.

Let us consider the composite spinor bun@€8) where S—2. is the spinor bundl€?)
associated with thé c-principal bundleLX—3,. Given a tetrad fielch, there is the canonical
isomorphism

i S"=(PXV)/Lg— (h* LXX V)/Ls,

of the h-associated spinor bund®" (3) onto the restrictiorh* S of the spinor bundls—3, to
h(X)CX. Thence, every global sectios), of the spinor bundleS” corresponds to the global
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sectioniyes;, of the composite spinor bund(®). Conversely, every global secti@of the com-

posite spinor bundl€8), which projects onto a tetrad fiely takes its values into the sub-bundle
in(shcs.
Let the frame bundle. X— X* be provided with a holonomic atlgd),, T¢,}, and let the

principal bundled X—3 andLX—3 have the associated atlasgs, ,z8} and{U.,z,=7°z},
respectively. With these atlases, the composite spinor buBdke equipped with the bundle
coordinates X*,o* ,y*), where &*,o%) are coordinates ol such thats* are the matrix com-
ponents of the group element ¢,°z.)(o), oeU,., msx(0o)eU,. For any tetrad fielch, we
have @)eh)(x)=h}(x) whereh}(x) =HJ}cz.h are the tetrad functions with respect to the Lor-
entz atlagz.ch} of L"X.

The spinor bundle&s— %, is the sub-bundle of the bundle of Clifford algebras which is gen-
erated by the bundle of Minkowski spaces

Ey=(LXXM)/L—3,

associated with the-principal bundleLX—3,. Since the bundlekX and P, (28) are trivial, so
is the bundleEy,— 2. Hence, it is isomorphic to the produtx T* X. Then there exists the
X

representation

ys :T*X®S=(LXX (M®V))/Ls— (LXX y(M@V))/Ls=S, (29
3

given by the coordinate expression
dx* =y (dxM) = y2

Restricted toh(X) C 2+, this representation recovers the morphigm(20).

Using this representation, one can construct the total Dirac operator on the composite spinor
bundleS as follows. Since the bundlésX— 3, and— X* are trivial, let us consider a principal
connectionA (14) on theL s-principal bundleL X— 3, given by the local connection form

A= (APdx* + AX*Pd o) @ Lo, (30)

A ab:_1 kba,a_ kaa_b O_VK My!
A 2(77 m Y ,u,) kM (31)

kab_ 1/, kb ka b
A;/,a_f(?? e g )!

whereK is a world connection oX*. This connection defines the associated spin connection
As=dx*® (3\+ 1A Lap sy dn) + dof ® (d) + AL L o ey dn), (32

on the spinor bundl&— .. The choice of the connectidB80) is motivated by the fact that, given
a tetrad fielch, the restriction of the spin connecti¢®2) to S” is exactly the spin connectia5).

The connectior§32) yields the first order differential operatbr (15) on the composite spinor
bundleS— X* which reads

D:JIST*X®S,
3,

D=dx*@[yy— 3(A+ AP o) Lar sy 10
=dx* @[y~ (70, — %)) (o= kK" Lan 8y 1da. (33
The corresponding restrictidﬁh (16) of the 0perat0|5 (33) to J'S"C J'S recovers the familiar
covariant differential on thé-associated spinor bund®'— X* relative to the spin connection
(27).

Combining(29) and(33), we obtain the first-order differential operator
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A=y5oD:J1SHT*X®S—S,
3

yPoA= UQYaBA[Y;\\_ 1( ﬂkbﬂ'i_ 77ka0'2)(0"fk_ oKy 4 Lap sY®, (34)

on the composite spinor bund&- X*. One can think ofA as being the total Dirac operator &n
since, for every tetrad fielt, the restriction ofA to J'S"C J'S is exactly the Dirac operatak,,
(22) on the spinor bundI&" in the presence of the tetrad fiehdand the spin connectiof®5).

Thus, we come to the model of metric-affine gravity and Dirac fermion fields. The total
configuration space of this model is the jet manifdfey of the bundle product

Y=CyXS, (395
3

whereCy is the bundle of world connection6). It is coordinated by xM,ag‘,kM“B,yA), and
JYY is provided with the adapted coordinates

(X*, 05K, :yAﬁfa,kmaﬁ,yg‘\\)-
The bundle(35) can be endowed with the spin connection
Ay=dx@ (9)+ AL 4 ayBon) + ol @ (9 + AL, AyBay), (36)
whereAX*” is given by the expressiof81), and
Zxab: —3( Ukbffz_ ﬂkaUZ)UﬁkAMy-
Using the connectiofi36), we obtain the first-order differential operator

Dy:JlYT*X®S,
3

Dy=dx'® [Y'ﬁ_ 1 77kb0'z_ 77ka0'2)(0'xk_ oky*,) Lap 8y P10, (37)
and the total Dirac operator

Ay=y5°D: Y 5 T*X®S—S,
3

yBoAy=ohyBAlyR— & 7o’ — ﬂkaUZ)(UAk_ ovky ) Lay 8y ], (38

on the bundI~eY—>X4. Given a sectiorK: X— Cy, the restrictions of the spin connectiég (36),
the operatoD+ (37) and the Dirac operataky (38) to K*Y are exactly the spin connectid@2)
and the operator&33) and (34), respectively.

The total Lagrangian on the configuration spakd® of metric-affine gravity and fermion
fields is the sum

L=LuyatLlp. (39
A metric-affine Lagrangiah. . depends on the metric coordinates
Ty =000 M (40
and the curvature
Ryus=Knu s~ Kun“pt K ki p— Ky ek, -

Dirac’s Lagrangian is
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1
YX(YO)’Q)AB( Y?_ 4 (nkbai— ”kaab(ffffk_ ‘Tﬁkx”u)Labchc)

i
LD:(E (Ta

1
- ( YrA~ 2 ( ”kbai_ ’ikagil)(m— oWk )Y E LgbcA) (Y° 79 ay®

—my;(y°>AByB} Vlof, o=deto,,). (41)

By construction, it is Hermitian. Note that, in fact, the Lagrandigndepends only on the torsion
k\*,—k,§ of a world connection, while the pseudo-Riemannian part is given by the derivative
coordinatess, .

VI. GENERAL COVARIANT TRANSFORMATIONS

The frame bundlé X— X* belongs to the category of natural bundles. Every diffeomorphism
f of X* gives rise canonically to the automorphism

T HY ) (FA(x), 0, HE,), (42
of LX and to the corresponding automorphistgeneral covariant transformations
T:T=(LXXW)/GL,— (F(LX)XW)/GL,,

of any LX-associated bundl&. In particular, if T=TX, the lift T=Tf is the familiar tangent
morphism tof.
The lift (42) yields the canonical horizontal lif of every vector fieldz on X* onto

m k
L X-associated bundles. For instance, such a lift onto a tensor buedIX)® (® T* X) reads

J
) aqy VA2 Umy L UNCERNCT) D I
T=79,+[d,T 1X51”-Bkm+ dp, T XV:BZ"'I/?k ] PR
By By
There also exists the canonical lift
i) a v v, « v a a 2
T«=7"9,+[d,7K," = 7K, *,— 9, 7K, g+ 9, 57] m, (43

of 7 onto the bundle of world connectiol® (26), though this is not & X-associated bundle.

Since the covariant spin structure is unique,ﬁ4-principal bundleLX— X* as well as the
frame bundleLX admits the lift of any diffeomorphisrfiof the basex*.®
This lift is defined by the commutative diagram

x L Ix
:;1 ) l;
Lx Lrx

|

The associated morphism of the spinor buriie 3, is given by the relation

Ts:(pv)-Le—=(f(p),v)-Ls, pelX, veS.
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Becausef is equivarient, this is a fiber-to-fiber automorphism of the burfsle> over the
automorphisniy of the tetrad bundl& — X* induced by the diffeomorphishof X*. Thus, we
have the commutative diagram

s I, g

]

¥ =X

|

X4—f—>X4

of general covariant transformations of the spinor bur@lle

Accordingly, there exists a canonical [f onto S of every vector fieldr on X*. The goal is
to find its coordinate expression. Difficulties arise because the tetrad coordirfatés>, depend
on the choice of an atlas of the bundlX—3,. Therefore, noncanonical vertical components
appear in the coordinate expressionrgt

The lift 75 of a vector fieldr on X* onto the tetrad bund[® can be derived from the relation
(40) and the canonical lift

7=+ (9,7c"P+9,mPo

(44)

of 7 onto the bundle of pseudo-Riemannian meXigidentified with an open sub-bundle of the
2
tensor bundlé]T X, and provided with coordinatesX,c*"). We have

+QF —,
ok ¢ gak

s =19, + a,m™ay

where the term®% obey the condition
(Q4ot+Qiot) 7*=0.

Let us consider a horizontal lift of the vector field onto the spinor bundl&—3, by means of
the spin connectiofi32). It reads

J 1
Agts=T7"0\+ 3,7 0¢ ¢ ook 2 (7o — 7 UZ)UIZ(ayTM_KAMVTD)(LabAByBaA+ Lan 8Yad®)

C

kba

+QH — 7*%00) (Lap"8YPda+ Loy sYA 9°).

Jdo //-

This leads us to the desired canonical liftobnto S

J 1
“_“‘ZQ (ﬂkb(fa—ﬁkagb)(l—ab 8Y2da+ Loy YA d®),

~ _ .\ v
=70\ +d, ™0 +
S N v 0070'@ C&O_g

which can be brought into the form

Ts=r o+, Mol — + 9,

m
dog
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d
b
= 1Q{ (70’ — 7*%%)| —Lap’coy Gor T Lao"8Y®0a+ Lap eYa d® |,
C

where L, are generators of the Lorentz group in the Minkowski space. The i&rfis the
above-mentioned noncanonical part of this lift. The corresponding total vector field on the fibred
productY (35) reads

’}Y:’}—i_ 19,

~ J
=70\ +d, 0 Py +7¢, (45)
O-C

where 7 is the canonical lift(43) onto C . Its canonical part (45) is the generator of a local
one-parameter group of general covariant transformations of the bi¥hdereas the vertical
vector fieldd is the generator of a local one-parameter group of vertical Lorentz automorphisms
of the bundleS—3,. By construction, the total Lagrangian(39) obeys the relations

Lysbp=0, (46)
LyzLma=0, LyrLp=0. (47)

The relation(46) leads to the Nther conservation law, while the equalitié47) lead to the
energy-momentum orfé.

VIl. BACKGROUND SPIN STRUCTURE

Let us consider the case of a background spin structure and the corresponding background
tetrad fieldh.

Given a tetrad fielch, any general covariant transformation of the frame buhdecan be
written as the compositioh= ®-f,, of its automorphisnf,, overf which preserves "X and some
vertical automorphism

®:p—>pep(p), pelX, (48)

where ¢ is a GL,-valued equivariant function ohX. SincelLX is trivial, the automorphisn?h
exists. Indeed, let" be a global section df"X. Put

TriLX 3 p=2"(x)g—>2"(f(X))g € L X.

The automorphisni,, restricted t~oLhX induces an automorphism of the principal bunBfeand
the corresponding automorphisfg of the spinor bundles", which preserves the representation
(20).

Turn now to the vertical automorphist. Let us consider the group bundz— X associated
with LX. Its typical fiber is the grougs L, which acts on itself by the adjoint representation. Let
(x*,qlﬁ) be coordinates oQ. There exist the left and right canonical actions @fon any
L X-associated bundl&:

P QXT—T,
X

Pi ((p,g)GL4,(p,W)GL4)H(p,gW)GL4,

pr((p,9)-GLy,(p,W)-GLy)—(p,g 'w)-GL,.

Given a vertical automorphisi® (48) of LX, the corresponding vertical automorphisms of an
associated bundl€& and the group bundI® read

©:(p,w)-GLs—(p,d(p)W)-GLy,
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®:(p,9)-GLy—~(p,d(p)gd *(p))-GLy.

For any® (48), there exists the fiber-to-fiber morphism

®:(p,q)-GLy—(p,b(p)q)- GLy,

of the group bundl& such that

PUP(QXT)=B(p(QXT)), (49)

p(®(Q)X D(T))=p(QXT). (50)

For instance, ifT=T* X, the expression&9) and(50) take the coordinate form
pr O, X,) = 03, %)),
®:(xM,ql)—> (X", Sha),
pr(x", 830, Xo(S™HY =03, q)).

Hence, we obtain the representation

Yo (QXT*X)®(QXS")—(QXS"),
Q

Yo= yrepr (A, tF) =X, ahdx =X, qhhL 2, (51)

on elements of the spinor bund®. Let g, be the canonical global section of the group bundle
Q— X* whose values are the unit elements of the fiberQofhen the representatiop, (51)
restricted toge(X?*) comes to the representatign (20).

Let h be a background tetrad field, while sectian) of the group bundl&) are dynamic
variables treated as gravitational fields. There is the canonical morphism

P :QXEHE,
X

p1:((P,9)-GL4,(p,0)-GLy—(p,go)-Gly, PpelX,
P20, 08) = O, A k).
This morphism restricted th(X*)C3, takes the form
ph:Q—2,
pn:((P,9)-L,(p,00)-L)—(p,gag)-L, peL"X,
pni (X%, ql) = (X, ghhs), (52

where oy is the center of the quotiel@L, /L.

Let 34, coordinated byo”, be the quotient of the bundi® by the kernel Kgyp;, of the
morphism(52) with respect to the sectioln This is isomorphic to the tetrad bundieprovided
with the Lorentz structure of &"X-associated bundle. Then the representatfh), which is
constant on KeJpy,, reduces to the representation

(SpXT*X)@(SpX SN — (2 xS,
2

(0,1 )X, 7592,
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Thence, one can think of a sectibe: h of the bundleX, as being an effective tetrad field, and can
treatg“’=h~hyn.p as an effective metric. It should be emphasized that the Greek indices go
down and go up by means of the background megtit=h4hy 7, .

Given a general covariant transformatibn ®-f, of the frame bundl& X, let us consider the
morphism

To: Qodofn(Q), S'—Ty(S), T*X—F(T*X). (53)

This preserves the representatiéd), i.e., yQo?Q=~fso Yo, and yields the general covariant trans-
formationgy—d,f*a% of the bundleX,.

Using a spin connectioK,, (25) and the representatiop, (51), one can construct the Dirac
operator

AQ:q)\th'yaD)\ .

Restricted taye(X?), this operator recovers the Dirac operaigyr(22) on the spinor bundI&" in
the presence of the background tetrad fieldnd the world connectioK.

In particular, we come to the metric-affine generalization of Logunov’s nibeeiose con-
figuration space is the jet manifoltY of the product

Y=QXCyXxS". (54)
X X

It is coordinated by X*,g* ,k,*,,y"). A total Lagrangian on this configuration space is the sum
L=Lmat+Lp+Lg(a,9), (59

wherelL y, is a metric-affine Lagrangian expressed into the effective mettic=oa1 5", Lo
is Dirac’s Lagrangian(41), expressed into the effective tetrad coordinatés: q,ﬁhg‘, while the
LagrangianL, depends on gravitational fieldsand the background metrg:

For the sake of simplicity, let us replace the bun@le the product{54) with the bundleX,,, .
There exists the canonical Iift,, onto 3, X C,x S" of every vector fieldr on X*. It coincides
with the vector fieldr, (45) Whereag‘~are replaced WitF&Q. This lift is the generator of gauge
transformations induced by morphisifg (53). Then using the standard procedairé pbtain the
energy-momentum conservation law

oL JL
A av VN q =ANa q A _ A
W(T'Lg)+ (9,79 +3d,7"9") aﬁ“”Nd}‘ 2749 3§aﬂ+7 Lg—d, Us ), (56)
where
&LAM (03 [e3 ag
U_ZaR,u.)\av ((9117 _ka' T )u

is the generalized Komar superpotentiaf.If L,=0, we obtain exactly the energy-momentum
conservation law of the metric-affine gravitation theory, but with an effective metric. In the case
of the Logunov’s Lagrangian

Lq: )\39#1;6-#” \ |5-| '
the equality(56) comes to the well-known condition
V.(G*[a)~o,

where V, are covariant derivatives relative to the Levi-Civita connection of the background
metric g.
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