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PREFACE

Gauge theory is generally recognized to provide us with the adequate picture of
the fundamental interactions. The gauge approach to the gravitation interaction
establishes two main features of gravity as a physical field.

Gravitation phenomena are described by two geometric fields. These are an
Einstein (tetrad or metric) gravitational field and a Lorentz connection. A Lorentz
connection plays the role of a gauge gravitational potential induced by a gauge
potential of fermion fields.

An Einstein gravitational field is a Higgs field which accompanies the spon-
taneous breaking of world symmetries. This spontaneous breaking takes place
because of the coexistence of the Dirac fermion matter with exact Lorentz sym-
metries and the world geometric arena. Moreover, in contrast with Higgs fields of
the Grand Unification models, Einstein gravitational field is a macroscopic Higgs
field due to the peculiarity of gauge world transformations.

This book concerns only the gauge theory of the classical gravity. In the al-
gebraic quantum theory, Higgs fields characterize nonequivalent Gaussian states
on the algebras of quantum fields. They are “fictitious” fields describing collective
phenomena. These fields fail to be quantized in the framework of the conventional
quantum field theory. The Higgs nature of gravity therefore may open the door to
many unexpected quantum effects.

Our formulation of gauge theory uses the machinery of modern differential
geometry. Preliminary and Chapter 1 of this book are intended as an introduction
to the jet bundle formalism and to the geometric theory of classical fields. In this
book, we consider those aspects of gauge theory which explain local phenomena,
although the theory itself is formulated in global terms.



INTRODUCTION

The geometric nature of classical gravity as a metric field has been established
by Einstein’s General Relativity. Its physical feature as a Higgs-Goldstone field
corresponding to spontaneous breakdown of world symmetries is clarified owing to
the gauge reformulation of gravitation theory in fibre bundle terms. Thus, gravity
joins the unified gauge picture of the fundamental interactions.

The main problem of the gauge gravitation theory consists in that an Ein-
stein gravitational field is a metric (or tetrad) field, whereas gauge potentials are
connections. To settle this dilemma, many authors attempted to use the seem-
ing identity of the tensor ranks of tetrad functions A}, and gauge potentials o}, of
the translation subgroup of the Poincaré group (Section 4.1). They lost sight of
Higgs-Goldstone fields appearing in gauge models due to spontaneous symmetry
breaking. Moreover, the standard Yang-Mills scheme of gauge theory based on re-
placing global symmetries by the local ones appeared to be unsatisfactory for gauge
theory of world symmetries. For instance, the holonomic transformations fail to be
reproduced in this way. Besides, there are different types of gauge transformations
(atlas transformations, principal morphisms, gauge freedom transformations etc.)
which the conventional gauge principle fails to discern.

We therefore are based directly on the fibre bundle reformulation of classical
field theory (Section 1.1). The necessary mathematical machinery can be ex-
hausted by references [KOB, SUL, SAU, MAN 1991].

In bundle terms, classical fields are described by sections ¢ of some differentiable

bundle E over a world manifold X. To construct differential operators and field
Lagrangians one may use the jet bundle formalism. In its framework, a Lagrangian
density £ of fields ¢ is defined on the 1-jet manifold J' E of the bundle E. Elements
of J'E are equivalence classes jl¢ of sections ¢ possessing the same values ¢(z)
and the same values of their first derivatives d,¢(z) at = € X. Given the world
coordinates (z*) on X and the bundle coordinates (z#,4*) on E, the jet manifold
J'E of the bundle F is endowed with the so-called adapted coordinates

(M0, ) o j'd = (2%, ¢'(2), 0sd'(2)).

The jet manifold plays the role of a finite-dimensional configuration space of clas-
sical fields ¢.

The corresponding finite-dimensional momentum space of fields ¢ is represented
by the Legendre manifold Il provided with the so-called standard coordinates
(z*,4',p) (Section 1.3). Given a Lagrangian density £, we have the Legendre
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morphism
{I\-ylv ) — (I"\‘ v P;"' = BI\E}'

and the multimomentum Hamiltonian
H(=M\ '\ p}) =plvi - L

Let us remark that, in the multimomentum Hamiltonian formalism, time and
spatial coordinates are considered on the same footing and so, this machinery does
not require the preliminary (3+1) decomposition of a world manifold.

The jet bundle formalism enables us to manipulate general connections defined
as sections I' of the bundle J'E — E. Principal connections keep their physical
importance because, to construct a gauge invariant Lagrangian, one must reduce
the bundle E to the one associated with some principal bundle. We use general
connections in the models of spontaneous symmetry breaking and in the multimo-
mentum Hamiltonian formalism. For instance, there is the canonical splitting of a
multimomentum Hamiltonian

H=piTi(y) +H

where I' is some general connection on the bundle E.

In fibre bundle form, the gauge principle is reduced to the natural requirement
of Lagrangians (or multimomentum Hamiltonians) be invariant under transforma-
tions of the adapted coordinates on the configuration space J'E (or the standard
coordinates on the Legendre bundle IT). Such coordinates are induced by atlases of
the bundle E and the tangent bundle T'X over a world manifold X. In field theory,
these atlases define internal and world reference frames. The gauge principle thus
makes the sense of a relativity principle.

To construct a gauge invariant Lagrangian, one needs a metric a* in fibres of
the bundle £ and a world metric ¢ in fibres of the cotangent bundle T X. By
gauge transformations, a fibre metric a® can be always brought into a canonical
form invariant under a structure group G of the bundle E. In contrast with o, a
world metric g takes a canonical form 5 only with respect to nonholonomic atlases
of T* X in general and 7 is invariant only under some subgroup of world symmetries.
It means that, in gauge theory of world symmetries there is a dynamic metric field
besides a gauge potential T.

The relativity principle however does not require g be a pseudo-Riemannian
metric and I be a gauge potential of the Lorentz group. One therefore needs a
supplementary principle besides the gauge one in order to reduce gauge theory of
world symmetries to the gauge gravitation theory. This is the equivalence principle.

In Einstein’s General Relativity, the equivalence principle is called to guarantee
the transition to the Special Relativity with respect to some reference frames.
There exist various formulations of this principle. Most of them are corollaries
of geometrization of a gravitational field by components of a pseudo-Riemannian
metric. The equivalence principle that we need must result in the existence of

a pseudo-Riemannian metric itself. In geometric terms, we have formulated this
principle as follows [IVA 1983).

In the Minkowski space, a time coordinate parameterizes the set of events
ordered by the genetic relations. Lorentz transformations describe the transforma-
tions of these relations under changing a reference frame. In the spirit of Klein’s
Erlanger program, the Minkowski space geometry can be characterized as the ge-
ometry of Lorentz invariants. The geometric equivalence principle then postulates
that, with respect to some reference frames, Lorentz invariants can be defined ev-
erywhere on a world manifold X* and are preserved by parallel displacement. This
principle has the adequate fibre bundle formulation. It requires that the principal
linear frame bundle LX with the structure group

GLy = GL4,R)
be reduced to some subbundle L* X with the structure Lorentz group
L=850{3.1)

and so, that a gravitational field h exist on a world manifold X* (Section 2.2).
There is 1:1 correspondence between the reduced L-subbundles L* X and the tetrad
gravitational fields h represented by global sections of the LX-associated Higgs
bundle ¥ with the standard fibre G'Ly/L. This bundle is isomorphic to the 2-fold
covering of the bundle A of pseudo-Riemannian forms in cotangent spaces T: X to
X1, A global section of A is a pseudo-Riemannian metric g on X*. The geometric
equivalence principle thereby provides X with the so-called L-structure [SUL].
This means the following.

A principal connection I'* on the linear frame bundle LX is assumed to be an
extension of some connection A on the reduced subbundle L*X. A world manifold
X' is a pseudo-Riemannian space with the metric g corresponding to the reduced
subbundle L"X. Atlases of L*X are extended to the atlases U* of LX possessing
Lorentz transition functions. With respect to W*, metric functions of g are reduced
to the Minkowski metric 5 and the local connection form T'* takes its values in the
Lie algebra of the Lorentz group, that is, its coefficients represent components of
a Lorentz gauge potential. We call I'* a Lorentz connection. It plays the role of a
gauge gravitational potential. There is the canonical splitting of T'® in the sum

of the Christoffel symbols { } of the metric g and the contortion form S. The gauge
gravitation theory thereby is the theory of gravity with torsion in general [HEL,
IVA 1983, OBU]J.

The geometric equivalence principle defines some space-time structure on a
world manifold X* (Section 2.3). For every reduced subbundle L"X, there exist
reduced subbundles LFX of LX with the structure group SO(3) € L. There is
1:1 correspondence between these subbundles and the smooth distributions F of
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3-dimensional spatial subspaces of tangent spaces T, X. Such a distribution yields
the (3+1) decomposition of the tangent bundle 7'X over X* into the direct sum
of the 3-dimensional spatial subbundle F and its time-like orthocomplement 79X
This decomposition turns a world manifold into a space-time. In particular, some
types of gravitation singularities can be described as singularities of space-time
distributions.

The geometric equivalence principle singles out the Lorentz group as the exact
symmetry subgroup of world symmetries broken spontaneously. The corresponding
Higgs-Goldstone field is a classical metric (or tetrad) gravitational field.

Spontaneous symmetry breaking is the quantum phenomenon. It takes place if,
given a symmetry group (& and its subgroup H, a Gaussian state I on an algebra
of matter fields is H-stable and nonequivalent to any G-stable state [SAR']. There
are two types of spontaneous symmetry breaking:

(i) States Fg, g € G, are equivalent to F.

(ii) States Fg, g € G, are nonequivalent to F, e.g., if matter fields possess only
the exact symmetry group f.

Spontaneous breaking of world symmetries belongs to the type (ii). The cor-
responding matter fields are Dirac fermion fields on which the Clifford algebra of
Dirac’s y-matrices and the Dirac operator act. There are various spinor models of
the fermion matter. For instance, infinite-dimensional representations of the group
SL(4,R) are examined [NEE 1985] and, in this case, the above-mentioned spon-
taneous breakdown of world symmetries takes no place. All observable fermion
particles however are Dirac fermions.

Let E be a spinor bundle whose sections describe classical Dirac fermion fields
@ on a world manifold X*. There is an associated bundle Eys of Minkowski spaces
with the structure Lorentz group so that the bundle morphism

ve: Ey®E = E

exists and defines representation of elements of Eyy by Dirac’s 4-matrices on el-
ements of E. To define the Dirac operator on sections of E, one must require
Ex be isomorphic to the cotangent bundle 7*X over a world manifold X4. Since
the structure group of T*X is G'Ly, it lakes place only if there is some reduced
L-subbundle L*X of the linear frame bundle LX and Ejy is associated with LMX,
that is, if the geometric equivalence principle holds. The cotangent bundle 7* X
provided only with atlases W* possesses the structure of the Minkowski space bun-
dle M* X associated with the reduced subbundle L"X. For different tetrad fields h
and k', bundles M*X and M* X are not isomorphic to each other. Their fibres M,
and M are cotangent spaces 77X, but provided with different Minkowski space
structures.

The peculiarity of gravitational field thus is clarified. In contrast to the other
fields, a tetrad gravitational field itself defines reference frames and these reference
frames corresponding to different gravitational field are nonequivalent in a sense.

an

Let the Minkowski space bundle Ej; associated with a spinor bundle E be
isomorphic to the bundle

X = MX.

Then, one can define the representation

w MPXQ®E— B,
m(dz") = ki (z)r*

of cotangent vectors to X* (that is, 1-forms) by Dirac’s y-matrices on sections of a
spinor bundle E. We denote such a spinor bundle (endowed with the representation
morphism 74) by E* (Section 2.2). Sections of E* describe Dirac fermion fields ¢y
in the presence of the tetrad gravitational field k.

Moreover, each principal connection A, on the spinor bundle E* induces a
certain principal connection A on the reduced subbundle L*X of LX and A is
uniquely extended to a Lorentz connection I'* on the linear frame bundle LX.
In other words, gauge potentials A, of fermion fields generate gauge gravitational
potentials.

The Higgs character of gravity issues from Lhe fact that different gravitational
fields h and b define the nonisomorphic representations v, and 75 . It follows that
Dirac fermion fields must be considered only in a pair with a certain gravitational
field. These pairs fail to be represented by sections of the bundle product ¥ x £
of the Higgs bundle £ and some spinor bundle E, but form sut generis a fermion-
gravitation complex (Section 3.1). To describe this complex. we use the fact that
the total space P of the principal bundle LX represents the total space of the
L-principal bundle P over the Higgs manifold

= P/L.

The Higgs manifold ¥ is parameterized both by coordinates z* of a world manifold
X* and by values % which tetrad gravitational fields take in the quotient space
G L4/ L. The manifold ¥ is the finite-dimensional analogue of the Wheeler-DeWitt
superspace in a sense.

Let B — ¥ be a spinor bundle associated with PE. Fermion-gravitation pairs
can be represented by sections of the composite bundle

over X. This bundle however is not associated with a principal bundle and so, does
not admit a principal connection. To define a connection on E, one uses principal
connections on the bundles ¥ and PL and the canonical jet bundle morphism

J'E x J'EX = JE.

As a result, covariant derivatives of fermion fields include the additional term due
to parallel displacement along the coordinates o of the Higgs bundle X.
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Since, for different gravitational fields h and &', the representations v, and
v+ are not isomorphic, tetrad gravitational fields, unlike matter fields and gauge
potentials, fail to form a linear space or an affine space modelled on a linear
space of deviations from some background field. They thereby do not satisfly the
superposition principle and can not be quantized by usual methods because, in
accordance with the conventional quantum field theory, fields must form a linear
space in order to be quantized.

This is the common feature of Higgs fields. In algebraic quantum field theory,
different Higgs fields correspond to nonequivalent Gaussian states on an algebra of
matter fields. Quantized deviations of a Higgs field can not change a Gaussian state
of this algebra, and so fail to result in some new Higgs field. A Higgs field thereby
is a classical field. If one considers its small classical deviations being superposable
in some approximation, their quantums turn out to be quasi-particles, not true
particles.

A classical tetrad gravitational field as a Higgs field also is “fictitious” in a
sense. It describes a field of invariance relations which is preserved by parallel
displacement. For instance, a momentum part of the multimomentum Hamilto-
nian form for the classical gravily is reduced only to the connection term. Thus,
quantization of tetrad (metric) gravitational fields goes beyond the framework of
the standard quantum field theory.

At the same time, one can examine superposable deviations o of a tetrad grav-
itational field h such that

h+4eo

is not a tetrad gravitational field (Section 3.2). For instance, they do not change
atlases W" and the world metric g. These deviations are generated by non-Lorentz
transformations of fibres of T* X and thereby violate the isomorphism between Eyy
and T*X. Such transformations look like deformations of a world manifold in the
gauge theory of space-time translations (Section 4.2). A Lagrangian of superpos-
able deviations ¢ differs from the familiar Lagrangians of gravitation theory. For
instance, contains the mass-like terms.

In other words, the superposable deviations o of a tetrad gravitational field
can destroy the correlation between the Dirac fermion matter and the space-time
geomelric arena, At the same time, if world symmetries are not broken (e.g., there
are no fermion fields), transmutations of &+ o into a new gravitational field A’ may
take place and may be accompanied by violation of the usual energy conservation
law.

In the Grand Unification models, appearance of a Higgs field is usually related
to a phase transition. A gravitational field also might arise owing to some primary
phase transition which had separated prematter and pregeometry.

-1

PRELIMINARY

We assume that all morphisms are smooth (that is, of class C*) and manifolds
are real, Hausdorff, finite-dimensional, and second-countable (as a consequence,
paracompact). Unless otherwise stated, structure groups of bundles are real finite-
dimensional Lie groups.

By A, we denote exterior product (i.e., skew-symmetric tensor product) of
cotangent vectors.

Interior product (pairing) of tangent vectors with cotangent vectors is denoted

by J.

0.1 Bundles

By a bundle, we mean a locally trivial fibre bundle
m E— B

whose total space E and base B are manifolds. For the sake of simplicity, we
denote a bundle by its total space symbol E.

We use y and z in order to denote points of £ and B respectively.

Given a bundle £ and another bundle

n': B' = B,
a bundle morphism of E to £’ is defined to be a pair of manifold morphisms
¢: E— E, by B— B

such that
To®==®gor.

One says that ¢ is a bundle morphism over ®5. If

by =id B,

then @ is called a bundle morphism over B.
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Let £ and E' be bundles over the same base B. We denote their bundle product
over B by
E x E.
B

There are two bundle projections
pry: Lﬁ E'— E, Prs: E'i; E'— E'
Given a bundle E and a manifold morphism
by B'— B,
the pull-back of E by ®5 is defined to be the bundle
OLE = {(y,2") € E x B'; n(y) = ®5(z)}
with the base B and projection
oy (y,2') = 2.
In particular, each section e of E yields the pull-back section
Ope(z') = (e(®n(x)), )
of @4 E. There is the bundle morphism
b 5 OLE 3 (y,7') = y € E. (0.1)
We provide a bundle E with local bundle coordinates
(z*,y"), 1<A<n=dimB,
|1 <i<l=dimE —dim B,
which are compatible with the bundle fibration of £, that is,

pry o l:;r\,yi} =ztor.

In particular, if

¥ = {Un e 77 (Us) = U x F}
is a bundle atlas of E, coordinates y' on E can be induced by coordinates v* on a
standard fibre IV of the bundle £:

y' = llj o 'd"_ (02}

We call coordinates (0.2) the bundle coordinates associated with an atlas W.
In field theory, one is usually concerned with bundles possessing additional
algebraic structure.

0.1. BUNDLES 9

A group bundle is defined to be a bundle E together with canonical bundle
morphisms m and k over B and a global section g of E:

m: E é E—E,
k: E— E,
eg: B— E. (0.3)

They make each fibre
E; =7"1z)

of the bundle £ into a Lie group:

mieg(r),y) = m(y,ex(z)) =y,
m(k(y).y) = m(y, ky)) = ex(z), v € Ex.

For instance, a vector bundle E possesses the structure of an additive group
bundle. In this case, ex is the canonical zero section of E.

A general affine bundle is defined to be a triple (E, E’,r) of a bundle E, a group
bundle E' over B, and a bundle morphism

rnExE —SE
B

which makes each fibre E, of F into a general affine space with the associated
group E. acting freely and transitively on £..

In particular, if a group bundle is a vector bundle E| a general affine bundle is
called an affine bundle modelled on a vector bundle E:

rgr ExE — E,
B
res (U,7) -y +7.

For instance, every vector bundle £ can be provided with the canonical structure
of an affine bundle (of translations in £) modelled on £ by means of the morphism

re: (v, y) = y+y'.

A principal bundle P — B with a structure group G is defined to be a general
afline bundle with respect Lo the trivial group bundle B x G where the group G
acts on P on the right:

rg: P — Py, geQG. (0.4)
A standard fibre of a principal bundle P is its structure group G which acts on
itsell on the left. Fibres of P are diffeomorphic to the group space of G, but fail
to be groups.

A principal bundle P is a general afline bundle also with respect to the principal
group bundle P. This is the P-associated bundle with the standard fibre G on
which the structure group acts by the adjoint representation

adg: G — gGg~", g € G.
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Fibres of P are groups isomorphic (but not canonically isomorphic) to the structure
group G. Moreover, for any P-associated bundle E, the canonical bundle morphism

Pg: E X P-E (0.5)
is defined.
Remark. Given a principal bundle
mp: P— B

with a structure group G, a total space of a P-associated bundle £ with a stan-
dard fibre F is defined to be the quotient (P x F)/G of the product P x F by
identification of elements (p,v) and (pg,g~'v) for all g € G. A global section e of
E then is determined by a F-valued equivariant function f. on P such that

e(rp(@) = Blefe®),  PEP,
fe(pg) = g7 fe(p)s g€G,
where [p], denotes the restriction of the canonical map
PxF—E

to the subset p x F.

Let (E,, E},r,) and (E,, Ej, r;) be general affine bundles. An affine bundle
morphism £, — E; is a pair of bundle morphisms

$: Ey— By, o' El — E
such that
rao(®, ') =dor,.

For instance, let P — B and P' — B’ be principal bundles with a structure
group G. Then, an affine bundle morphism of P to P’ is defined to be a G-
equivariant bundle morphism

(.0 = ($5,id Q)

over a manifold morphism

by: B— B

such that, whenever g € (5,
r'; od=>dor,.

0.1. BUNDLES 11

Every principal isomorphism of a principal bundle P (over the identity mor-
phism of its base B) is expressed as

@p(p) =pfp), pe P, (0.6)
fipe)=9""fulp)g, g9€G,

where f, is a G-valued equivariant function on P corresponding to some global
section s of the principal group bundle P. Principal isomorphisms thus form the
gauge group ((5) which is canonically isomorphic to the group of global sections
of the bundle P.

Remark. There is no canonical embedding of & into G(B) even if P is a trivial
bundle. Elements of G(B) take their values in fibres of the group bundle P, but
not in its standard fibre G.

Given a P-associaled bundle ¥ with a standard fibre F, every principal iso-
morphism (0.6) yields the associated principal morphism

bp: (P x F)/G = (®p(P) x F)/G (0.7)
of the bundle F so that
Oz = Pplexgan)-
Given affine bundles E and E' modelled on vector bundles E and E' respec
tively, a bundle morphism
$: E— F
is affine if there exists a linear bundle morphism
o E-F
satisfying the following condition
rEg: O {d’,llll =do TE.:
This linear bundle morphism @ is called the fibred derivative of ®:

')+ 0(F') =20 + 7). (0.8)

Let E be a vector bundle. Bundle coordinates (z*,y*) on E are called linear if
functions y* are linear on each fibre.

Let E be an affine bundle modelled on a vector bundle E. Bundle coordinates
(2*,y") on E are called affine if functions y' are affine on cach fibre. By taking

their fibred derivatives, one obtains the linear bundle coordinates (z*,7') on E:

7@ =v'(w+7)—v'()

*
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If E is a vector bundle provided with the canonical structure of an affine bundle,
we have _
v'i() =7y

Henceforth, when we deal with a vector bundle and an affine bundle modelled
on a vector bundle, we shall refer to the linear bundle coordinates and to the affine
bundle coordinates respectively,

Let us note that additional algebraic structure puts constraints on a bundle
E. For instance. a bundle E with a standard fibre F can be regarded as a bundle
with the structure group Diff I of all diffeomorphisms of F. If E is assumed to be
associated with a G-principal bundle P, it means that the structure group Diff ¥
of E is reducible to & and that only atlases of E associated with atlases of the
principal bundle P are allowed. One must discern affine bundles and affine bundles
with an affine structure group. Jet bundles described in Section 0.2 exemplify affine
bundles which are not associated with an affine principal bundle.

. Given a principal bundle P and a P-associated bundle E, we say
Remark. Giv principal bundle P and a P iated bundle E, we say
that a bundle atlas
| Lo r P
P {l' H‘T,"ﬂ}

of P and a bundle atlas

W= (U, ¥}
of E are associated atlases if they are determined by the same family {z,(z).z €
f",‘} of local sections of P, that is,

]

U, (2.(2)) = 1g,
Yelz) = j'_:.,,(r)];.l. rp(p)=x € U,,
z:p) = z.(p)pun(me(p)), wp(p)=z € U LU,

PrlZ) = Uelx)th,” 1 (x).

Here, p., are G-valued transition functions of atlases ¥¥ and ¥ and 15 is the unit
element of the group . By . (x), we denote the morphism pr, o ¢, restricted to
a fibre 77 '(z):

. (x): 7Y z) = F.

The tangent bundle over a bundle E possesses additional structure which is the
vertical subbundle.

Remark. Given the tangent bundle

TAf- T.‘u’ - ,"f

and the cotangent bundle 7* M over a manifold M, we denote the familiar induced
coordinates on M and T°M by (z*,2*) and (2%, &,) respectively. Here, #* and

0.1. BUNDLES 13

&y are the coordinates on fibres T, M and 77M with respect to their holonomic
bases {d,} and {dz*}. Let
o M-S N

be a manifold morphism. It gives rise to the following linear bundle morphism over

$:
¢.: TM —- TN,
aov

$,: 779, = ' —48,
! Ozr "

which is called the tangent morphism to ®.

Given a bundle E, we have the tangent bundle
7 TE — B

and the bundle

.. TE = TB.
Given the bundle coordinates (2%, %') on E, the induced coordinates on TE are
{_.i"‘._t.:'.i"\._r.'r"l.
The vertical bundle over a bundle E is defined to be the subbundle
VE=kerx.CTE.
The induced bundle coordinates on V E are
(= 4", 5').
We have the following exact sequence of tangent bundles over E:

0+ VE=STE—SExTB—=0 (0.9)
B

where
E xTB=="(TB)
B

is the pull-back of the tangent bundle T'B by 7. For instance, a bundle morphism
$ of a bundle E to E' gives rise to the vertical tangent morphism

Vo =&, |pp: VE S VE

of the vertical bundle VE o V E.
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The dual exact sequence of cotangent bundles is
0—=#"(I"B) - T"E—V°E —0. (0.10)
Here, V*E is the vertical cotangent bundle dual to VE and

H'E="(I"B)=E xT'B

is the horizontal cotangent subbundle of 7*E which consists of covectors whose

interior product with vertical tangent vectors is equal to zero. For the sake of

simplicity, we usually denote the horizontal cotangent subbundle H*E by T*B.
By T(M), we denote the sheaf of vector fields

wuM—-=TM

on a manifold M.

A vector field u € T(E) on a bundle E is called a projectable vector field if it
is projected to a vector field ug € T(B) on the base B. The coordinate expression
of a projectable vector field is given by

u = u*(x)d, + u'(y)d. (0.11)
We denote the subsheaf of projectable vector fields by
P(E) C T(E).

A projectable vector field on E taking its values in the vertical bundle VE is
called a vertical vector field. Its coordinate expression reads

u=u'(y)d,.
We denote the subsheaf of vertical vector fields by
V(E)C P(E)C T(E).
Vertical bundles for the most of bundles relevant for physics possess simple
structure called the vertical splitting.

Vertical splitting of a bundle £ is constituted by some vector bundle F and a
linear bundle isomorphism over E:

a: VE - E ﬁE (0.12)

In particular, trivial vertical splitting of a bundle E is the vertical splitting with a
trivial vector bundle £ = B x I

a: VE— Ex . (0.13)
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Given the vertical splitting (0.12), bundle coordinates (z*,y') on E are called
the coordinates adapted to vertical splitting if the vector fields

pry o a o d;: E—;VE—;E;?—-,E
are constant along fibres of E. In this case, we can write
prpoaod; = ti(z).

Here, t;(z) are bases for fibres of the vector bundle E which are associated with
some local trivialization v of E, that is,

{ti(x)} = {aff“(!.]} (0.14)

where {t;} is a fixed basis for a standard fibre F of the vector bundle E. The
induced coordinates on V E then read

(4 = F o)

where (z*,7') are bundle coordinates on E. The vertical splitting (0.12) is called
the integrable vertical splitting if there exisis a bundle coordinate atlas of E con
stituted by coordinate charts adapled to the vertical splitting.

For instance, a vector bundle £ has the canonical integrable vertical splitting

VE=ExE, (0.15)

An affine bundle E modelled on a vector bundle £ has the canonical integrable
vertical splitting (0.12). Linear bundle coordinates on a vector bundle and affine
bundle coordinates on an affine bundle are adapted to these vertical splittings.

A principal bundle P with a structure group G has the canonical trivial vertical
splitting (0.13):

a: VP — P xg,
praoaod, = J,, (0.16)

where g is the left Lie algebra of the group G and {J,,} is a basis for g. This
splitting takes place because, by definition, elements of the left Lie algebra g are
left-invariant vector fields on G. Given an atlas {z,} of the bundle P, the canonical
bundle coordinates on P adapted to the canonical vertical splitting (0.16) are
(2%, p™):
m ™m WP m | - r s |
P (p) = (@™ oy )(p) = a™(g,), p € np'(U), (0.7)
where a™(g) are the group parameters of an element g and the element g, € G is
determined by the relation

p = zx(mp(p))g,.

——*
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Note that tangent bundles over structured bundles are also structured bundles
owing to tangent prolongation of corresponding morphisms.
Let E be a group bundle and the bundle

#a: TE —-TB (0.18)

be provided with morphisms m., k., and (eg). tangent to morphisms (0.3). The
bundle TE then is a group bundle. For instance, if £ is a vector bundle, the
bundle (0.18) also is a vector bundle.

For bundles, the familiar machinery of K-valued exterior forms is generalized
to tangent-valued forms.

Au exterior r-form w on a manifold M is defined to be a section of the skew-
symmetric tensor bundle A T* M. It has the coordinate expression

w = wy,. o (2)dz™ A oo Adz.

The exterior differential d and exterior product A of exterior forms are defined in
a usual way.
Interior product of a vector field 7 = 78, and a r-form w reads

r

Thdw = Z["‘ 1 }x._1Tﬂiﬁ'_\1...,\,._.”|,\,.+: ..-\r[;r)
p=1
xdz™ A--- Azt Ade™ Ao Adatr,

In particular, given a r-form w, we introduce the (r-s)-form

Wy A, = a.\,-J i 'J(a.\.—]"‘;L Wy = —Wyy. [019)

Remark. A fibre metric ¢ in the tangent bundle T'M is defined to be a

i . 2 e .
nondegenerate global section of the symmetric tensor bundle V T M, that is,

('l"‘l l.q!u'[IH # U'
glz) = g (z)dz" @ dz", re M.

For the sake of simplicity, we denote the dual fibre metric in the cotangent bundle
T*M by the same symbol g and simply call g a fibre metric on a manifold M.

Let a manifold M be oriented and provided with a fibre metric g. Let {dz*}
be the bases for T*M which are compatible with a given orientation. One defines
the volume form

V=flglde Ao ndzPm, g = detlgl, (0.20)
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and the Hodge operator

A Arpir
W= =g . 'g\ & W,\|...-\,(T}vp|...ur'

We denote the sheaf of exterior r-forms on a manifold M by A T=(M).
A tangent-valued r-form ¢ on a manifold M is defined to be a section of the

bundle §
AT*M %r TM.

It has the coordinate expression
¢=465,..(2)0,8 de™ A - Adz™.

In particular, tangent-valued 0-forms are vector fields on M. One introduces the
canonical tangent-valued I-form fy; on a manifold M whose coordinate expression
is given by
"‘?M = 8,\ ':‘_?'; n’r\, (D.?l]
Tangent-valued forms on a manifold M constitute the sheaf

AT (M) T(M).

Given a bundle E, one can consider the following classes of tangent-valued
forms on E:

(1) tangent-valued horizontal forms
é: E—- AT*B Lr.l TE,
¢ = (6,5, ()0 + )5, (¥)8) @ dz™ A -+ - A dz™,

(ii) projectable horizontal forms projected to tangent-valued forms on the base
B:
¢ = (85,2, (2)0u + &\, ()D:) @ dz™ A --- Adz™,

(1ii) vertical-valued horizontal forms
¢: B — AT*B (g VE,
=%, (W) @dz™ A--- Adz™.

When a bundle E is endowed with the integrable vertical splitting (0.12), we
can write

AT"B® VE=~ E x (AT'B ® ‘F‘) _
E B B

Then, a vertical-valued horizontal r-form

¢: ESAT'BQVEXE x (;\ B I_)
E B )]

el ———————
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satisfies the relation
pr,oao¢ =29

where ¢ is some E-valued horizontal form on E:
— r g
¢: E=AT"B {3 E.
It has the coordinate expression

¢@= éllr._\,.(!f}aﬂ @d;rl\l Aime\ d_.r:-\r

- &;’;‘: alyt(z)® dz™ Ao Adz™

where {¢;(z)} are bases (0.14) associated with some local trivialization ¢ of the
bundle E.

Given integrable vertical splitting of a bundle E, a vertical-valued horizontal
form on E is called a basic form if it is constant along fibres of E. The coordinate
expression of a basic form reads

6 =By, . (2)ti(2) @ dz™ A - Adz™
where ¢ is some E-valued form on the base B.
A vertical-valued horizontal 1-form on a bundle F is called a soldering form

oc: E=-TBVE.
E

Its coordinate expression is given by
o = o\(y) & @ dz’. (0.22)

In the particular case of a bundle E endowed with integrable vertical splitting, it
makes sense to consider a basic soldering form

o: B-T'B®FE.
B

For example, let E = T'B. Then F = TB and we have the canonical basic soldering
form (0.21).

Tangent-valued 0-forms (that is, vector fields) are known to form the sheaf of
Lie algebras with respect to the commutation brackets. This algebraic structure
can be generalized to tangent-valued forms if we consider the Frolicher-Nijenhuis
(F-N) brackets.

The F-N brackets are defined to be the sheaf morphism

[, 1en: (¢,0) = [¢0]lpny = [ @ u, B @ v]rN
=aAfB@uv]+anl Sv—(-1)"BALa@u
+ (=) (vda) AdB @ u—(=1)"""(udB) A da @ v,
a EAT (M), BeAT (M), uveT(M),
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where L, and L, are Lie derivatives. We have the coordinate expression

y R o i L \TE Y (b
(6 alen = (65, 5,000% ,, 2y, = (=1) SOV - NP W

5

_— . 18 rs o i L
IO\:_ .\._1l>a-\fJ.\,+|..‘.\.—+. + {_]] .\r‘T\I .A,-lva“!(')\.,-;...\,{,

)

dz™ A .- Adz*+ @ 8,.

The sheal AT*(M) @ T(M) endowed with the F-N brackets thus is the sheafl
of graded Lie algebras:

(8, a)en = —(=1)*"1[o, 4],
(0, (6, o)enlen = ([0, Slew, olen + (—1)M1[6, (0, 0]in] kN,
d,00 e NT"(M)RT (M),

where |¢| denotes the degree of a form ¢.
Given a tangent-valued form

0 €A T (M) @ T(M),
we can introduce the Nijenhuis differential
do: o v dyo = [0, 0]px. (0.23)
For example, if # = u is a vector field, we obtain the Lie derivative
do=Lo= (u"ﬁvrr_‘\'l‘__l_ — a3, 00"
t 8oy, o000 )dzM A - Adz™ @4, (0.24)
Note that the differential (0.23) can be applied to R-valued forms o.
Because of the Jacoby identity, dy turns out to be the r-degree derivation of
the F-N algebra AT*(M) @ T(M). Namely, we have
dy[¢, olen = [do, olen + (—1)W[g, dyolrw,
dody — (—1)"Pd, dy = dig gy

In particular, for # = 5, we obtain

3 v
5(1 = (=1)")d}i¢ = d,6 = [Ka, dlrn

where

% 1 r =
Ky = =dob €A T*(M) ® T(M) (0.25)

i R ————
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is called the curvature of a tangent-valued form @. Note that
Ky=10
for even r. For odd r, we have the generalized Bianchi identity
dgKe = 0. (0.26)

Given a fibre metric g, one can introduce the covariant codifferential defined
to be the sheaf morphism

= —(=1)"=Mi g dou: AT (M) T(M) —'A T (M)@T(M) (0.27)

where m = dim M and 1 is the signature of the metric g.

0.2 Jet Manifolds

We here restrict ourselves to the first and second order jet manifolds.

Given a bundle E, the first order jet manifold J'E of E is defined to comprise
l'laf'ifi('..q
w= __iir. z € B,
of sections ¢ of £ so that sections e and ¢’ belong to the same class jle if and only
if
e(z) =¢€(z), elnp=clns.

The jet manifold J'E is the total space both of the bundle
E' = (J'E,my, EY, m: J'E2djle—>z€ B, (0.28)
and of the bundle
£ = (J'E 7o, E), wo: J'E 3 jle — e(z) € E. (0.29)

Note that the structure of a smooth finite-dimensional manifold is induced on J'E
as on the bundle E™.

Given the bundle coordinates (z*,y') on E, the jet manifold J'E is provided
with the following local coordinates (z*,y',y}) called the adapted coordinates:

Mw) = 2 (5le) = 2M(2),
y'(w) = Ifi_(Ji"'} =y'(e(z)) = €¢'(z),
vi(w) = pilsle) = Bny'le(x)) = e\(2).
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Adapted coordinate transformations read

™ = ¢y(a*), (0.30a)
¥t = @ (), (0.30b)

R _ (’)q" i od* dz* -
Yy = (a_wyp + ﬁ) 3 (0.30¢)

Let us point out the fact that transformation law (0.30a) is independent of y'
and y3 and that transformation law (0.30b) does not involve yi. It follows that
the adapted coordinates on J'E are the bundle coordinates both of the bundle £*
and of the bundle E™,

Moreover, the second term in transformation law (0.30¢) indicates the fact that
E® is an affine bundle. Namely, there is the canonical bundle monomorphism 0,
of J'E onto an affine subbundle of the bundle

T"B@TE — E.
i

This monomorphism is called the contact map and is given by the coordinate
expression

0, = dr* @ dy\ = dz* @ (8) + ¥\0,). (0.31)

The bundle £ hence is the afline bundle modelled on the vector bundle
T"BRVE — E.
B

There is another canonical bundle monomorphism 8, of J'E onto an affine
subbundle of the bundle

T"EQ VE — E.
E

This monomorphism is called the contact form and is given by the coordinate
expression

0, = (dy' — y\dr') @ 8. (0.32)
The contact map #; and the contact form #; yield canonical morphisms
0;: roa(TE)=TE b; J'E - TE1(0,J'E)= HE C TE,
ég: TE ): J'E - TEN0,J'E) = VE. (0.33)
Their coordinate expressions read

0y =Dy + ¥30)),
b= (4" — 2'y)\)0:.

e ——
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Morphisms (0.33) define the canonical horizontal splitting of the pull-back =g, (T'E)
of the tangent bundle T'E over J'E;
TE x 'E=HE & VE,
E JE
30y + ', = N0+ 4)8) @ (7' — #'4))a:. (0.34)

Let £ and E' be bundles over B and
$d: E — E'

be some bundle morphism over a diffeomorphism @5 of B. Then, there exists the
jet prolongation of the morphism @ to the jet manifold morphism

j'o: J'E 3 jle— J’;B(:]{q'" oeody') e J'E".

For instance, each section ¢ of a bundle F can be regarded as a bundle morphism
of the bundle B — B into the bundle E over B. Hence, we have the jet prolongation
of a section e to the section

(7'e)(z) = jze

of the bundle E'. In the adapted coordinates, this prolongation reads
(="' d) 0 e = (24, €'(2), Bre'(2)).

Algebraic structure of a bundle F also has jet prolongations to the bundle E!
owing to jet prolongation of corresponding morphisms.

Let E be a group bundle. The bundle E' provided with the jet prolongations
7'm, 3"k and j'eg of morphisms (0.3) becomes a group bundle. For instance, if
E is a vector bundle, E* also is a vector bundle.

Let (E, E’,r) be a general affine bundle. Being provided with the jet prolon-
gation

jtr: J'E X J'E' - J'E,

the bundle £ is a general affine bundle with the group bundle E”. In particular,
if £ is an affine bundle modelled on a vector bundle E, then E! is an affine bundle
modelled on E .
In Section 1.2, we shall need the lift of projectable vector field u (0.11) on a
bundle E to a vector field
w J'E—-TJ'E
on the jet manifold J'E. The coordinate expression of this lift is given by

(w) = u'dy + u'd; + (O’ + yl0;u' — yl,0\u")d},
r=7(y) = mw), y = mp(w). (0.35)

By analogy with the 1-jet manifold J'E, the higher order jet manifolds J*E
can be introduced. We here concern only with the second order jet manifold J*E
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of a bundle E. This manifold comprises classes j?e of sections e of a bundle E so
that sections e and ¢’ belong to the same class j2e if and only if

-1 o "
ire=j.¢€, Cau|TT B = €,.|7T.B-

By TT B, we here denote the tangent bundle over the tangent bundle T'B.

Remark. There are twa prajections
mr: TTB — TB, 75.: TTB — TB.
In the induced coordinates [r“\i”,;“,i”] on TT B, projections mp and 7y, read

(z*, ") o 7p = (27, 2"), (z*, 2*) o wg. = (z, z%).

The 2-jet manifold J*E is the total space of the following bundles:
E? = (my: J*E — B),
E"™ = (r12: J*’E — J'E),
EUQ = [ﬂgﬂ:JlE —% i'.‘)
This manifold is endowed with the adapted coordinates (z*,y', y\, ¥}, = y.\) where
viu(ize) = 8,0:¢'(x).

One can generalize the canonical morphisms @, (0.31) and #; (0.32) to the 2-jet
manifolds:

0,: PE—-T'B @ TJ'E,
I'E
0;; PE—-VJ'E @ T*J'E
JE
where 7" B denotes the pull-back #{(T'B). Their coordinate expressions read
0 =dz* ® d, = dz* ® (9) + v} &; + v\ ),
02 = (dy' — yidz*) © B, + (dy} — v}, dz*) © D). (0.36)
Operators _
dy = h+4\0 + 09" (0.37)
are called the total derivatives.

For instance, using expressions (0.36), we obtain the canonical decomposition
of the exterior differential d into the vertical and horizontal parts:

d=dz* ® O\ +dy' ® 8, + dy}, ® ¥ = [d2* B (9 + yid: + 4}, 0]
+ [(dy* — yidz*) @ 8; + (dy}, — y),.dx*) @ 8}
=0, 4+ 0; =dy +dy. {038)

— .
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Let us consider the repeated jet manifold
PI'E — B
provided with the local coordinates
(2%, " U5 ¥ Y-
There are two bundle morphisms over J'E:

mory: J T E — J'E, Y\ © Tyo1) = Y,
jqu:IJ‘-ﬂE—'J‘E» yf\"jl”m

1]

yL.\-

In accordance with the affine structure of the bundle E? (0.29), difference of these
morphisms over J'E yields the bundle morphism

i'mo = wyon) = A: SPIE—-TB ® VE,
(#% ¢ &\ @ §') 0 A = (=, ', 56x — ¥))-
The kernel of A is the affine subbundle J2E C J'J'E over J'E which is charac-
terized by the coordinate condition
yéu = Ui

The adapted coordinates on J2E are (z*,¥',¥},v},) where, in contrast to the
coordinates on J?E,

y:\u ?é y:u.\'

Hence, there exist the following affine bundle monomorphisms over J' E:
JE - J'E - J'J'E, (0.39)
which result in the canonical splitting of J2E over J'E:

PE=1E (f\ T"Bg w;.') ,

JE

0.3 General Connections.

In general, a connection on a bundle E must determine a certain lift of a tangent
vector to the base B at a point z € B to tangent vectors to £ at each point y € £
projected to x. In other words, a connection I' on a bundle £ can be regarded as
a certain morphism

i ExTB—TE (0.40)
B
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which is both a linear bundle morphism
ExTB—=TE
B E
over E and a bundle morphism
ExTB - TE (0.41)
B TB

over T'B.

One can introduce a connection in various equivalent ways. In the framework
of the jet formalism, we do it as follows.

Given a bundle E. a connection I' on F is defined to be a global section

I': E= J'E
of the bundle £ (0.29). Its coordinate expression is
(=)' 1)) o T = (=, ", T (v)).
Let T be a connection on a bundle £ and
o: E— E
be a bundle isomorphism. Then,
I"=j'®olod™": E' = J'E

is a connection on the bundle E’. In particular, if @ is a bundle isomorphism over
B, we have the coordinate expression

(2N y" yi) o IV = (2, @, (8,9 + T18,0') 0 ®77).

By means of the contact map 6, (0.31), a connection I' can be represented by
the projectable tangent-valued horizontal form

0,0T: EST'B ?; TE.
We denote this form by the same symbol I'. It has the coordinate expression
I'=de* @ (dy + T\(y)8)). (0.42)
The form I' determines morphism (0.40):
I': (y,05) — (0x+ T'\(v)8) € T,E.

The horizontal 1ifi
HE=TBIT(E)CTE

———
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forms a distribution of horizontal subspaces of T'E. This distribution obeys the
equation

HEJF =0

where T is the vertical tangent-valued form on £ defined by means of the contact
form 6, (0.32):

F=6,0T: E-~»TE®VE,
[ = (dy' - Mi(v)dz*) & B. (0.43)
The form (0.43) implies splitting of exact sequence (0.10).
Given a connection I', morphism (0.40) vields splitting of the exact sequence
(0.9) and, as a consequence, the horizontal splitting of the tangent bundle
TE =HE n?:,j VE.
Its coordinate expression
0y +9'0; = (0 + Ta(¥)d) @ (° — 'T\())d,
is derived from the splitting (0.34) by substituting a connection I':
vh = T3(y).

A connection I' defines the bundle morphism

D: '"E> w— w—T(my(w)) € T"B 1;) VE
of the afline bundle E” into the vector bundle
™B Cf,’j VE — E.
We call this morphism a covariant differential. Its coordinate expression reads
D = (y\ — N\(¥))dz* © 3, (0.44)

To describe totality of general connections on a bundle E, one can use the
following fact.

Proposition. Let I' be a connection and o be some soldering form (0.22) on
a bundle E. Then, their affine sum

M'=T+0: E—J'E,
I =dz* ® (3 + Di(1); + o ()3),

0.3. GENERAL CONNECTIONS. 27

over F is a connection on a bundle F. Let I' and I' be connections on E. Then,
their afline difference over E is a soldering form

o=I'-T": E—-T"B u}ﬂ VE.

This general approach to connections is suitable to formulate the conventional
concept of a principal connection. It is a connection A on a G-principal bundle
P which obeys certain symmetries under the action of a structure group G on P
and J'P, Namely, a principal connection is a section of the bundle P which
represents a G-equivariant bundle morphism such that the following diagram is
commutative for each canonical morphism (0.4) and its jet prolongation:

PP
o

[J_A_'_'Jl‘p

Qiven a principal bundle atlas W and the associated canonical coordinates (0.17)
on the bundle P, we have

A =dz* @ (s + AT (p)Onm),
A = (dp™ = AT (p)dz*)Opm,
AT (2, p™(p))Om = (rp].(.-if{'(;r‘\‘ﬁ',lr’l,. )
= AT(2",0)ad g" " (8,), p™ =a™(g).
Using the trivial vertical splitting (0.16) of the vertical bundle VP, we can
reproduce a familiar principal connection form
A=aoAd= (dp™ — A (p)de ). (0.45)

Note that, in the case of a principal bundle P, the exact sequence (0.9) entails
the exact sequence
0=+ VP TP 5 TB -0
where :
VP =VP/G, TP =TP/G

denote the quotients of the bundles VP and T'P by canonical action (0.4) of G
on P and its tangent prolongation (r,). on TP. A principal connection A defines
splitting of this sequence.

Let E be a bundle associated with a G-principal bundle P. A principal connec-
tion A on P induces an associated principal connection on E. The corresponding
horizontal splitting of the tangent bundle T'E is given by the relation

TE = (TP x TF)/G. = ((HP ® VP) x TF]/G. = HE & VE.
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With respect to associated atlases WP of P and ¥ of E, an associated principal
connection A on E takes the coordinate form

A\(y) = AV (@) a(y'),  AT(z) = AT(2%,0). (0.46)

By I,,(y), we here denote generators of the group G acting on a standard fibre F
of the bundle E on the left (Section 1.1).

Proposition. Every connection I" on a bundle E associated with some princi-
pal bundle P is represented by the affine sum

'=A+4¢o

of a principal connection A and a soldering form o.

Let E be a vector bundle. A linear connection on E is a section I" of the bundle
E®" which defines linear bundle morphism (0.41). Its coordinate expression is

P\(y) = Ty;(z)y’ = ¥’ 0,;T\(v).

Every linear connection is obviously a principal connection.
Let E be an affine bundle modelled on a vector bundle £. An affine connection
on E is a section I' of the bundle E” which yields affine bundle morphism (0.41).

It is given by the coordinate expression
Ii(y) = aj(x) + I, (@)’ (0.47)
The fibred derivative T’ (0.8) of the section I' is a linear morphism
R AR o )

which defines some linear connection on the vector bundle E. Its coordinate ex-
pression reads
Ty(¥) =T (2)7.

Note that, in comparison with the linear connection I'\, (7 )7, the term rf\, z)y’
in expression (0.47) is not a linear connection since y are elements of an affine space
which fails to admit linear transformations in general.

Let us consider the particular case of a vector bundle E provided with the
canonical structure of an affine bundle. This affine bundle is associated with a
principal bundle, and every linear connection I' on E is uniquely extended to an
affine principal connection on E. Hence, every afline connection I' on a vector
bundle E can be written as the sum

r=T+o (0.48)

of a linear connection I and some basic soldering form o,
We cite the basic differential operators involving a connection I' represented by
the form (0.42) and a soldering form e:
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(1) covariant differential (0.44) of a section e:
De = Dj'e = (8ye' — T 0 e)dz* ® 8,
(i1) Nijenhuis differential di- (0.23),
(ii1) codifferential &r (0.27),

(iv) curvature (0.25):

|
f\ = Edrl ¥
(v) torsion
Q=4 = dpo,
(vi) cotorsion
W = 15|'f?
(vii) soldering curvature
1
E= §d,,0’,
(viii) Ricci tensor
R=d.K:

We have the following identities:
(1) the first Bianchi identity:
drf) = dte = [K,0] = —d, K,
(ii) the second Bianchi identity (0.26);
rfra"t' =10
(ii) if I" =T + o, then

K'=K+e4+1Q, V=042

29
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(0.50)

(0.51)
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Chapter 1

CLASSICAL GAUGE THEORY

Differential geometry and jet bundle formalism provide us with the adequate
mathematical formulation of classical gauge theory [DAN, EGU, IVA 1983,
TRA 1984, MAR]. This formulation is based on the following propositions,

(1) Matter fields ¢ are represented by global sections of a vector bundle E asso-
ciated with a principal bundle P with a structure Lie group G (dimG > 0).

(i1) Principal connections on P are identified with gauge potentials which are
mediators of interaction between matter fields ¢.

(1ii) A configuration space of fields ¢ is the jet manifold J' E, and their momentum
space is the Legendre bundle Il over E.

(iv) A Lagrangian L of fields ¢ on J'E and their multimomentum Hamiltonian
form H on Il are required to be gauge invariant.

(v) In the case of spontaneous symmetry breaking with an exact symmetry sub-
group H C G, a global section of the quotient bundle P/H is treated as a
classical Higgs field.

By X, we further denote a world manifold which is assumed to be 4-dimensional,
oriented, and connected.

1.1 Geometric Theory of Classical Fields

In this Section, matter fields and gauge potentials are described by sections of
a matter bundle £ and a connection bundle C respectively. Configuration spaces
of these fields are jet manifolds J'E and J'C on which the first order Lagrangian
formalism is constructed.

Let us examine matter fields ¢ identified with global sections of a vector bundle

(E,x, X, F,G)
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over a world manifold X. This bundle is assumed to be associated with a principal
bundle
wp: P—= X

where the structure group & acts on the standard fibre 7' of £ on the left. We call
E a matter bundle.

In field theory, an atlas W = {U, ¢, } of the bundle E determines some reference
frame in the sense that, with respect to W, a section ¢ of E can be represented by
a family of F-valued field functions

bu(z) = Yul2)d(z) = ¢'(2)v;, z €Uy,
d(x) = ¢'(z)vi(z).
Here, {v;} is a fixed basis for the standard fibre F and
w(x) = ¥ (@),
are hases (0.14) for fibres E, which are called the bases associated with the atlas
¥, For instance, we have
oulx) = fo(2al2))
where {z.(r)} is the associated atlas of the principal bundle P and f, is the F-
valued equivariant function on P corresponding to ¢.
Given coordinates (v') on the standard fibre F of I and a bundle atlas ¥, the

vector bundle E is provided with linear bundle coordinates (z*,y') (0.2) associated

with W: _
v'(y) =vioy(y) y=y'(ulr(y)). (1.1)

These coordinates are adapted to the canonical vertical splitting (0.15) of the
vertical bundle V I because of the identification

Being endowed with this splitting, the vertical bundle VE is associated with the
principal bundle P.
Let TX be the tangent bundle over a world manifold X. An atlas

v = (U, vT)

of the tangent bundle T'X determines a world reference frame so that, given a fixed
basis {t,} for the standard fibre T = R4 of T'X, the frame

{ta(2)} = (W5 (=) "}, z€U,, (1.2)

associated with the atlas %7 is erected at a point z € X.
The structure group of the tangent bundle T'X is

GlL,=GL*(4,R).

_———_
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The principal bundle LX associated with T'X is isomorphic to the bundle of linear
frames, i.e., ordered bases for tangent spaces 7:X. Namely, one identifies an
element ¢ € G L, with the frame {g’t)} where g} is the matrix representation of
g on T. Given an atlas U7 associated frame functions (1.2) then represent local
sections zT(z) of the principal bundle LX which are associated with the atlas ¥7.
By

V" = {U., (@) = 1), },

we therefore denote atlases hoth of tensor bundles and of LX.
As distinct from other bundles over X with the standard fibre R*, atlases of
the tangent bundle are equivalent to a holonomic atlas

‘yT - {Unr'l{’z = (,\'«).}
correlating with some coordinate atlas

q’x - ‘{U--u ):x}

of the base manifold X. The associated holonomic basis vectors

are tangent to coordinate curves in X. The associated bases for cotangent spaces
17X are {dz"}. The associated bundle coordinates on 7'X are the induced coor-
dinates (z*, 2*).

For the sake of simplicity, we further choose an open covering {U,} of X which
is the same for bundle atlases ¥, W7 and coordinate atlases Wy of X.

Given an atlas {z.}, the principal bundle P is endowed with the canonical bun-
dle coordinates (z*, p™) (0.17). For instance, let f; be an equivariant function on P
corresponding to a section ¢ of the associated bundle E. In the coordinates (0.17),
we have

P"(2:(2)) = a™(1g) =0,
dx(x) = fo(ze(x)) = fu(2",0).

Let A be a principal connection on the principal bundle P and A be its connec-
tion form (0.45). Given the associated principal connection A on E, the covariant
derivative

D.g=71D¢: X - VE

of a section ¢ along a vector field 7 on X represents a section of the vertical bundle
VE. Because of the canonical vertical splitting (0.15) of VE and the canonical
isomorphism T'F' = I, this section is determined by the F-valued equivariant
function

™1(fs).
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on P where
1 (p) = 7(xp(p)) A(p) € P(P)

is the horizontal lift of a vector field 7 on X. Given associated atlases ¥F and ¥,
we have the following coordinate expressions:

T = 1%(2)8,,

™ = 74(z)(8, + A} (P)n),

D,¢e(z) = () Dude(x),

D,o.(z) = (8 fo)(a*,0) = (8, + A} (2)8n) fe(2*,0)
= (8 — AL (x) I ) (7).

For the sake of simplicity, we here use the formal relation
O fa(a*,5™) = Ous(expl—p" L) fo(2*,0) = ~In fol", 7).
The covariant differential (0.49) of field functions ¢, hence reads
Dy = de* @ (8, — A™(z) ] ) ()

where B
Ay = AM@)lpde* = (2,)"A (1.3)

is the local connection 1-form. Its coefficients A" (z) are the coefficients of the
associated principal connection (0.46) on E:

Ay (y) = AR () In0
D = (y}, — AlMz) 'y ydz* @ vi(z)
where, given the coordinates (1.1) on the bundle E, (z#,y',y},) are the adapted

coordinates on the jet manifold J'E.

Remark. Since g is the left Lie algebra, generators I, (y) of the group G acting
on the standard fibre I on the left coincide with —J,,(y) where J,, is a basis for

a.

Let us recall that principal connections on a principal bundle P with a structure
group G are represented by G-equivariant sections

P J'P

of the jet bundle P*. As a consequence, there is 1:1 correspondence between
principal connections A on P and global sections A of the affine bundle

C=P%G=(J'P/G— PIG = X) (1.4)
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modelled on the vector bundle
C=T"X@V°P. (1.5)

We call € the connection bundle.

Remark. Sections of the bundle VEP are vertical vector fields on P invari-
ant under the canonical action of G on P on the right. This bundle is associated
with the principal bundle P. Its standard fibre is the right Lie algebra g of right-
invariant vector fields on (7. The structure group G acts on this standard fibre by
the adjoint representation. Fibres of the bundle VP therefore fail to be canon-
ically isomorphic to the standard fibre in general. Global sections of the bundle
VEP form the infinite-dimensional Lie algebra g(X) called the gauge Lie algebra.

Given an atlas {z,} of P, the bundle VEP is provided with the associated
bundle coordinates (z#, k™) such that right-invariant vertical vector fields

u(p) = p™(2(2)9)0m = p™(24(2))ad g7 ()
on P are represented by sections of the bundle V& P;
uc(:‘.] = k™(x)lm = p" (24(2)) I

where {1,,} is a basis for the right Lie algebra . The corresponding bundle coor-
dinates on C are (2%, k'). A section A% of the bundle C' then has the coordinate
expression

(k0 A%)(2) = A (2)
where AT'(z) are coefficients of local connection 1-form (1.3). In gauge theory,
sections AC are treated as gauge potentials.

Remark. Recalling the contact map (0.31), we may represent a section of the
affine bundle (1.4) as the form (0.42):

A: X - T"X®TC°P,
A€ = dz" @ (8, — A™(z)I).

A finite-dimensional configuration space of matter fields ¢ is the jet manifold
JIE.

A configuration space of gauge potentials is the jet manifold J*C. The affine
bundle € admits the cananical splitting

J'C =0y §C-=(SPIG) @ (AT X @VePp) (1.6)
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where C is the afline bundle modelled on the vector bundle
C,=VT'X@VeP (1.7)
[MAN 1985]. Local coordinates
(2" K 85 FYL) = (2%, K K + kS, K — kY, — c:,kxk:‘) (1.8)
on J'C are adapted both to the submanifold C'y and to the submanifold
0= =6 (AT*X @ VEP).
Here, ¢ are the structure constants of the group G.

Remark. To get the splitting (1.6), one can use the monomorphisms (0.39)
and the canonical isomorphism of J2P/G to J'C.

Projection pr, of the splitting (1.6) defines the fundamental form
F: J'C »AT"X @ VOP,
1
F= é-(k:\ — ki — ERkYEL)da? A de* © L. (1.9)

For instance, if A is a principal connection on P, its curvature (0.50) is given by

the expression
f,[ =Fo leC_

Note that, to construct gauge invariant Lagrangians of gauge potentials, one
uses only the form (1.9), whereas the form

S: 'C -0y
is defined by gauge conditions (Section 1.3).
Let us consider the first order Lagrangian formalism on the configuration spaces
JYE and J'C' of matter fields and gauge potentials. We further assume that X is

a n-dimensional manifold endowed with a world metric g.

Remark. By a world metric, we call a fibre metric on a world manifold X.

A first order Lagrangian is defined to be a morphism

L: B =A T°X.
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In the adapted coordinates (z*,y*,4}) on the jet manifold J'E, a Lagrangian L is
expressed as a horizontal form on J'E:

L= L(z* ¢, )}V = Lw (1.10)
where £ is a real function on J'E, V is volume the form (0.20) and
w=dzM AL, Ads,

We call
L= Ly/lg]

a Lagrangian density.
The following objects are usually associated with the Lagrangian (1.10).

(1) The Legendre morphism

One calls the linear bundle
m=A T"X@TX QV'E (1.11)

over E the Legendre bundle. This is provided with the so-called standard
bundle coordinates (z*,y', p}) such that

soxp: Il— B — X,
romy (2, y',p) = (&) = (27). (1.12)

The Legendre morphism
L: J'E =11

is defined to be the fibre derivative of L given by the coordinate expression
(2" v',p)) o L = (&5} = x(w) = B}L). (1.13)

So, the Legendre bundle (1.11) makes the sense of a finite-dimensional mo-
mentum space of fields.

(i1) The Poincaré-Cartan form

The Poincaré-Cartan form is defined to be

O=L+K: I'E >ATE,
K =r2(0,4dy') A wy = m}dy* Awy — mdyiw,
O =7}y Awy — (m}y} — L)w (1.14)

where the form w; is given by expression (0.19)

i
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(i) The Euler-Lagrange operator
The Euler-Lagrange operator is defined to be the bundle morphism

E(L): J*E A T"X AV*E,
E(L) = (8L — dxw))dy’ Aw = §;Ldy* Aw, (1.15)

where dy are the total derivatives (0.37) and operators
b; = 0, — d,0}
o are called the variation derivatives.

' Given a Lagrangian L and the jet prolongation j'e of a section e of the bundle
l. E, one can define a familiar Lagrangian form on X:
-4 L(e): X =A T°X,
L(e) = (j'e) L = L(z*, ¢'(x), Dre'(z))w.

The corresponding action functional reads

S(e) = fN L(e)

where N C X is a compact n-dimensional submanifold with (n-1)-dimensional
boundary @N. A section e of the bundle E is called critical if, for any N, the
action functional S(e) is stationary at e. It takes place if and only if a section e
satisfies the equations

(77e) [udE(L)) =0 (1.16)
for every vertical vector field u on E. Tn the adapted coordinates, these equations
take the familiar form of the Euler-Lagrange equations

aL(e) _ 5 OL(e) _
Det Noe

(%e)"[6:L] = 0. (1.17)

Given a Lagrangian L, one can derive the Euler-Lagrange operator (1.15) from
the canonical splitting of dL:

dL = £+ A,
£=)dL, M(A)=0, (1.18)

where the morphism A" is defined as follows.
Let & be a morphism

e JNE AT XQ®V"J'E,
e =w® (eidy’ +e}dyl),
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where ¢, €/ are local functions on J'E. The morphism A" is expressed as
Ae: PE A T"X @ V*E,
Ne=w® (6 —ded)dy'.
For a Lagrangian L, we then have
dL: J'E—AT"X AV*J'E,

dL = (9:Ldy' + M Ldyl) A w,
A\dL = 8L = E(L),

where we introduce the variation operator
§=ANd=dy'R86,.

The Euler-Lagrange operator (1.15) is equal to zero if the Lagrangian (1.10) is
the horizontal differential:

L =dya=dya'w
where the operator dy is given by expression (0.38) and
o = &My (1.19)
is some horizontal (n-1)-form on E. We have
E(L)=6L = ddpya=0.

Conversely, let us suppose that
E(L)=0.

Then, there exists local horizontal form (1.19) such that
L = dya.

In field theory, Lagrangians are usnally required to be gauge invariant. There
are diflerent types of gauge transformations. We discuss them in the next Section.

1.2 Gauge Transformations

We have assumed that a matter bundle F over a world manifold X is reduced to
a bundle associated with a principal bundle P with some structure group G acting
on the standard fibre F of E on the left. In this case, one may examine gauge
transformations corresponding to the group &G and may require Lagrangian (1.10)
on J'E be invariant under these transformations.
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There are two main types of gauge transformations. These are atlas transfor-
mations and associated principal morphisms.

At first, we consider gauge transformations associated with internal symmetries
which do not concern the tangent bundle 7'X over a base manifold X.

In field theory, atlas transformations are treated as transformations of reference
frames. In virtue of the above-mentioned assumption, we restrict our consideration
to the atlases W = {U,, 1.} of the bundle E which are associated with atlases

VP = (z.(2),2 € UL} (1.20)

of the principal bundle P. In this case, transition functions of ¥ are G-valued.
If an open covering {[/;} is fixed, atlas transformations

VP = {z,(2)} = ©7F = {2l(2) = z(2)g;'(2)}, 9« € G(Uy), (1.21)

form the group
G({U =[G

where G(U,) is the group of G-valued functions on U,. All atlas transformations
form the group

Gi(X)a = C({Us} ax)

where {U.},., is the covering for the maximal atlas of the principal bundle P.
Transformations (1.21) do not alter sections ¢(z) of the bundle E, but change
their representation by field functions ¢.(z):

é;(I] - f’{B’L(I)) :fd(Z,‘[I)g‘:l(In —. g‘{_r)f‘(z‘(:)}
39,‘(:)43‘(:], z € U,

Associated principal morphisms ®p of the bundle £ are the bundle mor-
phisms (0.7) induced by principal isomorphisms (0.6) of the principal bundle P
over the identity morphism of its base X. In contrast Lo atlas transformations, the
morphisms @ alter sections of £:

Jo(p) = folp) = falpf 7 (p))-

At the same time, given some atlas (1.20), isomorphism (0.6) defines the new
atlas
vF = {ze(z) = z,(x)f."(z‘(:c)), z € Uy}

‘with the same transition functions. As a consequence, given an associated atlas

b= ‘{Unswn}

~of B, there are the following local relations

(Ve 0 ®p 0 d)(2) = (fulza(7)) oY 0 8)(x), =€ Uy, (1.22)
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between the associated principal morphisms and atlas transformations. The gauge
group G(X) of principal isomorphisms differs from the group G(X) 4 of atlas trans-
formations. For every bundle chart (Uy, "), we however obtain

G(Ux) = G(Ux) - (1.23)

The associated principal morphisms @ have the jet prolongations j'®g. One
can require Lagrangian density (1.10) be invariant under the morphisms
jl¢5=jlﬁn ﬁn:ﬁEIEKJ(X}I
for all global sections s of the principal group bundle P. Moreover, we can replace
global sections of the bundle P by its local sections and, in turn, by their jet

prolongations. In other words, let us require a Lagrangian dcnsnty L be invariant
under the jet prolongations

i'Pg: '"Px J'E— J'E
of the canonical morphisms Pg (0.5), that is,

L(w) = L(;" Pg(q, w)) (1.24)

for all elements w € J'E and ¢ € J'P.

This gauge invariance condition is sufficient for Lagrangian (1.10) to be invari-
ant under the associated principal morphisms.

On the other hand, the gange invariance condition (1.24) is equivalent to
the invariance of a Lagrangian density £ under atlas transformations. Indeed,
let (Uy,vc) be a bundle chart. In virtue of the relation (1.22) and the isomor-
phism (1.23), there exists a gauge transformation g, so that

f,{z,{.‘r)} = gx('r)| re [.TM
3'(gx 0 ¥u)(w) = j' Po(w)

for every local section s of P on U, and vice versa.

Comparing atlas transformations and principal morphisms, we may say that
the former provide us with more opportunities for taking into account global topo-
logical characteristics of bundles. In particular, if a structure group of a bundle
E is reducible to its subgroup H, one can always choose a bundle atlas with H-
valued transition functions, whereas principal morphisms can not change transition
functions of bundle atlases.

The necessary condition of the gauge invariance of Lagrangian L (1.10) consists
in the fact that L must be brought into zero by generators of infinitesimal principal
morphisms. These generators are associated with certain vertical vector fields on
the bundle I as follows.
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Let us consider principal isomorphisms @' € G(X) of P which form a flow

d'(p) = c(p,1),

=~ ulelp ), 0 =p,

along some vertical vector field up on P. Note that, since isomorphisms ¢! are
G-equivariant, the field up can be identified with a global section of the bundle
VEP,

The principal lSOlTlOl'phlSlTlS @' form a 1-parameter Lie subgroup of the gauge
group G(X) whose generator is a generator of the corresponding infinitesimal prin-
cipal isomorphisms. The bundle VEP is isomorphic to the quotient of the vertical
bundle VP by the action of the group bundle P on itself on the right. It fol-
lows that there is 1:1 correspondence between generators of infinitesimal principal
morphisms and right-invariant sections of the bundle V P.

Remark. A suitable Sobolev completion of the gauge group G(X) is a Ba-
nach Lie group. Its Lie algebra is a suitable Sobolev completion of the gauge Lie

algebra @ [MAR].

The principal isomorphisms ®' induce the associated principal morphisms (0.7)

of the bundle F.
Given a point y € E, let us consider the restriction of the canonical morphism

ﬁg to N N N
Py: P — Pely, Po) C E;,

and the corresponding tangent morphism

(B).: VP, = VE,, =(y)=z,
(B,)e: Vi, P V,E,

w(y) ==z,

where 1, is the unit element of the group P.. Every local right-invariant section
sy of the vertical bundle V P induces a local vertical field on the bundle E:

uay) = (B)o(sv(1,) € VLE,  =(y) ==z

We call it a principal vertical vector field.

There is 1:1 correspendence between the local principal vector fields and the
generators of local infinitesimal principal morphisms of the bundle E. We call
them the gauge generators.

In order to define the gauge generators acting on Lagrangian (1.10), we can
?;mt.rucl the lift (0.35) of principal vertical vector fields onto the jet manifold
JEE:

Wy = updi + (Oaul + ¥A9iup)d;
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The corresponding gauge generators act on R-valued forms and tangent valued
forms on J'E as the Lie derivatives (0.24) given by the [F-N] brackets:

Ly, ¢ = dz,¢ = [, 8] Fn.
In particular, the gauge generators act on Lagrangian L (1.10) by the rule:
Lg,(L) = [ag, Llrn
= (uid; + (Byuj + y}8,u}) 0} ) Lw. (1.25)

If a Lagrangian density £ satisfies the gauge invariance condition (1.24), we
have

Lg,L=0 (1.26)

for all principal vertical vector fields u;. This equality makes the sense of some
conservation laws and provides us with certain conditions on the constitution of a
gauge invarianl Lagrangian,

The general approach to constructing gauge invariant Lagrangians consists in
manipulating objects with linear gauge transformation laws:

(i) a vector bundle F;
(ii) the covariant differential (0.44)

D(w)eT°X@VE, we J'E,

and the integrable vertical splitting of VE;
(iii) a G-invariant fibre metric
af: X -—+\=f E"
in the bundle E.

With respect to the atlases ¥ of £ associated with atlases (1.20), a fibre metric
a® however takes a canonical G-invariant form and, therefore, this is not a field
quantity in general.

In the case of unbroken internal symmetries, a total Lagrangian L of gauge
theory is defined on the configuration space

J'E x J'C.
X
Let us denote the coordinates on this configuration space using the condensed

notations '
(tﬂlqA!q:)! 1" = (y't'k:‘}
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and let us calculate Lie derivative (1.25) of a total Lagrangian L. As a consequence
of the splitting (1.18), we obtain

Lg, L = [uj84L + dy(uf 03 L)}w = 0. (1.27)
A local principal vertical field u, on the bundle E x x €' takes the coordinate form

u, = [up(¢®)a™(z*) + upM¢P)0ra™(2*))84
= a™(2") ' ;97 0; + (Ora™ (2") + cikia™ ()8 (1.28)

where o™ (z#) are arbitrary local functions on X. Substituting this expression into
equality (1.27), one reproduces the familiar Noéther identities for a gauge invariant
Lagrangian:

uA4L + d, (uAd4L) =0,
w L + d‘,(u:‘)‘aﬁﬁ) -+ uif}‘iﬁ =/l;
u oL+ udarL = 0.

Let g be some section of the bundle E xy C'. Let ns rewrite the conservation
law (1.27) in the form

(7%q)"[ug6aL] = (3%¢)"[dr(u] D)L))

and integrate this equality over some compact submanifold N € X with 3-dimen-
sional boundary dN. Since functions ofx) in expression (1.28) are arbitrary, we
can choose

a™(z) =0, d.a™(z) =0, x € dN.
In this case, the integral equation derived from equality (1.27) results in the relation
(520) [utaL ~ dy(uA 8,4L)) = 0. (1.29)
This relation makes the sense of the constraint on the variation derivatives
(7%0)°[8aL]

which therefore fail to be independent.
A total Lagrangian of gauge theory is the sum

L= Lim) + Lay

of a matter field Lagrangian L, and a Lagrangian L a) of gauge potentials.

We here give an example of scalar matter fields possessing only internal sym-

‘metries, Let af be a G-invariant metric in the standard fibre F of a matter bundle
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and I' be a connection on E. The familiar scalar field Lagrangian L) and the
corresponding Euler-Lagrange operator read

1 ) . . . o
Limy = 5lo™aB(y, ~ T2 ~ T(0) — m*afy'v' ] lolw,
E(L) = —aB[my* + 9 (4}, — viO,TL ()W lolw @ dv,
TLy) = 1 9 (1.30)

Remark. For the sake of simplicity, we do not include the conformal term

where R is the scalar curvature associated with a world metric g.

The conventional Yang-Mills Lagrangian L,y of gauge potentials on the jet
manifold J'C provided with the coordinates (1.8) is given by the expression

1 ’
L= Eugng"“ga fﬁf:,\/aw (1.31)

where a@ is an adjoint-invariant metric in the Lie algebra @ and €? is a coupling
constant.

Remark. If (7 is semisimple,
u‘fln = Cbmkc:b'
If G is compact, there is a basis {I,,} for g such that

a,,':':_n = =28

Now, let us consider world transformations.

Transformations of atlases of the tangent bundle T'X form the group GL4(X)4
which contains the subgroup of holonomic transformations accompanied by the
corresponding transformations of coordinate atlases:

dz'™
O = i o
2 = xH(z) = 2 = "(z). (1.32)

Though nonholonomic atlas transformations are admitted, the holonomic rel-
erenice frames are preferable in a sense. In contrast with other bundles over X,
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elements of the tangent bundle TX play the role of the operators of derivatives,
and sections of TX form the sheaf of Lie algebras T(X). As distinct from the
holonomic basis vectors d,, the components @, of a nonholonomic frame fail to
commute with each other and so, they can not be considered as elementary ob-
jects. For example, one may provide the jet manifold J'E of a bundle E with the
local coordinates (2#,y', y.) associated with a nonholonomic atlas of T'X:

yily) = yi(ite) = e’

On the 2-jet manifold J*E, we however can not define such coordinates in the
intrinsic way because ¥}, =y}, but

3«3},&‘ # 65&, c‘.

To construct Lagrangian (1.10), we need a tetrad field & (Section 2.2) or a
world metric ¢g. In contrast with a fibre metric a® in a bundle E, metric functions
of g have no a GLg-invariant form and take a canonical form only with respect
to nonholonomic atlases of 7'X" in general. It follows that, in gauge theory of
world symmetries, a world metric ¢ is a dynamic variable and a total Lagrangian
is invariant under atlas transformations (1.32) if it is represented by the scalar-
valued form (1.10).

In view of the canonical algebraic structure of the sheaf 7(X'), bundle mor-
phisms of T'X must be restricted to those which yield the isomorphisms (®y), of
TX tangent to diffeomorphisms ¢ x of X,

In the combined case of internal and world symmetries, one can consider the

group Diffx P of general principal isomorphisms

®p(pg) = ®p(p)g, PEP g€QG. (1.33)

of a principal bundle P. They are projected to diffeomorphisms @y of a world
manifold X and are accompanied by the tangent isomorphisms (®x). of tensor

bundles.

Remark. There can exist diffeomorphisms of X which fail to be projections
of general principal isomorphisms of P.

General principal isomorphisms of P (1.33) induce associated general principal
morphisms @5 of an associated bundle E by rule (0.7).

Let @' be general principal isomorphism (1.33) of the principal bundle P which
form a flow along some nonvertical vector field up on P projected to a vector field
ux on X. The isomorphism ®' induce the general principal morphisms Pl of the

‘associated bundle E which form a flow along some projectable vector field u (0.11)

on F projected to the same vector field uy on X. We call u a principal vector

field. By analogy with principal vertical vector fields, we can associate a principal

vector field with a generator of some infinitesimal general gauge transformation.
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In order to define such a generator acting on Lagrangian (1.10), we construct
the lift (0.35) of a principal vector field u on the bundle E onto the jet manifold
J*E: _ _

7= u'oh + u'd; + (D' + yi0u’ — y,0w*)d;.

To calculate the Lie derivative Lg(L), let us single out the vertical component
of the field @. We can use the morphisms #; and 0; given by coordinate expres-
sion (0.36). They yield the canonical decompasition.

=1y + 1y (1.34)

of the vector field 7 into the vertical (VJ'E)-valued vector field @y and the hori-
zontal part Ty:

iy = (u' — yiu')d; + (Byw' + yidiu’ — yL o — i u*)d;,
iy = w0y + v + 1,0!) = u'd,. (1.35)

Given the splitting (1.34), the Lie derivative Ly along the vector field @ acts
on Lagrangian (1.10) by the rule

Ll = (Lg, L)w—+ [y, L]FN. (1.36)

Let us assume that a Lagrangian L is invariant under the principal morphisms
and world atlas transformations, We then obtain that

Ly, L=10 (1.37)
and that the Lie derivative (1.36) is reduced to the horizontal differential
LyL = [y, Llpy = di(u*Lw = dp(TyIL)
for each principal vector field u. Moreover, one can check that
LzE(L) = E(LgL).

It follows that a principal vector field u is a generator of symmetry of the Euler-
Lagrange operator £(L):
LzE(L) = 0.

However, let us emphasize that expression (1.35) for a vertical part of the lift
of a principal vector field is formal and its substitution into equation (1.37) makes
no sense if we have no canonical form of a principal vector field. To solve this
problem, we may construct the lift of a projectable vector field on the bundle £
onto the infinite order jet space J™E. In this case, a principal vector field reads

u=uy+uy= u +y16.- + .0+ 1%,

3 kv MoA
JFup = Z(JL“B].\,...,\,H." e
k=0

(e = Ay oo g1ty (1.38)
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where u, is some principal vertical vector field. Here, we take into account the
canonical isomorphism

B: VJ*E - J*VE. (1.39)
For finite order jet calculations, we can use the formal projection of the field

(1.38) on the finite order jets. In particular, the relation (1.37) then is reduced to
the gauge invariance law (1.26).

1.3 Multimomentum Hamiltonian Formalism

The relation (1.29) shows that, gauge theory possesses constraints. To ex-
amine field systems with constraints, we apply the multimomentum Hamiltonian
formalism [KOL, KRU] generalized to degenerate systems [ZAK].

We here assume that a world manifold X is n-dimensional. In the case of n=1,
the multimomentum Hamiltonian formalism is reduced to the familiar Hamiltonian
formalism.

Given a bundle E, let us consider the Legendre bundle IT (1.11) and the com-
mutative diagram

I
o'\t
JE = I1

where sg is the global zero section of the Legendre bundle IT and ¢ is a bundle
morphism of Il to J'E over E. Then,

Te=%osy: E—=J'E

is some connection on F associated with ®, We call & a momentum morphism.
A momentum morphism can be canonically identified with the vector-valued hor-
izontal 1-form

od: Il = T°X %\ TE

on IT which we denote by the same symbol ®. In the standard coordinates (1.12)
on II, we have

®(p) =da* @ (0x + ©\(2V,v',p})D),
Fo(y)=dz* @ () + ®\(2*,¥',0)3).

We use p to denote elements of the Legendre bundle II. By I1', we further
denote the bundle I1 — X.

Given the Legendre bundle 11, there is the canonical inclusion

N=AT"X®TX QVE K reerx
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On the image of the Legendre morphism (1.55), we have

1
Hslg = Hy, = pliVdkY Aw, + EPEA]CT:’:?L‘L“

2
E
— TG 9w araPh P 9] @,

Dyp*Y(z) = 0,
k™ + 8, kT = —=S\(2).

The last equation represents the gauge condition.

1.4 Geometry of Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is the quantum phenomenon. In classical field
theory, spontaneous symmetry breaking is modelled by a classical Higgs field. In
geometric terms, the necessary condition of spontaneous symmetry breaking con-
sists in reduction of a structure group of a principal bundle to its exact symmetry
subgroup [IVA, TRA 1984, NIK]. We assume that a world manifold X satisfies the
necessary global topological conditions for such reduction to take place.

Let H be a Lie subgroup of a structure group G of a principal bundle (P, 7p, X,
(). One says that the structure group G of P is reducible to H if there exists a
reduced subbundle (P*,xp, X, H) of P with the structure group H.

The structure group & of a principal bundle P is reducible to H if and only if
there is an atlas

W= {z}
of P with H-valued transition functions. Given a reduced H-subbundle P*, each
atlas " = {z,} of P with the local sections z, taking their values in the total
space P" represents such an atlas ¥*,

Remark. Different reduced subbundles P* and P*' of a principal bundle P are
not isomorphic to each other in general. For example, if P is trivial, its reduced
subbundle P* fails to be trivial in general.

We further assume that H is a closed subgroup of G. Then, the structure
group G of P is reducible to H if and only if there exists a global section h of the
associated bundle

(B, 7oy, X,G,G/H)

with the standard fibre G/ # on which the group G acts on the left. Its total space
is the quotient
= FP[H.
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Given a reduced subbundle P*, the corresponding section h is defined by the
relation

npsP* = h(rp P")

where 7py is the canonical projection of P onto P/ H. There is 1:1 correspondence
between the reduced H-subbundles P" of the principal bundle P and the global
sections k of the bundle X.

Remark. A closed subgroup H of a finite-dimensional Lie group is a Lie
subgroup. We [urther assume that dim H > 0.

We call £ a Higgs bundle and its global section h a Higgs field. We use o
to denote points of ¥ (and points of the quotient G/H if there is no danger of
confusion).

In comparison with matter fields and gauge potentials, Higgs fields possess the
following features.

(i) A group G acts transitively on the quotient space G/H, that is, for any two
points o and ¢’ of (7/H, there exists an element g € G so that

a' = go.

It follows that, given an atlas ¥* of the bundle £, the field functions (¥Zh)
of a Higgs field h admit the decomposition

(WEh)(2) = hulz)oo,  hulx) C G(UL), (1.57)

where oy is the H-stable center of the quotient space GG/ H. The fields h(z)
in this decomposition are called the Goldstone fields. In the case of internal
symmetries, they however fail to be dynamic variables because one can always
bring the field functions (1.57) to the H-stable form

(¥r*h)(z) = o0
with respect to the atlas W** associated with W*.

(i) Higgs fields fail to form a vector space or an affine space. At the same time,
for small Goldstone deviations of gy , we can write

(ﬁ:ﬂzh') () = hi(2)oo = exple(z)]oa = 00 + ()00

where £(x) are g-valued functions on U,. In the first order in deviations, the
functions

e(z) = e*(z)K, € g\h
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form a vector space in the sense that

exple(z)] exple’(z)]a & exple(z) + £'(z)) .

By K, we here denote the basis elements for the Lie algebra g which sup-
plement basis elements J,, for its Lie subalgebra §. In some cases, small

Goldstone deviations can form a vector space in the higher order in group
parameters.

Let H be a Cartan subgroup of G, that is, its generators J and K obey the
commutation relations

[(LJ]eb, [K.Kleh, [KJ]ea\h.

There is a neighborhood of the unit element 1 of the group G such that its
elements can be expressed as

exple® K,] expla™J,]. (1.58)

In the second order in £, we then can write

o o EBr o I o O
exple} K exples Koo ~ expl(ef +5) Kul exp(5e8e3 Ko, K)o
= expl(e] + €3) Kaloo.
It follows that, in the case of a Cartan subgroup H C G, small Goldstone deviations

form a vector space in the second order in group parameters. The representation
of the group G on ¢ however is nonlinear. It is given by relations

Ky: "Ke 5 °Ky= K+ Zc;.-[.i,. [ 2 E ) o 87K
i=1 .

- Zc,-[.}. [e*Kqya" ), ... a" L],
=1
aly= E C::‘-.1[2.l. . [!\,,,, & Ku], I ‘g“h’al,
i=1 -
Tz 62Ky —+ g'ﬂKn = 2Ztgi_|[’:;i [Jﬂ!Euh'g]‘ o ’th-a] (159)
=1

where coefficients ¢; are defined by the recurrence formula
n €
(1)l ?;"(n 1=

There are different types of spontaneous symmetry breaking. Here, we examine
the case when matter fields possess only exact symmetries. One faces this type of
spontaneous symmetry breaking in the models of so-called nonlinear realizations
[COL] and in the gauge gravitation theory (Section 2.2).
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Let matter fields ¢ be described by global sections of a vector bundle
wm BE—- X

with the structure group H and a standard fibre F on which H acts on the left.
Given a reduced H-subbundle P* of the principal bundle P and the corresponding
section h of the Higgs bundle £, we say that sections of E describe matter fields
in the presence of a Higgs field h if E is associated with the reduced H-subbundle
P* of P. We denote such a bundle by E* and its sections by ¢y.

The bundle E* is isomorphic to the quotient (P* x F)/H of the product P* x F
by identification of elements (p,v) and (pg,¢ 'v) for all g € H. A global section
¢y of E* is determined by a F-valued equivariant function f; on P*. The bundle
E" is provided with atlases associated with atlases W* of the principal bundle P.

Remark. Let E be a bundle associated with a principal bundle P and P* be
some reduced subbundle of P. If we restrict ourselves to atlases of E associated
with atlases W* of P, a bundle E can be regarded as the bundle

E*=E=(PxF)/G=(P"x F)/H

associated with the principal bundle P*.

Given the matter fields ¢, gauge potentials of these fields are represented by
principal connections A on P*. A principal connection A on the reduced subbundle
P" is uniquely extended to a principal connection A* on P by the rule

(ry)erdAM,, = 71(adg ")Al,, pe P, 7€TP. (1.60)

Obviously, the field k is parallel with respect to A", With respect to an atlas ¥*,
the local connection 1-form A" takes its values in the Lie algebra .

Matter fields in the presence of different Higgs fields h and h' are described by
sections ¢, and @, of the matter bundles E* and E" which are associated with
the different H-subbundles P* and P" of the principal bundle P. For instance,
the sum ¢y, + @5+ makes no sense. Moreover, a principal connection A on a reduced
subbundle P" is extended to a principal connection A* on P which fails to induce a
connection on a reduced subbundle P*#. 1t follows that matter fields and gauge
potentials which possess only exact symmetries must be regarded only in a pair
with a certain Higgs field and the totality of matter fields and Higgs fields can not
be represented by sections of the bundle product

Ex E
X

of the Higgs bundle and some matter bundle £. We describe the totality of ¢-h
pairs in the following way.
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The total space of the principal bundle P is the total space of the principal
bundle

TPy P-X
with the structure group H. We denote this bundle by PH,

Remark. If a principal bundle P is trivial, the bundle P¥ fails to be trivial
in general. .

Each reduced subbundle P* of P is the portion of P# over h(X) C ¥. Given
h, an atlas {z" (o)} of the principal bundle P¥ induces the atlas

{#"™(z) = <" (h(2))}

of the bundles P* and P. A principal connection A¥ on P¥ induces a principal
connection on P* which is extended to a certain principal connection A#* on P,
Note that

Afh 4 AHK
if h # h'.
Let
rex: B - %
be a P"-associated vector bundle with the standard fibre F. There is an isomor-

phism of the matter bundle E* to the portion

mes(h(X))

of E¥ over h(X). In particular, each global section ¢¥ (o) of E¥ defines some
global section

¢n(z) = (6" o h)(z)
of the bundle E*.
The total space of the bundle £ is the total space of the composite bundle

TEX = Tgx O WEe: EF D X (1.61)

which we denote by E. Its standard fibre is the total space Q of the bundle which
is associated with the principal bundle

mg: G— G/H (1.62)

and possesses the standard fibre F. So, E is not a vector bundle and this is not
associated with a principal bundle.

Remark. One can define an induced representation H'G of the group G on
the space Q, but such representation fails to be canonical and depends on choosing
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representers of the cosets 0 € G/H in G (see below). At the same time, action
of the group H on Q is canonical. Therefore, if we restrict our consideration to
atlases of E associated with atlases W* of the principal bundle P for some h, we
can regard the composite bundle E as the bundle E* associated with the principal
bundle P":

E=E" = (P x F)/H = ([(P* x G)/H] x F) |H
=(P*x [(G x F)/H]) [H = (P x Q)/H = E*.

The space ([(P"l x G)/H] % F) /H is the quotient of the product space P*x Gx F
by the equivalence relation

Ry (p.g,v) = (phy, by 'ghay by 'v),
peEPH ge@G, velF, h,hy€H.

The space (P* x (G x F)/H]) [ H is the quotient of P* x G x F by the equivalence
relation

Ra: (p,g,v) = (pha, hy' ghsha, by hy'v).

Given hg, hy € H, one can choose
hy = hy, hy = hshy,

and vise versa. It follows that the R;-equivalent elements of the product P*x G x F
are also Ry-equivalent, and vise versa.

Remark. Let the bundle (1.62) be trivial. The reduced subbundles P* of
the principal bundle P then are isomorphic to each other and, for any h, the
principal bundle P¥ is isomorphic to the pull-back (ryy)*P* of the bundle P* by
the projection 7z x. Given an atlas

b = {U“.;.:}
of P, the bundle P¥ can be provided with the pull-back atlas
W”‘ =5 {U:‘ E— E&(U‘).g{;f = d;:o ’%EX}

where 7yx is the bundle morphism (0.1) associated with mxx. Every principal
connection A on P* induces a certain pull-back principal connection on P¥ given
by the principal connection form (*gx)'ﬁ. With respect to the pull-back atlases
of the bundle P¥| this form is constant on fibres of the Higgs bundle £ and is
independent of vertical tangent vectors to X. At the same time, the principal-
associated structures E* and E* of the bundle E fail to be equivalent. Given the
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atlases " and W* of the principal bundle P, there exists no atlas of the bundle £
which would be associated with the union atlas W* U " of P possessing G-valued
transition functions. Thus, the bundle /£ has no canonical structure of a H-bundle.
For instance, the bundle

P=P=L-X (1.63)

is not isomorphic to the principal bundle P. In particular, the canonical ac-
tion (0.4) of G on P fails to keep the fibration (1.63),

For a global section h of the bundle £ and a global section ¢* of the bundle
E¥ | their composite -
d=¢"oh (1.64)
is a global section of the bundle E. Conversely, each section ¢ of the bundle E is
represented by some composite (1.64). In particular, the sections (1.64) with the
same projection )
h=rmggod
exhaust all sections of the bundle E*. We thus may describe the totality of ¢-
h pairs by global sections of the composite bundle E. Their configuration space

then is the jet manifold J'E of the bundle £, and their momentum space is the
Legendre manifold

N=AT*XQ@TXQ®V'E. (1.65)

Since the bundle E fails to be associated with a principal bundle, it does not
admit an associated principal connection. Given principal connections on the bun-
dles E¥ and £, we however can construct a general connection

ME—J'E
on E by means of the canonical morphism
£.18 X SEH o B (1.66)
This morphism is defined by the relation
E(i2h, il 8™) = 32(8% o h)

for every section (1.64) of the bundle E. Let us write its coordinate expression.

Let ¥ = {z,} be an atlas of the principal bundle P and ¥¥ = {z¥} be an
atlas of the principal bundle P, We provide the total spaces £ and E¥ = E with
the bundle coordinates

L30=(z)0™), o™ (o) = (a™ o pf 0 2l )(),
E=E"3y=(2"0"y¢), v =@ o¢f)ly),
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where (z*) are coordinates on the base X, (a™) are parameters of the group G,
and (v') are coordinates on the standard fibre F'.

Remark. The coordinate o™ (o) of an element o € X are group parameters of
the representer (¢ o zF)(o) of the coset #E(o) in the group G. The c?ordma'tes
o™ on the Higgs bundle ¥ are bundle coordinates, but they are not associated with
any bundle atlas of ¥. We have

. PG

by the relation (1.60) instead of
.= G/H-G
by the relation (1.57).

Let us provide the jet manifolds J'E, J* E¥ and J'E with the adapted coor-
dinates
J'L3s=(a} 0" 0F)
JlEH Dw= (zA’amvy'ly.‘\!:y:nL
J'E> 9= (IA‘am1yl‘a;\‘§;).
In this coordinates, the morphism (1.66) is given by the expression
(e 0™y o, h) 0 € = (2%, 0™ ¥ o U oT +43).
To get this expression, we can use the canonical contact map 8, of the jet manifolds
S, J'EH and J'E onto affine subbundles of the bundles T*X @x TX, T°X @3
TE and T°X @x TE respectively. Then, the morphism (1.66) results from the
diagram
1y 1 ol . SO 8
J'ExJ'E (167)
a.l Ln,
(T"X @ TE) x (I"S @ TEM) 1" X @ TE
In adapted coordinates, this diagram rcads

(dz* @ (93 + 07 D)) J [dz* @ (9 + ¥30:) + do™ @ (Fm + yin)]
=dz* @ [y + oF O + (¥3 + X' 7, )
Now, let I’ and A¥ be associated principal connections on the bundles X and
EY respectively. They have the coordinate expressions
I'=dz* ® (8) + I (0)3nm),
AH = dz* @ (Oy + AY()8)) + do™ @ (0 + AL (y)30).
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From the diagram (1.67), we then obtain a connection I on the bundle E:
FTE=¢ ((l"o 7ee)E? x .4”E”) .
[ = dz* @ [0s + TT(mex(v))0n + (AL (W) T (xex(y) + AL(y))B].
This connection fails to be an associated principal connection because of the term
A (W)Y (7Es(y) de* @ ;. (1.68)
This term disappears if the connection A” on E¥ is a pull-back connection. If

the bundle (1.62) is no trivial, the bundle E¥ however fails to admit a pull-back
conneclion.

Gi\_'en a connection ' on F, one can define a multimomentum Hamiltonian
form H on the Legendre manifold IT (1.65).

Let the Legendre bundle IT — E be provided with the local standard coordi-
nates (2%, ¢, p2) where we introduce the condensed notation

="y p=0ka)

Remark. To define the local coordinates p},, one can use the local morphisms
aoVzl: VES VP — Pxag

where a denotes the canonical trivial vertical splitting (0.16) of the principal bundle
P and V¥ are the vertical tangent morphisms to the local sections zH associated
with an atlas W# of the principal bundle PY.

The multimomentum Hamiltonian form (1.44) associated with a connection T
on the bundle £ reads

Hy=T10: 1 A T*E,
Hr :p:dq“ A Wy — p:_‘gw.
Other multimomentum Hamiltonian forms on I1 then can be written as
H= Hr — Hw (1.69)

where Hw is some exterior horizontal n-form on the bundle IT*.
Given a multimomentum Hamiltonian form H, the Hamiltonian equations for
a local section (¢*(z),p}(z)) of the bundle II' read

duph = —plal§ — M,
a.¢" = f; + H.
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For a matter field, the Hamiltonian equations take the form
Al = —pjoiTy - M,
Ay = f'; + M.

These equations differ from Hamiltonian equations for matter fields in the pres-
ence of a background Higgs field h because of the term (1.68) in the connection
fL This term is treated to describe the additional contribution of Higgs fields A
into the covariant differential of matter fields. Let us note that, to construct mul-
timomentum Hamiltonian form (1.69), one must require the Hamiltonian densi!.-y
H be invariant under gauge maps induced by gauge morphisms of the bundle £.
Since the bundle F is not associated with a principal bundle, gauge morphisms of
E fail to be principal morphisms in general. For instance, we have two types of
atlas transformations. They are induced by transformations of atlases ¥” of the
principal bundle P and transformations of atlases W of the principal bundle P¥.

Gauge bundle morphisms of the bundle  are associated general principal mor-
phisms of the bundle £¥ which keep the fibration (1.61) of the bundle E. They
are generated by general principal isomorphisms @ of the principal bundle P%
which are projected to principal morphisms of the bundle Higgs . For example,
principal isomorphisms (0.6) of the principal bundle P are also general principal
isomorphisms

op: P - P
o = npe(p) = 7pulpgn),  gu € H,
o' = wpe(pfilp)) = wpe(pgnf(pan)) (1.70)

of the principal bundle P# which are projected to associated principal morphisms
of the Higgs bundle ¥ and to the identity morphism of the base X. The isomor-
phisms (1.70), in turn, yield associated general principal morphisms of the bundle
E™ which are also gauge bundle morphisms of the composite bundle E.

For instance, let the bundle P¥ be trivial and z¥ (o) be its global section.
Given a global section k of the Higgs bundle ¥, we have a global section

=(z) = 2 (h(z))

of the bundle P. Moreover, for every o € X, there exists an element g, € G such
that

() = 2(mex(0))gs-
Given a global section z(r) of the principal bundle P, one can define the embedding

G3g— 9, €G(X)

where
b, P, =z2(2)CG — z(:r:)gG. g€ G.
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Given a global section 2z (o) of £, we can write
&: PH=:M(a)H = 2(2)g, H — 2(z)gg. H
= 2(2)g0(95' 990, H = 2" (o' )gu H, z =myx(o),
where
o' =mex(9¢.),  9n = g;'99, € H.

This is expression of the induced representation 117G of the group G on elements of
P! when representers of the cosets o € £ are chosen to be elements z¥ (o). This

representation can be transferred to field functions of sections of the associated
bundle E¥:

9:9"(0) = fo(z" () = fo(z"(0")an) = g5' 6" (¢")
and to field functions of sections of the bundle I
¢ = ¢"(a(2)) = #(z) = g5' 8" (o' (x)).

Remark. Let us be given a group G, its subgroup /1 and a space F on which
the subgroup H acts on the left. Let f(g) be F-valued functions on G satisfying
the following condition

flogw) = gi' [(9),  gn € H. (1.71)

The induced representation H'G of the group G [MAC] is defined to be the action
of G on f(g) by the rule
G3g" f(g)— f(g'g)-

In accordance with the relation (1.71), the induced representation can be defined
on F-valued functions f(o) on the quotient space G/H. Given a global section
z(o) of the bundle (1.62), such representation reads

G3g: flo)=f(2(0)) > f(92(2)) = [(2(c")n)
=gy [(2(0") =95 [(c'), ge€H,
where
o= ra(g2(o)).

Obviously, this representation depends on option of representers z(¢) € G of the
cosets o € G/ H.

Remark. The above-mentioned models of nonlinear realizations [COL] exem-

plify the induced representations when / is a Cartan subgroup of G and f(o'.) are
constant functions

f(o) = (o,v).
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For the coset class o of each element (1.58), one chooses the representer
exple® K]

and provides o with the coordinates {¢}. The action of the group G on (e*,v)
then is defined to be

G 3g: (e%v) = (£, expla”Ju]v)

where )

g exple® K, = exp[e” K,] exp[aJ,]
and parameters £ and a" are given by relations (1.59). In the second order in ¢,
we have

o St ¥ 8 a™ = &7,
o 1 o " v mo__ £ mo2y
Ky =8+ ﬁ(cf',,cﬁ‘ = 3¢D i 12" ™ = Senes

where ¢ are the structure constants of the group G.

Let us note that Lagrangian and Hamiltonian densities are usually invar-ia.nl.
under the gauge subgroup G(X) of general principal morphisms (1.70), but fail to
be invariant under all these morphisms in general. In this case, Goldstone compo-
nents of a Higgs field can not be completely removed by gauge transformations.
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Chapter 2

GAUGE THEORY OF CLASSICAL GRAVITY

The gauge gravitation theory is based on the geometric equivalence princi-
ple formulated in Introduction. There are two physical underlying reasons of this
equivalence principle. These are the Dirac fermion matter and the space-time struc-
ture. One attempts to unify them in the framework of the twistor theory [PEN].
We here do not discuss this problem. We start from Dirac fermion fields. A
key point consists in the fact that, to construct the Dirac operator, one must de-
fine representation of cotangent vectors to a world manifold by Dirac's 4-matrices
[SAR 1991].

We further assume that a 4-dimensional world manifold X satisfies certain
topological conditions formulated in Section 2.3.

2.1 Dirac Fermion Fields

We describe Dirac fermion fields as follows [BUG, CHI]. Given a Minkowski
space M with the Minkowski metric 7, let

Ay =@ M*, M°=R, M™°-@gM,

be the tensor algebra modelled on M. The complexified quotient of this algebra
by the two-sided ideal generated by elements

e@e +e@c—2lee) € Ay, ee M,
forms the complex Clifford algebra C, 5. A spinor space V is defined to be a linear
space of some minimal left ideal of C, 3 on which this algebra acts on the left. We
then have the representation
MRV =V (2.1)
of elements of the Minkowski space M C C, 4 by y-matrices on V:

vt = 1(e* @ v?) = YA p®
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where
{Ce‘a=0|112|3]r QUIJ:_'I“:_Y.'??:“TNS:lv
is a fixed basis for M, {v"} is a basis for V/, and 4* are Dirac’s matrices of a fixed
form.
Let us consider the transformations preserving the representation (2.1). These
are pairs (1,1,) of Lorentz transformations [ of the Minkowski space M and invert-
ible elements I, of C, 3 such that

IM = I,MIY,
FIM @LV) =L, y(M V).

Elements I, form the Clifford group whose action on M however is not effective.
We here restrict ourselves to its spinor subgroup L, = SL(2,C) such that

L=280(3,1)=L,/Z,.

Remark. By S0(3.,1), we denote the connected Lorentz group. On M, this

group is represented by matrices [ with

detl=1, % >0,

Remark. Generators of the spinor group L, act on V by the representation

1
Ly = Z[‘h,')‘b]-

Since _
{[nh]+ 9'! '_Idn
the standard Hermitian metric in V fails to be L,-invariant. At the same time, we
have
(=" (" =1" )= -nla.
Hence, the L,-invariant spinor metric in V' can be defined as [CRO]

a(v,v) = vy . (2.2)

Let s be a bundle with the structure group L, the standard fibre M, and the
base X so that its associated principal bundle Py has lift to a principal bundle
(P,, X, L,) with the structure group L,:

r: P, = Py = P, /4y,
Eyxe = (Py x M)/L = (P, x M)/L,.
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We call Ep a Minkowski space bundle and P, a principal spinor bundle.

Remark. There exist the topological obstructions to lifting of Py to P,.
We here do not discuss them. Later, we shall require Ey; be isomorphic to the
cotangent bundle 7°X, and a world manifold X will be assumed to satisfy the
necessary topological conditions (Section 2.3).

Let (E, =, X,V,L,) be a matter bundle associated with the principal bundle
P,. We call it a spinor bundle. One can define the morphism

76! EM@E=(P,x (M@V))/L,— (P, xy(M®V))/L,=E.
Given an atlas {27} of P, and the associated atlas
{zM =ro2)
of Py, this morphism reads
&(z)v(z) = 1e(e*(2) @ vA(2)) = v pv®(z), =z €U,

where
{e*(z) = [23"(z)]mre”}
and
{v*(z) = [z2(2)lvr*}
are the associated bases for fibres M, and V; of the bundles Eys and E respectively.
Dirac fermion fields are described by global sections  of the spinor bundle E

provided with the representation morphism ~vg which yields the representation of
sections of Ejs by y-matrices on ¢:

1E: 7(x) = 1o(2)e*(2) - 7(z) = Ta(2)€(2) = Ta(2)y".

To construct the Dirac operator on ¢, one must require Ey be isomorphic to
the cotangent bundle T*X over a world manifold X. It takes place only if the
principal bundle of linear frames

LX = (P,mpx,X,GLy)
contains a reduced subbundle
Lk‘]" 5 (Ph| TeX, X, L)

with the structure group L, that is, the structure group G L, of the bundle LX is
reducible to the Lorentz group.

The geometric equivalence principle thereby is the necessary condition in order
that Dirac fermion fields can be defined.
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2.2 Tetrad Gravitational Fields

The structure group of the principal bundle LX is reducible to the Lorentz
group if and only if there exists a global sections h of the associated bundle

(E! TLX xl GL'I/L! GL{]

with the standard fibre GLy/L. We call h a tetrad field. There is 1:1 corre-
spondence between the tetrad fields h and the reduced L-subbundles L*X of LX
possessing the structure Lorentz group. This correspondence is given by the rela-
tion

mpeP* = h(rpx P*)
where 7py is the canonical projection of P onto
¥ =P/L.

The Higgs bundle ¥ is the 2-fold covering of the bundle A of pseudo-Riemannian
bilinear forms in cotangent spaces 77X to X. A global section of A is a pseudo-
Riemannian world metric ¢ on X. A global section h of the bundle I defines
uniquely a pseudo-Riemannian metric g.

Remark. The group space of G L4 is homeomorphic to the topological space
RP® x S® x R'. The group space of L is RP® x R®. Here, S* denotes the 3-
dimensional sphere, and

RP® = §%/Z,

is the 3-dimensional real projective space. The quotient space GL4/L is homeo-
morphic to §* x R7, and the bundle

ClLy - CLJL (2.3)

is trivial. Pseudo-Riemannian metrics in R* form the topological space RP? x R'.

Given a tetrad field A, let local sections {z}} associated with an atlas of LX
take their values in the corresponding reduced subbundle P*. They then define
an atlas W* of LX such that its transition functions are L-valued. Moreover, with
respect to ¥, metric functions of g come to the Minkowski metric

g =YRg =1

and field functions (¥"h)(z) of the tetrad field h take their values in the center o
of the quotient space G Ly/L.
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Remark. For the sake of simplicity, we further denote an atlas ¥ of a principal

bundle and associated atlases by the same symbol W. By %7, we denote holonomic
atlasses.

If one considers the cotangent bundle T* X provided only with atlases W*, this
bundle acquires the structure of the L-bundle M*X of Minkowski spaces which is
associaled with L% X, that is,

T°X = (P x T*)/GLy = (P* x M)/L = M*X

where 7 denotes the standard fibre of 7*X. For different h and &', the L-bundles
M"X and M* X are not isomorphic. Their fibres M, and M are cotangent spaces
T; X, but provided with different Minkowski space structures.

The feature of a gravitational field thus is clarified. A tetrad gravitational field
h itself, unlike other fields, defines reference frames W* such that, given different
gravitational fields h and k', the corresponding reference frames W% and ¥ fail to
be equivalent in a sense.

Since

h(z) = wpy(z(x)),

given an atlas ¥* and a holonomic atlas W7, a tetrad field h can be represented
by the family of tetrad functions {h,}:

ha(z) = ¥ (2)2¢(2) = [ex(a)lz" o [zR(2)lr, 2 € U
(WIh)(2) = ha(z)oo. (2.4)
The tetrad functions (2.4) define gauge transformations of the atlas
{vn(z) = [z2(2)]7"
to the holonomic atlas
{Vr () = [za(2))7" = halz) 0 Y2(2)}.

In the index form, the tetrad functions (2.4) describe the corresponding transfor-
mations

ty(2) = (Vi(2))"ta = (¥1(2)) " RE(2)1L,
= hr(:){d’:-(x))_‘.ty = h:"(z}am z € Uy, (25)

between the bases {,} and {t4(z)} associated with W” and W* for tangent spaces
and between the corresponding bases

dz* = h#(z)t"(z)

for cotangent spaces.
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For instance, we have

g,(z} = hu(z)ns z € Uy,
g"(z) = hi(2)hy (=)™

This splitting of metric field functions looks like the decomposition (1.57) of a
Higgs field where the Minkowski metric n and tetrad functions h, play the role of
a L-stable Higgs field and Goldstone fields respectively [IVA 1983]. However, in
contrast with the internal symmetry case, Goldstone components of a gravitational
field are not removed by atlas transformations because a reference frame W* fails
to be holonomic in general and the associated basis elements

d, = h¥(z)d,
contain tetrad functions.

Remark. In expression (2.5), tetrad furictions are represented by matrices of
elements of the group G Ly whose action on the standard fibre 7' of the tangent
bundle is described with respect to a fixed frame {¢,}:

GLy(U,) 3 halz): {ta} = {h4(2)L,).

Given an atlas W*, one can choose representers h',(z) of the cosets (¢A%h)(z) which
differ from the tetrad functions (2.4) in gauge Lorentz transformations

K (2) = ho(z)l(z).

This option involves additional quantities I(x) in the Dirac operator.

We call h a tetrad gravitational field and g a metric gravitational field. However,
only small geometric deviations of a metric field g acquire the ordinary sense of a
physical field. In the first order in deviations €, we have

g.ryu - gm.- + E;.m'

g:w = Guv — Epe T Gy — gnogvﬁ5aa- (2.6)

‘The metric g in expression (2.6) plays the role of a background metric and,
given a nonholonomic atlas ¥* associated with g, the notions of spin and energy-
momentum of the deviations

Eap = hfihye,,

are precisely defined. In general, the deviations (2.6) however fail to be superpos-
able even in the first order in & (Section 3.2).
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We say that a spinor bundle £* describes Dirac fermion fields ¢, in the presence
of a gravitational field A if this bundle is associated with the L,-lift

(P,h| TexTy X, La)s
ry PN s PA = PAIYS

of the reduced L-subbundle L*X of the principal bundle LX. In this case, the

corresponding Minkowski space bundle E}, is isomorphic to the cotangent bundle
T*X regarded as the L-bundle

M*X = (P! x M)/L,.
We then can define the representation
W T*XQE=(P}x (M@V))/L, = (P*xy(M®V))/L,=E* (27)

of cotangent vectors to X by Dirac's y-matrices on elements of E*. With respect

to an atlas {23} of P! and the associated atlas {z* = rz2} of LX, the morphism
4y reads

() (z) = (" (2) @ vA(2)) = 7** 50" (2)
where
{t"(z) = [z5(2)}r-1?)
and
vi(z) = [zX(=)]vv?
are the associated bases for fibres T; X and V.
For any holonomic atlas of 7* X, we can introduce the local 1-forms

th*(z) = h%(x)dx* = h*® (2.8)
which represent components of the canonical basic soldering form (0.21):
Ox = t"*(z) ® ha.
The representation (2.7) then takes the form

(k) = h* = 4%,

Remark. By A}, we denote components of the matrix which is inverse of h*,
that is,

hehy =8 Kokl = 6.

Givenha gravitational field h, each principal connection A, on the principal
bundle P} associated with the spinor bundle E* induces a principal connection A
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on the reduced subbundle L*X. By the law (1.60), this connection A is uniquely
extended to a principal connection I' on LX so that fields h and g are parallel
with respect to I'". If A is another principal connection on P!, the corresponding
connection I differs from I'* in a torsion. As a consequence, principal connections
A on the bundle E* form the affine space of Lorentz gauge potentials modelled on
the linear space of torsion fields.

We further call principal connections I' on the principal bundle LX the world
connections and principal connections A, on principal spinor bundles the principal
spinor connection. If I' = I'* for some tetrad field h, we call " the Lorentz
connection.

Remark. Given a pseudo-Riemannian metric g, every world connection I' can
be decomposed in the sum of three quantities

Fr={}+8+C

where { } denotes the Christoffel symbols of the metric g, S is a contortion and C
is called a nonmetricity. These quantities are calculated from the relations

Vg=D(y9=0,
Viy = Dy }ﬂx =0,
Dg = -2C,

Dy =01

where V = D denotes the covariant differential associated with the Christoffel
connection { } and 1 is the 2-form (0.51) of torsion of the connection T Coeflicients
of forms { }, S and C read

apgov - ravp o I‘vup - "‘zcaum
rm.ip - {uvn} + Sﬂv,u + Cavm

1
{avu} = {mw} = ifgav.u + Gopw — gvu,m)v
Sn_p,u = _Suap - {nu&x + n;.wa 2 ﬂum,"‘ Gynv = C_um)'s
B 1
nav,u - _nunv = E(r‘oyy o Fauu)i

l ol
cuyp = Cvou - é’(l o =+ Puuu L gnru,.u)-

I£ T is a metric connection (that is, g is parallel with respect to I'), the nonmetricity
term ' vanishes.

Remark. Given a world connection I' and a tetrad field k represented by
tetrad functions k%, we have the following relation

Auh¥ 4 T 5 — Tkl = 0.
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A tetrad field h js parallel with respect to a world connection I if

Ppax 4+ Dapay =10.

Given an associated principal spinor connection A on the bundle E*, one can
construct the Dirac operator

Lp=yoD: J'E* 4 T*X @ VE* — VE" (2.9)
Eh

where D is the covariant differential (0.44). To define the operator (2.9), we use
the fact that the vertical tangent bundle VE* over the spinor bundle E* admits
the canonical vertical splitting (0.15). The bundle morphism v, of V E* in expres-
sion (2.9) is the pull-back of the bundle morphism v of E* in expression (2.7).

With respect to an atlas {27} of the principal spinor bundle P* and a holonomic
atlas of LX, the Dirac operator (2.9) reads

Lpén = dz" D,y = h(2)h*D,éy = h*(z)y* D,

where h® are forms (2.8).

Fermion fields @5 and ¢ in the presence of different gravitational fields h
and ' are described by the spinor bundles E* and E* associated with the L,-
lifts P} and P! of the different L-subbundles L“X and L* X of the linear frame
bundle LX. Since the bundle (2.3) is trivial, all reduced L-subbundles L*X of
the principal bundle LX are isomorphic to cach other. Tt follows that the spinor
bundles E* and E¥#* also are isomorphic. The Minkowski space structures M* X
and M X of the cotangent bundle 7" X however fail to be equivalent in the sense
that transition functions between the atlases W* and ¥ of 7*X are GL,-valued.
Let us compare the representations 7, and .

For two arbitrary elements ¢ and ¢’ of fibres Ph and P2 over the same point
z € X, there is an element g € G Ly so that

r¢ = (rg)g.
Let t. € T} X be a cotangent vector over ». It can be expressed as
t: = [rglut = [rqlp 0 g™t
where ¢ is some element of the standard fibre T of 7*X. We can write

i e @ Ve = ([rglat) @ ([glv V) = ([glv 09)(t @ V) = y(t(z)) Vi,
i te @ Vi = ([rglu og™")(1) ® ([¢IVV) = ([¢'lv 01 )(87 't ® V) = mu(t(z))V".

2.3, SPACE-TIME STRUCTURE 79

For instance, given atlases {22} of P* and {2} of P¥, the representations ~, and
~nr Tead

t: = T,h* = [z:]M(T.,t“} =3 [Z:IM((g_I}u'STutb]
= (87)"%7ah" = 4",
Mmits) = 7%, o
Mwelt:) = 7'7:"'fu o (5—1 )“:ﬂ-‘T"-
Here, we span the frames t*(z) and t* (z) by different indices a and @ since these

indices are associated with different reference frames W* and W*'. Moreover, they
are smeared by different world metrics g(x) and ¢'(z):

g(z) = [rzx(z)}rn,
g'(x) = [rz ()]

If h(z) # h'(z), we have g € GL4\L. Then, the representations v, and vy fail
to be isomorphic in the sense that there is no isomorphism py of the spinor space
V such that

Vg™ M @ pyV) = pyy(M @ V).

For instance, the Dirac operator acting on the sum

bn + &),

fails to be defined. As a consequence, Dirac fermion fields form a linear space
only in the presence of a fixed tetrad gravitational field. It follows that Dirac
fermion fields must be regarded only in a pair with a certain tetrad gravitational
field. These pairs form the so-called fermion-gravitation complex which we aim to
describe in Section 3.1.

2.3 Space-Time Structure

The geometric equivalence principle is sufficient in order that a space-time
structure can be defined on a world manifold. On the other hand, one needs the
global time-like 4°-matrix operator

(k%) =+° (2.10)

in order to construct the fibre spinor metric (2.2) in the bundle E*.
In gravitational theory, a space-lime structure is usually defined to be a (3+1)
decomposition
TX =FaTX (2.11)
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of the tangent bundle over a world manifold into a 3-dimensional spatial subbundle
F and its time-like orthocomplement 79X .

In fibre bundle terms, we say that a world manifold X is endowed with a space-
time structure if the structure group &Ly of the principal bundle LX is reducible
to its spatial rotation subgroup SO(3).

Remark. By virtue of the well-known theorem [KOB, if a structure group of a
principal bundle is a connected Lie group and a base of this bundle is paracompact,
this structure group is reducible to its maximal compact subgroup. For instance,
the structure group G Ly of the principal bundle LX over a paracompact manifold
is always reducible to its maximal compact subgroup SO(4). There is the bijective
correspondence between the reduced S§0O(4)-subbundles of LX and the Riemannian

metrics ¢® on X represented by global sections of the LX-associated Higgs bundle
ER with the standard fibre G L,/SO(4).

Let LFX be a reduced SO(3)-subbundle of LX with a total space PF C P.
It determines uniquely both the reduced L-subbundle L*X of LX with the total
space
P* = {pg,pe PF,g € L} (2.12)
and the reduced SO(4)-subbundle LFX of LX with the total space

PR = {pg,p € PF,g € SO(1)}. (2.13)

It follows that a reduced SO(3)-subbundle LF X defines uniquely a certain tetrad
gravitational field & (a pseudo-Riemannian metric g) corresponding to the reduced
subbundle (2.12) and a certain Riemannian metric ¢” corresponding to the reduced
subbundle (2.13). With respect to an atlas {zF} of LX with functions 2F(z) taking
their values in PF ¢ P* metric functions g, and g” read

gu(z) =1,
gi(z) = n®

where, by n®, we denote the Euclidean metric. The atlas {2F} possesses SO(3)-
valued transition functions.

With respect to a holonomic atlas, we have
Tunl(2) = K22 )03, = 2h(2)hY(2) — guu(),
MY vy E3b “ v v
9" (z) = Ka(2)hi (2)nB" = 2h§(2)h(z) — g™(z) (2.14)

where h¥(z) are tetrad functions of a gravitational field h.

Let 1° be a non-zero S0(3)-stable element of the standard fibre T of the
cotangent bundle such that

n(%1%) = n5(t% &) = 1.
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Given a reduced SO(3)-subbundle L¥ X, one can define the global nonvanishing
1-form (2.8)
hO = [pl-t® = K(x)dz*,  pe€ PE.

It is called the tetrad form. In particular, we may rewrite the relation (2.14) in
the coordinate-free form

g= e hé’hh
R=r@htnk =20 —y.

The tetrad form provides us with global 4% operator (2.10).

Remark. There is 1:1 correspondence between the nonvanishing ‘l-fon}'is w
on a manifold X and the smooth orientable distributions F of I-codimensmflal
subspaces of tangent spaces to X. This correspondence is defined by the equation

Flw=0.

A form w is called a generating form of a distribution F. .
Hence, a tetrad form k° defines a smooth orientable distribution F of 3-dimen-
sional tangent subspaces which satisfy the equation

F1n® = 0.

Fibres F, of F are spatial spaces with respect to the pseudo-Riemannian metric g.
We therefore call F a space-time distribution compatible with the gravitational field
g. This distribution yields the (3+1) decomposition (2.11) of the tangent bundle
TX into the 3-dimensional spatial subbundle F and its 1-dimensional orthocom-
plement T7°X (with respect to g and ¢™) which is generated by the nonvanishing
time-like vector field

hy = hga;.

on X. In accordance with the conventional viewpoint, such decomposition turns a
world manifold X into a space-time.

In virtue of the above-mentioned theorem [KOB], if the structure group of the
principal bundle LX is reducible to the Lorentz group L, this ie._ reducible to 'it.s
maximal compact subgroup SO(3). Moreover, we have the following commutative
diagram of reduction of structure groups of LX:

GLy— S0(4)

L — SO(3).
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It follows that, given a gravitational field h, the corresponding reduced subbundle
L"X always includes a reduced SO(3)-subbundle LF X which determines a space-
time distribution F compatible with the gravitational field g and the Riemannian
metric ¢® connected to g by the relation (2.14).

Conversely, let F be a smooth orientable 3-dimensional distribution with a
nonvanishing generating 1-form w. Given a Riemannian metric g® on X and the
corresponding reduced SO(4)-subbundle LRX of the principal bundle LX, it is
uniquely defined a reduced SO(3)-subbundle LF X with a total space PF which
comprises elements p € P® obeying the condition

[plrt® = w(z)/|w(2)],  z=rpx(p),

where
of? = " (w,w).

In particular, we gain the following theorem [SUL, HAW)] formulated in terms
of space-time distributions.

- Theorem. For every gravitational field h on a world manifold X, there ex-
ists an associated pair (F,g®) of a g-compatible space-time distribution F with a
generating tetrad form h° and a Riemannian metric g, so that

R=2QH —g=Hh" QK +k (2.15)

where £ is a Riemannian metric in the tangent subbundle F. Conversely, given a
Riemannian metric ¢®, every oriented smooth 3-dimensional distribution F with
a generating form w is a space-time distribution compatible with the gravitational
field g given by expression (2.15) where

K = w/lwl, lur’ = gR(u,w) = g(w,w).

Moreover, we have shown that thereis 1:1 correspondence between the reduced
50(3)-subbundles of the principal bundle LX and the triples (g, F, g®) of a pseudo-
Riemannian metric g, a Riemannian metric g%, and a space-time distribution F
which obeys relation (2.15).

A triple (g, F, g") defines uniquely a space-time structure on X. Two different
triples (¢,F,¢") and (¢, F',g'®) describe the same space-time structure if the
distributions F and F’ coincide with each other. We say that a reference frame
{zF(z)} is associated with a distribution F if, for any z € U,,

([ (2))7-1°)JF = 0.

Tange:’nt vectors to{x) associated with such a reference frame are transversal to
I.h_c distribution F. Moreover, there is a Riemannian metric ¢® (and a pseudo-
Riemannian metric g) such that ¢y(x) are orthogonal to the distribution F.
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Given F, different reference frames {zF} and {z/F} associated with F differ
from each other in the gauge spatial transformations g.(z) € GL*(3,R)(X) and
in time delatations. On physical side, it means that the relative velocity of the
corresponding local reference frames [zF (2)]7(t,) and [2F (z)]7(t,) at a point z € X
is equal to zero, that is, these local frames are associated with the same physical
observer at this world point. We thus may conclude that, in gravitation theory, a
space-time distribution F determines a system of local physical observers.

Given a gravitational field A, the corresponding reduced L-subbundle L*X of
the linear frame bundle LX contains different SO(3)-subbundles LF X which differ
from each other in principal Lorentz morphisms [(z) € L(X). Consequently, space-
time distributions F and F’ compatible with the same gravitational field & do as
well. For their generating tetrad forms, we have the relation

R = I, (x)h3(z)dz",
I'4(z) = K (z)hii(z) € L(X). (2.16)

A Riemannian metric g® in a triple (g, F, ¢®) defines a g-compatible distance
function d(z,z') on a world manifold X. Such a function turns X into a metric
space whose locally Euclidean topology is equivalent to the manifold topology on
X. Given a gravitational field g, the g-compatible Riemannian metrics and the
corresponding distance functions are different for different space-time distributions
F and F'. It follows that physical observers associated with different distributions
perceive the same world manifold as different Riemannian spaces. The well-known
relativistic changes of sizes of moving bodies exemplify this phenomenon. Note
however that Riemannian metrics ¢® and ¢'® in triples (¢,F,g") and (g, F',g'?)
are equivalent only il principal Lorentz morphisms (2.16) between F and F' take
their values in some compact neighborhood of the unit of the Lorentz group. It
means that the relative velocities of local physical observers associated with F and
F' must be limited by some maximal value.

One loses sight of the fact that a certain Riemannian metric and, consequently,
a metric topology can be associated with a gravitational field. For instance, there
were attempts of deriving a world topology directly from pseudo-Riemannian struc-
ture of a space-time (path topology, etc.) [HAW, GRO]. If a space-time obeys the
strong causality condition, such topologies coincide with a familiar manifold topol-
ogy of X. In general case, they however are rather extraordinary.

A world manifold X is known to admit a Riemannian metric if and only if this
manifold is paracompact. If a pseudo-Riemannian metric exists on a manifold X,
it is proved to be paracompact [MAR]. But the converse is not true.

World manifolds X are classified by the following characteristic classes of its
tangent bundle [EGU, HIR, MAS]:

(i) the first Potryagin class p(X) € HY(X,Z);
(ii) the Euler class e(X) € H*(X,Z) il orientation of X is fixed;
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(ifi) the Stiefel-Whitney classes wi(X) € H'(X,Z).

?);H ;(X, Z) and H'(X,Z;), we here denote the simplicial cohomology groups
1< 4).

Note that a manifold X is orientable if and only if w;(X) is the zero element
of the group H'(X,Z,).

There are homomorphisms of the simplicial cohomology groups H*(X,Z) into
the groups H*(X,R) of the DeRham cohomologies of exterior differential forms on
X. Hence, the characteristic classes p; and e can be represented by the cohomology
classes of the following closed characteristic forms:

by =1 pe
SF:Tr(RA R)—ﬁﬁ‘ A Rgy,

P

@)

sapsa B2 I RS, (2.17)

T 32x2

!{erc, the curvature 2-form R of a linear connection I' on TX is assumed to take
its values in Lie algebras so(4-k.k):

1
R= §RM,I¢&| Ly = =y,

where generators [, act on R*.
If X is a compact manifold, we have the Pontryagin number

Pt=jxﬁl

x=LE
of the manifold X.

Metric gravitational fields exist on noncompact manifolds and on compact man-
ifolds whose Euler characteristic is equal to zero. To define a tetrad gravitational
field and a space-time structure, one must require a world manifold be spatially
oriented (when each constituent of the decomposition (2.11) is oriented).

Spinor bundles E with the structure group L, = SL(2, C) are classified by the
Chern classes ¢;(E) € H*(X,Z). Since the group L, is reducible to its maximal
compact subgroup SU(2), the class ¢;(E) is proved to be the zero element of the

group H?(X,Z). Chern classes are represented by the cohomology classes of the
characteristic forms

and the Euler characteristic

- i
Cl = E’Il’}-'—- 0,

1
32x7

- 1
&= m’]‘r(m\ F)= ——=FNFy: (2.18)
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Here, F is the curvature 2-form of a principal connection A, on E:
1
F= —2-3"'“’1&.1,

where generators I,; act on the 2-dimensional complex space.
Because of the inclusion

GL, — GL(4,C),

the tangent bundle 7'X can be regarded as a G L(4,C)-bundle T*X. In particular,
we have

p(X) = —(T°X).
If a spinor bundle E = E* is associated with the tangent bundle TX = M*X
(Section 2.2), the bundle T°X is associated with the tensor product E ® E*. It
follows that

n(X) =—c(T°X) = —4cy( E),
wy(X) = 0.

We can reproduce the first relation for the characteristic forms (2.17) and (2.18) if
a world connection I' = I'* on LX is the Lorentz connection induced by the spinor
connection on E, that is, if F** = R,

A world manifold thus must satisfy certain topological conditions in order Lo
admit a gravitational field, a spinor structure and a space-time structure. If X is
not compact, its tangent bundle must be trivial. For a compact X, its Euler char-
acteristic and the Stiefel-Whitney classes w; ; must be zero and its first Pontryagin
number must be multiple of 48 [GER, WHI]. A compact manifold however fails to
be provided with a causal space-time structure.

A 1-codimensional distribution F is called an integrable distribution if its gen-
erating form w obeys the equation

whdw=0,

In this case, fibres of the corresponding (3+1) decomposition (2.11) are tangent to
leaves of some 1-codimensional foliation of spatial hypersurfaces of a world manifold
X. An integrable space-time distribution (a space-time foliation) is called causal
if its generating form can be exact, that is,

w=df

where f is some real function on X which has no critical points where df =
0 [LAW]. This notion of causality coincides with the one of stable causality by
Hawking [HAW]. Leaves of a causal foliation are level surfaces of its generaling
function f. No curve transversal to leaves of a causal foliation intersects each leave
more than once. It follows that a causal space-time manifold is no compact.

Thus, if we do not concern gravitation singularities, we can restrict our consid-
eration to the world manifolds possessing the trivial tangent bundles.
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Appendix. Space-Time Singularities

Various criterion of gravitational singularities have been suggested [HAW, CAN
1988, FUC]. In view of the above-mentioned correspondence between the space-
time distributions and the gravitational fields on a world manifold X, some type
of gravitational singularities can be indicated by singularities of space-time fo-
liations [SAR 1986]. In particular, caustic singularities of space-time foliations
exemplify superposition of classical gravitational fields which we shall discuss in
Section 3.2.

We say that a gravitational field ¢ on X is free from singularities if there exists
an associated pair of a complete Riemannian metric ¢® and a causal space-time
foliation F with the generating form A” such that ¢®(VA°, VA®) is bounded on X.
This condition guaranties that, being complete with respect to ¢®, a space-time
satisfies the well-known b-completeness condition [CAN 1984].

One can distinguish several types of gravitation singularities in accordance to
this criterion. In this Appendix, we examine gravitation singularities characterized
by singularities of space-time distributions. The distribution singularities can be
described locally (in the germ form) as singularities of a causal foliation with a
generating function f. There are two types of these singularities.

(i) A single-valued generating function f has critical points where df = 0. It
generates the Haefliger structure (the singular foliation) of its level sets on
X. These level sets change their topology at critical points of f. Gravitation
singularities of this type are the scalar curvature singularities in accordance
to the classification in ref. [ELL].

(i1) A generating function f is a multiple-valued function on X. The leaves of
the foliation F defined on the domain where f is a single-valued begin to
intersect each other at branch points of f. Branch points of f where the
foliation is destroyed form a caustic. To describe foliation singularities of
this type, one can lift the space-time foliation F into the total space of the
cotangent bundle 7" X, then extend this lifted foliation over the singular
points, and project the extended foliation onto the base X. Singularities of
F can be described as singularities of this projection.

In gravitation theory, a geometrical locus of focal and conjugate points is called
a caustic by analogy with geometrical optics [WAR, ROS|. We follow the general
mathematical notion of caustics as singularities of the Lagrange maps [ARN, FRI].
Each caustic can be brought locally (in germ terms) into the following standard
form.

Let a space R* be endowed with the coordinates {z*, P,}. Let us consider the
Liouville form

a= F,dz* (2.19)
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on R? and a submanifold N of R™ such that
da(N) =0,
that is, being restricted onto N, the form « is exact:
a(N) =dz(N).

Such a manifold of maximal dimension n is called a Lagrange submanifold. A La-

grange submanifold can be defined by a generating function S(z*, P;) of n vana.bl?s

(z',P;: i € I, j € J) (where (I,J) is some partition of the set (1,...,n). It is
iven by the relations

given by the r 3 8

4 = -5 P.' = =T
¢ 3P_," or'

Let us consider the projection
m: (2%, P,) — (")
of R*™ onto R". Being restricted to the Lagrange submanifold

- ;o as
xn: (2 P) > (::',x’ = _}E) y

this projection is called the Lagrange map. A caustic is deﬁncd.to be the set of
critical points of a Lagrange map, i.c., the points where the matrix

& S|aP,ap;

is singular.

For instance, a caustic on manifolds is defined as follows. Let the cotangent
bundle T7*X be provided with the induced coordinates (2%, P,,z,). The Liouv.'ille
form (2.19) defines n-dimensional Lagrange submanifolds of 7*X. Singular points
of projection of such a Lagrange submanifold onto the base X form a caustic.

Let us note that a geometrical locus of focal and conjugate points of Riemannian
and time-like pseudo-Riemannian geodesics also is a caustic in accordance to the
Arnol'd definition [SAR 1986].

Our definition of foliation caustics is based on the following proposition.

Proposition. For any foliation of level surfaces F of 2 manifold X., there is a
foliation F' of some Lagrange submanifold of 7*X such that F is the image of F

under the Lagrange map. -
Outline of proof: Let f be a generating function of the foliation F. We define

the embedding of

7 (2#) = (= = 5
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88 GAUGE THEORY OF CLASSICAL GRAVITY

of X into T"X. Its image is a Lagrange submanifold of T*(X). Let F’ be the
induced foliation 7%y, F of 4(X) where m~(x) is the Lagrange map

Tay(Xx)* ‘f(.\’] — X.

Since « and 7y are diffeomorphisms between X and ¥(X) (my(x) 0 v =id X),
the foliation F on X can be represented as the image of the foliation F' on ~(X)
under the Lagrange map myx).

For instance, let N € T"X be the Lagrange submanifold generated locally by
a function S(z, P;), and let F' be the foliation of level sutfaces of the function

ol Y — -Qi
_f(.t ?I.’J =8- P.Faﬂ

on the Lagrange submanifold N. The image mx(F') of F' under the Lagrange map
7y is a foliation of the image 7mn(/) of the domain I/ C N where this Lagrange
map has no critical points. This foliation is destroyed at caustic points of the
Lagrange map mn.

There are six classes Ay, Ay, Ay Dy, A, D ol stable caustics on a 4-dimensional
manifold. For example, the canonical generating function of caustic Aj takes the
form

S=—P3+2'F;,

and the corresponding Lagrange manifold N is given by equations
2 =4P) -2a'F,, P, =Fi.

The Lagrange map then reads

2 =4P3 - 22'P,. (2.20)
The caustic set where
3*S|ar; =0
consists of the points
z! =6F3,

and its Lagrange image on X contains the points
8
0y2 1
i 2
(-T ) 27{ )

The generating function of the foliation F' on the Lagrange manifold takes the
form
' =3P —«'F.
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Then, on X, the generaling function of the Lagrange image of F' reads
f(2%2") = f'(=, Py(°, =)

where the function Py(z°,z') is defined by equation (2.20). The function Py(z%, z')
and the generating function f become three-valued functions at caustic points. The
As-germ of foliation caustics thus is characterized by the behavior of the component
wy of the foliation generating form which is tripled at caustic points.

Caustic singularities have the [ollowing feature. There are domains of a space-
time where not nearest, but the far separated leaves begin to intersect each other,
Therefore, a space-time foliation can be locally prolonged over the caustic points,
whereas global prolongation of this foliation is impossible.

For example, let f(u,v) be a real function on R* which obeys the equation

fz(u,u) —3uf(u,v) —2v=0

where u, v are coordinates on R*. This function is the singled-valued one
1/3 1/3
o= [v + (v? - ﬂs)””] i [v - (v* = USJWI 3

on the domain U = (u,v: v* > u*), and it is the three-valued function

fu.]_g = 2“1;2 COS(%(Iﬁ + ?.‘rrn]),

¢ = arccos(vu '3"2), n=0,1,2,

at points v* < u®. Let F be the foliation
F. = {u,v: fi(u,v) = ¢ = const}
on U/ C R% Its leaves F. are the lines

2v = ¢® — Jue, —00 < ¢ < +00.

This foliation has the caustic singularity at the branch points v* = u® of the
function f. Moreover, u = v = 0 is the Aj-caustic point, whereas the other ones
v o= # 0 are points of the Aj-caustic. The leaves F., ¢ > & > 0, can be
prolonged over the caustic curve v = u*? onto the domain 0 < v < u”? where

they can be described as leaves of the foliation
Jo(u,v) = const.

These leaves however begin to intersect each other when v < 0, although the
nearest leaves intersect each other only on the caustic curve v = —u*2. Note that
the leaves F..q begin to intersect the leaves F.co on the caustic curve v = u®/2,

Caustic singularities however are not reduced to the locally extensible singular-
ities [ELL). For instance, the A;-caustic points u* = v* # 0 of the above-mentioned
foliation caustic are locally extensible singularity points, whereas the Ay-caustic
point u = v = 0 is not locally extensible.
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Chapter 3

THE HIGGS FEATURE OF CLASSICAL GRAVITY

For the first time, the conception of a graviton as a Goldstone particle corre-
sponding to violation of Lorentz symmetries in a curved space-time was expressed
in mid 60s in connection with matching cosmological and vacuum asymmetries by
Heisenberg and Ivanenko.

This idea was revived in the framework of the formalism of nonlinear real-
izations [OGI, ISH]. The Lorentz group is the Cartan subgroup of GL,, and the
induced representations L T G L4 have been constructed [NEE 1979]. In this ap-
proach, geometric aspects of gravity however were ignored.

In fibre bundle terms, the fact that a pseudo-Riemannian metric is sui generis
a Higgs field has been pointed out by Trautman [TRA 1979] and by us [SAR 1980].
Our description of the spontaneous breakdown of world symmetries is based on
the geometric equivalence principle and on the existence of Dirac fermion fields
[IVA 1983, SAR 1991]. The Higgs field feature of gravity issues from the fact that
different tetrad gravitational fields h and b’ define the nonisomorphic representa-
tions v, and v, which we have constructed above. It follows that Dirac fermion
fields and gravitational fields form the peculiar fermion-gravitation complex and
that gravitational fields do not admit geometric deviations.

3.1 Fermion-Gravitation Complex

Since Dirac fermion fields must be regarded only in a pair with a certain gravi-
tational field, the totality of these pairs fails to be formalized by the bundle product
¥ x E of the Higgs bundle ¥ and some spinor bundle £, but forms the so-called
fermion-gravitation complex [NEE 1979]. To describe this complex, we follow the
construction developed in Section 1.4.

The total space P of the principal bundle LX is the total space of the principal
bundle P¥ with the base

= PlL

and the structure group L.
It seems natural to assume that a world manifold X is no compact and that the
principal bundle LX then is trivial (Section 2.3). Since the bundle (2.3) is trivial,
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the principal bundle PE is also trivial. Therefore, there exists the lift of P to a
trivial principal spinor bundle PF over £ with the structure group L, such that

Pt = rPt = PL/Z,, PLE, =X,

In particular, given a global section h of the Higgs bundle ¥, the L,-principal
bundle P* is the portion of P over h(X) C E.

Let us provide the principal bundle LX with a holonomic atlas UT and the
bundle PF and P" with some associated atlases {zF} and

{z" =ro zf'}

We can choose atlases {z,} and {z%} with the identity transition functions. At the
same time, a holonomic atlas fails to consist of one chart in general.

We endow the Higgs bundle ¥ with the bundle coordinates (z*, o) where (o)
are matrix components of the transformation

(V7 0 2")(0): ta = oty

of the fixed basis for the standard fibre T of the tangent bundle TX. In particular,
we have

Mz) = 2(h(2)),
oy (h(z)) = hi(z)

where h*(z) are tetrad functions (2.4).
Let (ET, £, F, L) be a spinor bundle associated with PF. Following Section 1.4,
we consider the composite bundle

TEX = Tgx O Tyt E=E-~8 = X. (3.1)

The bundles EX and E are trivial. The composite bundle E is provided with the
bundle coordinates of the bundle £*:

EL = E Y= (I'\,a':. UA)'

Given a global section h of the Higgs bundle ¥, the spinor bundle E" associated
with the principal bundle P} is the portion of the bundle E* over h(X) C E. It
follows that every global section ¢ of E can be represented by a pair (¢4 (), h(z))
of fields which depend on world coordinates and describe a fermion field ¢n(z) in
the presence of the tetrad gravitational field

h(z) = (rgx 0 8)(2).

Remark. The trivial bundle E is isomorphic to the bundle product
E=ExY
X
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where E is some trivial spinor bundle over X, e.g., E = E*. This splitting how-
ever fails to be compatible with the y-matrix representations of cotangent vectors
because the representations v, and +y, on the same space E. in different products
E: x k(z) and E; x h'(z) are not isomorphic.

The bundle E is not associated with a principal bundle and to construct a
connection on E, we use the jet manifold morphism

& B X JYEL — R,

Let us provide the jet manifolds J'S, J'E* and J'E with the adapted coor-
dinates
le ds= (I'\,J:,U:A).
JELsw= (z" ot VA, a0 VL),
JIE 3q= (I ) u’vdua‘:\:vﬂi}
In this coordinates, the morphism ¢ reads
Uax = V3,00, + var.

Given a world connection I' on the bundle LX and a principal spinor connection
A on the bundle P, we can induce a general connection I' on the bundle E:

I = dz? ®(h — I"‘.,l(.z]o:f}:),
AL = dz @ (0 + A:P al0)vpd?) + do? @ (8] + A3B 4(o)vpdh),
F = dz? ® (3)\ S i i‘; ”6“ + f‘;dﬂ*)
=dz* @ [0y - T “oa(@)al 3 + (—T*a(2)ot AL 4(0) + AP 4(0))vpd?].
Let us fix a gravitational field h and consider sections ¢ of E represented by

the pairs (44, k). The covariant differential (0.49) of such sections then is given by
the coordinate expression

Dyh“(z) = Byh*(z) + T 5 (2)hY(2),
Dyéa(z) = rdalz) — [T (2)he(z) A28 o (2, h(z))
+ AP a2t B ()b (2). (3.2)
The Higgs field contribution term (1.68) in expression (3.2) then reads
()0 (2) AZE 4 (2, hE(2)) i (2).

The covariant derivatives (3.2) of a fermion field ¢ are reduced to the familiar
ones if a connection A* on the bundle P* is a pull-back connection.

3.1. FERMION-GRAVITATION COMPLEX 93

One can generalize the Dirac operator (2.9) to the one on the jet manifold J'E.
Let E be the Minkowski space bundle associated with the L-principal bundle
P, Using the morphism (2.1), we can define the bundle morphism

v: Bl X E% — B-

by analogy with the morphism .
Since the bundle PF is trivial, we have the bundle isomorphism over X:

T X - BY (3.3)

where 7" X denote the pull-back H*Y of the cotangent bundle 7" X by wgy and
E}; is regarded as the R* bundle, not the Minkowski space bundle. It means that,
given an atlas {z¥} of EX; and the pull-back holonomic atlas W7 of the pull-back
bundle 7" X, isomorphism (3.3) can be defined by the fibre-to-fibre morphism

atd, — 1,(0)

where £,(c) and 3, are the bases associated with atlases {z%} and ¥7 for the
fibres of the bundles Ef, and 7°X at a point ¢ € E. Being restricted to the
submanifold h(X) C ¥ for some section h of £, this isomorphism (3.3) is reduced
to the isomorphism of the cotangent bundle 7°X to the Minkowski space bundle
M*X.

The composite of the morphisms +;, and £ results in the y-matrix representation
morphism

yo =L 0(: T“XEEL—»EL_

Being restricted to the submanifold h(X) C £ for some section h of I, the mor-
phism 7y is reduced to the morphism 7 (2.7).
Since the bundle £ is trivial, we can write

VE=VE'x VE
E

where VX denotes the pull-back 755 (VE) of the vertical bundle VI over E. Given
a connection I' on the bundle £, the covariant differential (0.44) then defines the
morphism

D: 'E-T'XQVE = (T'.X @ VE") x (T‘X ® vz)
E E E E
such that
D4 =pryoD: J'E — (T’X @ w:'*)
E
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is the covariant differential (3.2). Using the canonical vertical splitting of the vector
bundle VE*, we then can define the generalized Dirac operator

Ly =95 oDy J'E ~ VE: = pr,(VE),
Ly = o}v*8 4(5g — T15)0%.

For each section ¢ = (¢a,h) of the bundle E, this operator is reduced to the
Dirac operator on sections of the bundle £, but in the presence of the generalized
connection (3.2):

Lyda = h)(2)7"8 4Dsdp(z).

To construct a connection I' on the bundle E, we use a principal connection
A" on the principal bundle P* over the Higgs manifold £. Therefore, a total La-
grangian for the fermion-gravitation complex must include a Lagrangian of prin-
cipal connections A*,

Remark. Describing fields on the Higgs manifold £, one faces the problem
of a fibre metric in 7*X. We can suggest the DeWitt fibre metric given by the
expression

G (w,w') = ooin™ X, X, + Gy (o) BB,
s

1
w = 5 det|of|(opo;n™na + of ol — olio}),

w= X,dz* + Bidol, W= X|dz"+ Xidol.

This metric however is degenerate because of the degenerate matrix G/ Another
fibre metric in T°E can be constructed by analogy with the Schmidt-Marathe
metric in the linear frame bundle LX [MAR, CAN 1984]. Given a world connection
I" on LX, this metric reads

Goplw,w) = ol [ X X "
+ (B3 - Thp(a)ofn® X,)(EE - T(x)ofn®X5)).

In this expression, a connection I' makes the sense of some background connection.
Using the metrics Gw and G gy, one can construct, e.g., the generalized D’Alamber
operators acting on fields on the Higgs bundle X:

Ow = Gw(0g,0g),

Osy = Gsu(0g, 0y),
d

Oy = —dz" + —do}

3.1’:" (?O'n

On pull-back fields, the operator Ogye however fails to reduce to the familiar
D’Alamber operator 0.
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In gauge gravitation models, independent gravitational variables are the pairs
of a tetrad gravitational field h and a gauge gravitational potential represented
by a principal connection A on the reduced subbundle P* of the principal bun-
dle LX [OBU]. If one considers fermion fields, connections A are induced by prin-
cipal spinor connections which describe gauge potentials of interaction between
fermion fields. A world connection I' on LX is assumed to be the extensions of a
connection A to LX. Given a holonomic atlas W" and an atlas " of the principal
bundle LX), a tetrad field is represented by tetrad functions (2.4) and a connection
A by coefficients A**,(z) of the local connection form (1.3) where

A, (2) = —A"(2) = AD()Im)* = ~3A% () Lot}
(Tea)™ = 6283 ~ 6263

In the framework of this so-called first order formalism, gravitational Lagrangians
are constructed by means of the curvature

Pbuv . aﬂ‘dub" o ,.!‘lubﬂ + Au“Abcp o Auc.rAb.,—u
and the torsion
1
Q= E(aph: — O,h% + A% by, — A%y, h).

Many authors however believe that the classical gravity is characterized only by
the Hilbert-Einstein Lagrangian density

Lag = —%F*,y}a:h;‘h“. h = det |h¥]. (3.4)

To reproduce [amiliar results in the framework of the [ermion-gravitational
complex, we restrict our consideration to the pull-back principal connections A*
on Pk and to those principal connections on LX which are induced by these pull-
back connections.

Let C'* be the connection bundle of principal connections on PF and H*Y, be the
horizontal cotangent subbundle of the cotangent bundle 7*¥. The configuration
space of pull-back principal spinor connections is the subspace

C=CloAHEEVEPY (3.5)
ok
of the configuration space
J'Ch=Cl @ (AT'E@VEPE).
[ogg

The total configuration space of the fermion-gravitation complex is then reduced
ta the product

el

JExC.
5
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For the sake of simplicity, we here examine gravity without matter. Its config-
uration space is

J'E x . (3.6)

in expression (3.5), given the affine bundle

G = PP,

3 e ’
modelled on the vector bundle V 7*X @ V¥ PF, we can restrict ourselves to one of

its affine subbundles €'y modelled on the vector bundle Vv H'S ® VEPE, Points
of CE\C, are conjugated to points of C; by elements of the gauge group L,(X).
If a trivial atlas {z*} of the bundle P’ and the associated coordinates (z*,42) on
¥ and (z#,07, ki k™3) on CF are fixed, it seems natural to choose the subbundle
C. defined by the coordinate relations

ma __ ma mab __
_\—D 8 .\n_U' S_\““O

where we use the notations (1.8). The configuration space (3.6) hence can be
reduced to its subspace

Iex(Cy @ (A H'S ® VEPE) (3.7)
C.

given by the adapted coordinates

(I“‘U:‘k“‘\ = _khhaa:,;ssﬂbulrpuby.l)i
.‘?ﬂbﬂ_\ A kebp‘\ + knbhﬂ
Fnbw\ = k“.\u L kubﬂ‘\ + kucpkbcr\ L k“.\kbcm (38)

Here, we replace the index m of the fibre coordinates k™ on P* at base points
(z*,a)) by the pair ab of indices of the coordinates o},

In the coordinates (3.8) on the configuration space (3.7), the Lagrangian den-
sity (3.4) of the classical gravity reads

1
Lyg = —E;f“*ugo;‘afa", o = det |o%]. (3.9)

This Lagrangian density describes the dynamic system with the following primary
constraints:

ac 1
I#-‘ub = 6.{“05:\,: = 2_;0_](“:‘7: = O‘:U:}s
r#: —_ 3(1“2 =0. (310]

ap
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Therefore, we aim to apply the multimomentum Hamiltonian formalism to the
gauge gravitation theory. In comparison with the familiar Hamiltonian formal-
ism [NIC], it does not need the preliminary (3+1) decomposition of tensor bundles
over a world manifold.

For the sake of simplicity, we restrict our consideration to the local construc-
tions on a standard coordinate chart of the corresponding Legendre manifold IT:

(2%, 02, k% = —kM5, "3, 0" = —P M) (3.11)
Let us fix a pull-back atlas {z*} of the principal bundle PX which corresponds
to some isomorphism of P to the pull-back
ﬁ" = P,L :E = (ng)'p:"

of some trivial L,-principal bundle Ff’ over X by the projection mgy. Then, the
coordinates (x*, o2, ¢*1) are local coordinates on the bundle

AT'XQ@TX @T*X ® M3

where MY is the pull-back of the Minkowski space bundle MX associated with
PE. The coordinates (2, a2, k®*y, p"* ) are the local standard coordinates on the
pull-back of the bundle I}y by projection mxx where II, is the Legendre manifold
of principal connections on the bundle PE.
The image of the Legendre morphism Ljg is given by the coordinate relations
p""“ = w“"'ub, ¢’y =71 =0
where ##*,, and 7#$ are the quantities (3.10).

In the coordinates (3.11), the multimomentum Hamiltonian form associated
with the Lagrangian density (3.9) reads

Hyg = {q":dcr: 4 p* o dk® ) A wy ~ Huw, (3.12)
1

H= __ip“)\n&(k“kkbcu - k“pkbc»\ (3‘13)
1

+ ESabpl{p“‘\ub i Ip,\nb) T N:,,‘I”; (3'14}

where 5%, and N}, are some local functions on X.
The corresponding Hamiltonian equations for a section o2 (), k* (), ¢*4(z),
p** () of the Legendre bundle IT' takes the form

Bkt = aff“ - %{k“‘xk%u ~ kKo + 5%,0), (3.15a)
0t s = i = Rl — 7, (3.155)
d.0, = Bi?:: =N, (3.15¢)
B.9"s = — i (3.15d)

)
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On the image of the Legendre morphism Lyg, we have

e =A™, (3.16a)
duq"y =0. (3.16b)

Equation (3.15a) leads to the relation
1
;(5'“;.\ - S =F 0 (3.17)

Substituting this relation into the equation (3.15d) and (3.16b), we obtain the
Einstein equations. Substituting the equality (3.17) into the equations (3.15b)
and (3.16a), we get the familiar relation between the connection k**) and the
tetrad field e%(x). Equation (3.15¢) shows that the tetrad field o(z) is parallel with
respect to the connection N on the Higgs bundle £. It follows that N is a world
connection which differs from the Lorentz connection induced by the connection
k(z) only in torsion.

Let us emphasize that the kinetic part of the multimomentum Hamiltonian
form (3.14) of the classical gravily contains only the connection term

1 o ac a
Epulab(sdﬁ-\ . kn‘-\kbﬂu =i ﬂkacn\) + N:qu/\'

It follows that the Hamiltonian density of the classical gravity is equal to zero.
The symmetric part of equation (3.15a) represents the familiar gauge condition

1
0,k + 0k, = E(subu—\(-") + 5%(2)).

Thus, if we restrict ourselves to the pull-back atlases of the principal bundle P?,
we have the standard collection of gauge transformations.

In general, the fermion-gravitation complex possesses the following gauge trans-
formations.

These are transformations of atlases W/ (respect. ¥¥) of the bundle PF (respect.
PE) and transformations of holonomic atlases U7 of the bundle LX. Given a tetrad
field k, transformations of atlases W* and ¥* induce transformations of atlases ¥*
of the bundle P} and transformations of atlases W* of the bundles L*X and LX.

Gauge bundle morphisms &g of the bundle F are the associated general prin-
cipal morphism of the bundle EZ which satisfy the following conditions.

(i) A morphism &g preserves the fibration (3.1) and is projected to some general
principal morphism ®g of the Higgs bundle ¥ and to some diffeomorphism
of the base X.

(ii) The morphism @y is induced by the general principal isomorphism (®x ). of
the linear frame bundle LX which is tangent to the diffeomorphism $x.

For instance, ®g € L,(X) if ®y is the identity morphism.
Note that violation of the condition (ii) results in deviations of a gravitational
field which we describe in the next Section.
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3.2 Deviations of a Gravitational Field

If there are no other fields and a space-time decomposition is not considered, a
tetrad gravitational field h as like as an ordinary Higgs field (Section 1.4) admits
linear deviations in the second order in group parameters (since the Lorentz group
L is a Cartan subgroup of the group GL4). In Section 1.4, there were discussed
deviations of a H-stable background field

(¥2)() = o0.

In contrast with the internal symmetry case, each gravitational field h can play
the role of a Higgs background field because its Goldstone part fails to be removed
by gauge transformations.

Let ¥7 be a holonomic atlas of the principal bundle LX. Given a representer
he(z) € GLyg of the coset

(¥rh)(x) = he(z)oo € GLy/L,  z € UL,
the deviations
(A ) (z) = k(@)oo = [hu(z) exple(x) 7 (2)] he(z)a0
= he(x)exp(e(r))og

of h(x) are parameterized by elements £(z) of the Lie algebra of the group G'Ly.
Note that, if elements (x) belong to the Lie algebra of the Lorentz group, one has

K(z) = h(z),

but
(@) # hel).

In the presence of the Dirac fermion matter, deviations of a tetrad gravitational
field however fail to form a linear space even in the first order in group parameters.
Given a gravitational field k, the representation 4, (2.7) is written only with respect
to atlases ¥* and the representers of gravitational field functions h,(z) are tetrad
functions (2.4). For different tetrad fields & and &', y-matrices in the Dirac operator
describe the nonisomorphic representations

v=7m(h), 9 =k

of different cotangent vectors h* and A (Section 2.2). As a consequence, it is
impossible to write

W = (B + ey’
because one can not take y-matrices beyond the brackets

(2 = h)y*==.
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In the Dirac operator, tetrad functions thereby do not admit linear deviations
hY = (Sh)E = S*;h% # (82 +€°)hs, S € GL\L. (3.18)

It follows that, in the presence of the Dirac fermion matter, tetrad gravitational
fields do not satisfy the superpesition principle.

The superposition principle is one of the corner-stones of quantum theory. On
mathematical side, this principle requires fields or deviations of some background
field form a vector space. This is the reason for our attention to linear deviations
of a gravitational field.

Without regard to fermion fields, one can choose metric functions g** as grav-
itational variables and can examine their small deviations (2.6). However, if a
space-time decomposition is considered, these deviations also fail to form a linear
space in general. Given a gravitational field ¢ and a g-compatible space-time dis-
tribution F, let & be a spatial part of the world metric g (Section 2.3). If a world
metric g’ resulls from a linear deviation

g'=g-¢
of g, one can require the spatial parts k' of ¢’ to be a linear deviation
K =k+ e

of k. It takes place if there exists a space-time distribution ¥ compatible both
with g and ¢'. In this case, we have

wWEHw y
lglw, w)]?

glw,w) = E"Bwawg,

K=k+e+ (wyw),

where w is a generating form of the distribution F. For instance, given a triple
(g, F, g"), every linear deviation

yiR =i gR wind ER
of the Riemannian metric g® in this triple involves the linear deviation

e?(w,w)

r R
d=g+ef —wRw———
lg(w,w)[?

of the pseudo-Riemannian metric g in and its spatial part
K=k-—e?-w@w

so that the triple (¢', F, g™} is associated with the same distribution F.
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Obviously, there are psendo-Riemannian metrics g and g’ which fail to admit a
common space-time distribution. Their superposition is accompanied by superpo-
sition of space-time distributions which we face, e.g., in the case of gravitational
singularities of the caustic type (Chapter 2. Appendix).

At the same time, tetrad functions h* in the Dirac operator admit superposable
deviations of the following type:

he = HY e = (82 + o)kt = HY kY
= (&) + " )ky = ki + %4, (3.19)
Lp =h*y*D,. (3.20)
These however are not the geometric deviations in the sense that the quantities
h* fail to be tetrad functions because, in comparison with expression (3.18), the
indices a and b of H*, correspond to the same reference frame ¥*. In contrast
with tetrad functions, we have
F‘: = qu’-‘“?‘; = H,*h3,
R4RD # 64,  RARS £ 8,
3 = hihin™ = Ho H" 5™,
Gup = h:ht’}nh = ”un'”uagnﬁ-
7" Gua # - (3.21)

The quantity g in expression (3.21) is not a world metric. In comparison with
the relation (2.6}, for small deviations

o™ = oy hAh",
we have
:q—-w.- ~ gpk + a_pl‘,
~ afd
Juv = Gup + Guafup? -

In fibre bundle terms, we can describe the deviations (3.19) as follows. Let
us consider associated general principal morphisms of the bundle E* which are
projected to arbitrary general principal isomorphisms @5 of the Higgs bundle ¥,
but to the identity morphism of a world manifold X. Let these morphisms be
accompanied by arbitrary bundle morphisms @7 of the cotangent bundle T*X. If

By £id ¥,

these morphisms result in changes of a gravitational field. If

P =idX,
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but
by £id T X,

we gain the deviations (3.19). To compare these two cases, let us regard morphisms
%y and @ induced by the same principal isomorphism @ of the principal bundle
LX.

Since the bundle LX is assumed to be trivial, let us fix some global section

p(z) of LX. Then, every principal isomorphism (0.6) of LX can be written in the
form:

$: P =p(z)G™" — p(z)H.G™",  H,= f,(p(z)) € G =GCLy.

This isomorphism induces the following associated principal morphism of the cotan-
gent bundle 7% X:

(plz)G™" x G1)/G — (pla)H, G~ x G1)/G
= (p(z)G" x QH )G, teT". (3.22)
Let us assume that
pz)e P}, H.€G\L, p(x)H,eP

for some tetrad fields h and A'. If 7" X is regarded as the L-bundle M*X, the
morphism (3.22) can be written in the following two forms:

$,: MIX 3 (p(a)L™ x Lt)[L — (p(z)L™" x LH.t)/L € M*X,
®y: MIX 3 (p(x)L™" x Lt)/L — (p(e)H.L™" x Lt)/L € MM X. (3.23)

Given a gravitational field & and the corresponding representation 4, the mor-
phism ®, induces the representation morphism

ﬁh =70 @1.
With respect to the atlas
{z*(2),r2*(z) = p(x))
of the principal spinor bundle P* and the atlas
{2(2) = p(a))
of LX, the morphism 7, reads
T Tk (2) @ v(z) = [2*(2) L] x (LH*(2)7at® @ (L 0)}/L —
[2*(2)L;" x Loy(H*(z)7at® ® v]/L = H*(z)7a7"v(2).

Given an atlas W* of the principal bundle P*, let us provide the principal
bundle PE with the pull-back W of the atlas W*. Let ¥%*' be the atlas of the
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principal bundle P* induced by the pull-back atlas W*-. We can compare the
representations ¥, and 7 resulting from the representations 7, by means of the
associated morphisms (3.23):

w(h*) =+,
Fu(h®) = H%®, B B
yae(h®) = e ((H™)%5R") = (H')*'.

The representation 3, can be treated as deformation of the representation 4 in
a sense. The morphisms 3, and 4y, define the 4-matrix representations of cotangent
vectors on the same spinor fields ¢4. Therefore, deviations

H*, = & + 0%

and their superposition

o+

can be defined.
The Dirac operator corresponding to the representation 5, takes the form (3.20):

Lo = 5a(da") Dy = WA()(h(2)) Duts = B ()2 Dy
= h¥(z)y" H" ,(z) D, 9.

Given a holonomic atlas, the functions H” (z) in this expression do not depend on
a gravitational field, that is, tetrad functions b and deviations o*, are independent
dynamic variables,

Note that, if H, € L C GL,, the representations ¥, and v, are isomorphic. For
an infinitesimal element H, € L, we then have

Tabh = —Tha-

The morphisms of cotangent bundles which do not change a world metric, the
deviations (3.19) and the Dirac operator (3.20) appear in the gauge theory of the
translation group (Section 4.2). We therefore may apply the Lagrangians of this
theory in order to describe fields . Let us note that, to construct a Lagrangian
of deviations ¢ of a gravitational field g, one usually use a familiar geometric
Lagrangian of a metric field

9=g-¢
where ¢ is treated as a background field. In the case of deviations (3.19), we can
not follow this method because quantities § (3.21) fail to be a true metric field.

We thus may say that the morphisms ®, deform fibres of the cotangent bundle
7" X and thereby violate the identification

TN = M h Y
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of the cotangent bundle with the Minkowski space bundle M*X associated with
the spinor bundle PP

Let us remark that the morphisms ®; and @, are the equivalent transforma-
tions of the cotangent bundle regarded as the G'Ly-bundle. Therefore, if world
symmetries are not broken (e.g., there are no fermion fields), the bundle T°X
"loses” the structure of a Minkowski space bundle and the transmutations

MAEX = (p(z)L™* x LH.M)/L — (p(z)G~* x GH,T*)/G
= (p(z)H:G™ x GT")/G — (p(z)H.L™ x LM)/L = M¥ X

of deviations o of a gravitational field h into a new gravitational field A’ may take
place. Given an atlas

{#(2) = A=)},
we then have N - -
he = H%h;, =h,  RE#RE, (3.24)

where hf are tetrad functions of A’ with respect to the atlas ¥* and hj are that
of h with respect to ¥*,
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Chapter 4

GAUGE THEORY OF THE TRANSLATION GROUP

For the first time, gauge theory of the Poincaré group was brought into play
by T.W.B.Kibble, B.Frolov, D.Sciama at the beginning of 60s in order to gen-
eralize R.Utiyama’s gauge version of gravity which had left open the question
on the gauge status of tetrad gravitational fields. The Poincaré gauge approach
(dominated gauge gravitation researches in the 60-80s [HEH, CHO, BAS, KAW,
MIE]) however was no succeeded in identification of a gravitational field with a
translation gauge potential [IVA 1983]. Al the same time, gauge potentials of
spatial translations appeared to acquire satisfactory physical utilization to the
gauge theory of dislocations in continuous media [KAD]. By analogy, gauge poten-
tials of the Poincaré space-time translations have been suggested to describe new
fundamental interaction whose geometrical model is deformation of a world ma-
nifold [EDE, IVA 1987]. This interaction may contribute to standard gravitation
effects, e.g., may result in the Yukawa type deviation of Newton’s gravitational
potential [SAR 1990].

By T, we further denote the additive group of the vector space R*. This is the
group of translations in the vector space R* provided with the canonical structure
of an affine space. One identifies this affine space with the group space of T%.

4.1 Gauge Models of the Poincaré Group

The translation group T* is the subgroup of the Poincaré group and the affine
group A(4,R). The Poincaré group is the group of isomorphisms of the affine
Minkowski space. In Special Relativity, it plays the role of the fundamental dy-
namic group whose unitary representations describe the free particle states. This
was the fact that motivated attempts to complete gauge theory of internal symme-
tries and Utiyama's gange model of intrinsic spin symmetries with the gauge one
of the Poincaré group. However, these attempts faced the feature of this group
as the dynamic group. In contrast with internal and spin transformations alter-
ing field functions at a point, generators of the dynamic Poincaré symmetries are
represented by the differential operators

T, =48, LT = 0,02°0, = gyaz®O,- (4.1)
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They may be thought, on the one hand, as the generators of coordinate transfor-
mations and, on the other hand, as the generators of diffeomorphisms acting on
field functions.

Authors of the first Poincaré gauge works adhered to the coordinate treatment
of the Poincaré group generators (4.1). They combined Lorentz spin transforma-
tions with coordinate translations

* — ¥ + a”.
Localization of these translations
¥ —valf 4 af(z)

reproduced the group of general coordinate transformations which induced, in turn,
the holonomic subgroup of the atlas transformation group G'Ly(X)4.

The gauge model of Poincaré transformations (4.1) treated as diffeomorphisms
was proposed in ref. [HEH]. Besides localization of group parameters, it modified
the generators of the Poincaré group by replacing partial derivatives in expres-
sion (4.1) by the covariant ones

a,—+D,=d,-T,
where I" was a Lorentz connection. Hence, localization of Poincaré transformations
exp(t*d, + " (Lgp + LR)]
took nonconventional form
exp[t(z)D, + f”"(m](L:’:b + L)) (4.2)

¥ tarb

where resulted from L°% by replacement

aﬂ = Du .

This replacement seemed quite natural as generalization of translations in a flat
space, but it violated the familiar commutation relations of the Poincaré group.
For instance, the translation generators appeared to be noncommutative:

[Dyy Dy] # 0.

Obviously, the transformations (4.2) did not form the conventional gauge Poincaré
group.

The conventional gauge technigque can be applied to the Poincaré group if one
ignores its physical role as a dynamic group and looks at it as an abstract structure
group of a bundle,
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Let AX be the affine frame bundle over a world manifold X. It is the principal
bundle with the affine structure group A(4,R). This bundle is associated with the
affine tangent bundle A7 X. Moreover, we have

ATX = AX/GL,.

The affine bundle AT X is isomorphic to the tangent bundle T'X provided with the
canonical structure of an affine bundle. Therefore, the structure group of AX and
AT X is reducible to the linear group G L.

Since the quotient space A(4,R)/G Ly is homeomorphic to RY, in virtue of the
well-known theorem [KOB), the structure group of any A(4,R)-principal bundle
over a paracompact base is reducible to the linear subgroup GL,. There is 1:1
correspondence between reduced (5L4-subbundles of the affine frame bundle AX
and global sections of the affine tangent bundle AT X. In particular, the canonical
reduction

a: LX = AX (4.3)

corresponds to the global zero section o(z) of A”X. On the other hand, the
homomeorphism

A4R) = GLy
entails the bundle morphism

B AX — LX

such that the composite #oa is the identity morphism of LX. We further restrict
our consideration to bundle atlases {z.(z)} of AX associated with the canonical
reduction (4.3), that is,

zx(z) € a( LX).
The associated affine coordinates on the affine tangent bundle ATX coincide with
linear coordinates on T'X, e.g.,

(%, u® = 3°).

Therefore, we further identify the affine tangent bundle ATX with the tangent
bundle T'X provided with the canonical structure of an affine bundle.

Every affine connection A on T'X is an associated principal affine connection.
In virtue of the relation (0.48), it is represented by the sum

A=T+e (4.4)
of an associated principal linear connection I' and a basic soldering form

o X —=T"XaTX,
o=0c°,(2)0, ®ds" =8, ®c". (4.5)
Coefficients of, of the form (4.5) are the coefficients of the local connection form

of the affine part of the connection (4.4) with respect to the atlases associated with
canonical reduction (4.3). We call A a canonical afline connection il ¢ = 0y.
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Remark. Let A be a connection form of a principal affine connection on AX,
Then, a*A is a 1-form on the total space P of LX which takes its values in the
Lie algebra of the affine group A(4,R). The form a*A splits up into the sum

aA=T+B

of a linear connection form T and a R-valued GLs-equivariant horizontal 1-form
B(p) on P, that is,

7" 1B(pg) =7"1g7'B(p), p€P, g€GLy,
(mpx)ut” = (7px)er’, reT,P, P eT,P.
A soldering form o in the relation (4.4) then is given by the expression

rdo(z) = P 1[p)r B(p),
r=(rpx)et’,  z=mpx(p)

Many authors tried to identify the soldering forms ¢* (4.5) treated as translation
gauge potentials with the tetrad forms (2.8) of some gravitational field h. Given
h and the tangent bundle T'X provided with the structure of the Minkowski space
bundle M X, each basic soldering form ¢ on TX can be regarded as a basic
soldering form

o =ol(z)th @ da* = th(z) ® 0°

on M"X. For example, we have
9x = f;:(.i.‘] @- ha

for each gravitational field k. The soldering form Oy itsell hawever fails to fix
a reduced L-subbundle L"X of the principal bundle LX and therefore can not
describe a gravitational field.

In the conventional gauge theory of the affine group, one thus faces the prob-
lem of physical interpretation both of a gauge translation potentials and of sections
u(z) of the affine tangent bundle TX. In field theory, no fields possess the trans-
formation law

u(z) = u(z) +a

under the translation subgroup of the Poincaré group.

At the same time, one observes such fields in the gauge theory of disloca-
tions [KAD] which is based on the fact that, in the presence of dislocations, dis-
placement vectors

m

u™, m=1223,
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of small deformations are determined only with accuracy to gauge translations
u™ — u™ 4 a™(2).

In this theory, gauge translation potentials o™; describe plastic distortion, the
covariant derivative

Diu™ = u™ — a™;

coincides with elastic distortion, and the strength
}-m‘_j = (?;o*“‘, = 6,0”“.-

describes dislocation density.
Equations of the gauge theory of dislocations

& (pDiu* + %6:‘13)-1:-") =0, (4.6)
OF* ;= —é(pﬂju* + é;—;D,,.u"‘] (4.7)

can be derived from the gauge invariant Lagrangian density
£ =pDiu*D'uy + %D;H'Dmu"‘ — eF i FzY (4.8)

where g and A are the Lame coefficients of isotropic media. Equation (4.6) is
the equilibrium equation, and equation (4.7) describes dislocation density. These
equations fail to be independent of each other. Equation (4.6) is the divergence
of equation (4.7) what reflects the fact that a displacement field u™(z) can be
removed by gaunge translations and, thereby, fails to be a dynamic variable.

In the spirit of the gauge dislocation theory, it was suggested that gauge poten-
tials of the Poincaré translations may describe new geometric structure (sui generis
deformations) of a world manifold.

4.2 Deformed Manifolds

Let the tangent bundle T'X be provided with some affine connection (4.4). We
consider the following two morphisms:

(i) the morphism
6: TX - HTX cTTX
which is the morphism (0.40) restricted to the global zero section ofz) of
TX, that is,
o= Aoo: o(X) § TX - HTX,
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(ii) the geodesic morphism of 7'X onto X:
G TX3u~ ((z,u,]) € X, z = 7x(u),

where ((z,u,s) is the geodesic defined by the linear part I' of the affine
connection (4.4) through the point z in the direction u.

By deformation morphism of a world manifold X, we call the following tangent
bundle morphism [SAR 1990]:

p=Coo: TX —-TX.

In the affine bundle coordinates (2#,u®) on T'X, this morphism is given by the
expression

pX: 3,

d
— 2l bl a
R e N Ozt +(Mpuu” +o ”)311"
(g 4 g ) = e, O ,
T (El“ +o ”]3::’ = 74 H ga (4.9)

Here, we use the relations

"z, du; 1)= (P (z;u, X), AeER,

il
~h — AH
rr)uni) (I'""}‘Jlllzn = bq'

and the expression
Dy |u=0 = (Gu® +1p, u? + T se =875

for the covariant derivatives of a displacement field u.
Lei E be a bundle over X and J'E be the jet manifold of E. The deformation
morphism (4.9) has the jet prolongation

e (29 0) = (2N, Ho\(2)ys)

projected to the identity morphisms of X and E. For instance, j'p(J'E) is the
affine bundle modeled on the vector bundle

(FT"X)@ VE

W}]PT(‘
p: dr* — H*,(2)dz®

is the cotangent bundle morphism dual to p.

1.2. DEFORMED MANIFOLDS 111

To define fields on a deformed manifold, we therefore can replace sections w(r)
and w(y) of the bundles E' (0.28) and E® (0.29) by sections

w(z) = (j'pow)(z), W)= (j'pow)(y)

If e is a section of the bundle E, we have
jle=j'poj'e,
(7Te)k = (ea 0 p)i = H\(2)0ae'(2).

Let I' be a connection on E and D be the covariant differential (0.44). On a
deformed manifold, we get

\y) = H*,\T, ()
D = dz* @ Dy = dz* @ H*\(2)(8, — T, (y)d,)
= H%\(2) ® d2*D, = (pdz") & D,.

For instance, the Dirac operator on a deformed manifold takes the form

Zf_J =0 D= vi(dz*) ® Dy = He\(z)y(dz) @ Dy
= .”"\{,r:]h_:[;l‘)}'"f)",

This operator looks like the Dirac operator (3.20) in the presence of deviations
(3.19) of a tetrad gravitational field if the morphism (3.22) coincides with the
morphism p dual to the morphism (4.9). We therefore can apply Lagrangians of
the field theory on deformed manifolds to deviations (3.19).

A Lagrangian density of a scalar field ¢ on the deformed manifold reads

1 _ 2
Lim) = 5(¢" U, H® D¢ Dyé — m*¢*)\/=g.

Lagrangian densities L, of the gravity and L4 of gauge potentials are con-
structed by means of the modified curvature

R® = H*, H? R* ;5
and the modified strength

Fn o= Ho HP FT,

Remark. Given a principal connection A on a principal bundle P, its modified
strength on the deformed manifold is defined to be

F=poFoj'A%
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The action functional and equations of motion of a point mass my on the
deformed manifold are given by expressions

§ = —mo [(gapHCWHO s0#o")F2ds,

du¥ =]
dL 4T, 0% =0 (4.10)
5

where v* is the 4-velocity and the quantities T' look like the Christoffel symbols of
the "metric”

§Mb = ”au”]ﬂvgaﬂs

but the interval ds is defined by the true world metric g.

Let us note that, on the deformed manifold, a world metric and the volume
form remain unchanged.

In the next Section, we discuss some field configurations on the deformed ma-
nifold. In the spirit of the gauge dislocation theory, we call translation gauge
potentials the deformation fields.

4.3 Gauge Theory of the Fifth Force

A Lagrangian density L, of translation gauge potentials o¢, cannot be built
in the Yang-Mills form because the Lie algebra of the affine group does not admit
an invariant nondegenerate bilinear form. To construct Ly, one can apply the
quantities ¢*, and D,0", where D is the covariant differential defined by the
linear connection I' from expression (4.4). Since ¢¥,, are the coefficients of a local
connection form, a linear connection I' acts on the upper index of ¢¥,. Then, only
the combination

o a
F vy = [)vann ey Dua v

is possible. This is the torsion (0.51) of the connection I' with respect to the
soldering form .

The general form of a Lagrangian density L) of a deformation field is given
by the expression

1 ;
E(a} - g[“lfuyu}‘ala + ﬂ!-}-jwa}-”ya + a:!}-;wc}w“ﬂ
+ a-!":um"}-!ne}-'wv — pot ot i+ Aauuayv]\f =g
where £#¥?7 is the Levi-Civita tensor.

The mass-like term in L,) is originated from the Lagrangian density (4.8) for
displacement fields u under the gange condition u = 0.

14.3. GAUGE THEORY OF THE FIFTH FORCE 113

It seems natural to require the component tif, of a metric energy-momentum
tensor of deformation fields o on the Minkowsk: space be positive. This require-
ment implies the following constraints on constants of Lg,):

1
a.‘=0, GIZO: ‘1220‘ 03+262=0| ony "S;”‘

The Lagrangian densily L, then takes the form

1
Loy = 50 F Fo™ + a3 Foe (FH* — 2F) ~ io*,0%, + Ao*,0" V3.

Remark. One can use the decomposition of the tensor F* ,, in three irreducible
parts

h 1 ) a

P Pt 5(63& — 8 F) + € waF?,
~ 1

}-" - }-\)“m ]_-n - E‘Emwa}-uwr

where F, is the spur, F* is the pseudo-spur, and F is the spur-free part of the
tensor F.

A total Lagrangian density includes Lagrangian densities L) of mater fields,
L4y of gauge potentials, and L, of a gravitational field. Matter sources of a
deformation field o then are the following:

(i) a short canonical energy-momentum tensor of matter fields

6Ly _

Jﬂ“‘"

0L 5
~(H™uaDub g = ~(H)a(Tm + 8 L)

where T, denotes a canonical energy-momentum tensor of matter fields;

(i1) a short metric energy-momentum tensor t(4) of gauge potentials:
l o
S0 T Fl /g

where 3" is “metric” (3.21);

(iii) a curvature tensor

"-lgt-af'nv-R::V -9

of a gravitational field.
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Let us restrict ourselves to the case of a small field o. We neglect a gravitational
field on the left-hand side of equations for ¢ and keep only o-free terms in matter
sources. Then, the Euler-Lagrange equations for a deformation field o read

0Ls)
S

= ﬂ]l'?nuarfﬁaz — ('jh}'“qu + 2011:);(}-”,,5 o -Fl'ul + Fuw}
= W0 + '\'J‘m-"'ran = ‘quu-
o 1 B /
b'.lv == _{T[H\hdl + !J.,,.Etm]] = ;af‘“ga }-::?*r:-, =g

+~_IH;J&V_!J- (41”

One can replace the gravitation term in equation (4.11) by the right-hand side of
the Einstein equations. Equations for ¢ then take the form

0Ly s 1
t‘ﬂ—::' = lt'ﬁmjw. - T[rr;)pp] N _‘hw{L{m] -+ §L(nl!) - gut-cla\j'
In the case of scalar matter fields, we have

t'{rn}rvfa = T[rl’! by

1 1 _
= 9u(Lm) + 5tm)) = ~=gum'e’.

By analogy with equation (4.6), we can write the equilibrium equation

au‘qc(i‘l

T

. _'“avajw + ‘\apgaﬂ ™ Bvs;w- (4‘12}

Note that the right-hand side of equation (4.12) is equal neither to zero nor to a
gradient quantity in general. At the same time, this is a pure gradient quantity
il matter sources of the field o are gauge potentials and scalar fields. These facts
result in the important condition

u# 0, e # 4. (4.13)

Since equations (4.11) are linear, their solutions differ from each other in so-
lutions of the free field equations. In the case of a free field o, equation (4.12)
reads

—pd’a,, + Ad0%, = 0.

Taking into account this relation, one can bring equations (4.11) into the equations

‘a;’zr f.u‘ut.ur -+ Wiue — Wee ) + :-J".‘I(""“1I 7T “-"-'u.uu) — pWw,, = 0, (4'1'1}

A ) )
ay [— : i] ll'lpm,mr_ - r_.,m,] + 2ay (W, o + Wy a)
i

— e, + Ao =0 (4.15)
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where
0 = §"0a,
1
= ;{am, + )y Wy = 5{.7”, —0u)y €=0d". (4.16)

It seems natural to choose the solution w = 0 of equations (4.14). Equations (4.15)
then can be written in the form

n—= J\( 3a, )
Cuy = —— (e — —Cuu),
L »iﬂ v‘ ﬂ- .
2 [t — 4
Oe +m®e =), m? = . }— (4.17)

"~ Bay(p— )’

where the quantity m plays the role of a mass of deformation fields . In virtue of
the condition (4.13), this mass is not equal to zero.
Equations (4.17) admit the following plane wave solutions

- A — 44X pupu
Cuvr = £ . Nuw £ p‘ '»{)
3y p—XA p*

a(p)e'™, p’=m’.

These solutions look promising in order to quantize both the deformation fields o
and the deviations (3.19) of a tetrad gravitational field.
Now, let us consider a model of a small deformation field o and a small gravi-
tational field
g=n+2
if their matter source is a motionless point mass M. In this case, the right-hand
side of equations (4.11) reads

1 1
_§qanirﬂl % _§nuu Mé(r)

where, by (r, ¢,0), we denote spatial spherical coordinates.
Recalling the notations (4.16), we can rewrite equations (4.11) in the form

et a
_:Z_l(f\au.mu - r'“n.:na} + (dag + _I){”-'nn.ou — 1 p..-u} = ‘132[:]”'4“: - jwy,, = 0,

2
ﬂl[’hu—[fﬁ z.a( - Df) = _;{E vigp + € pae W b+ “"qu.au} + c-m--]

— Ml + Mude = —r];r?m,,'”é{r}.

These equations admit the static spherically symmetric solution with the fol-
lowing nonzero components

1 1
Cpp = —“—)—\{IMt'm + E.’l‘”‘{r)},
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€gs = —egol>, eig = —egor sin® 0,
19 ,0 g 1 I3
—r?—egp — =———=Mé
Fior or o ™o 6ay(p—A) (r),
uM i
€00

N Umay(p—A) r

where m is the mass (4.17).
Substituting this solution into equation (4.10), we obtain the modification of
Newton's gravitational potential

P g kM i Kty g-mr
= 0 Ry 3ay(p — ) b

Such a "Yukawa type” modification of Newton's gravitational potential (whose
experimental verification received much attention in the 80s) is usually related to
the hypothetical fifth fundamental force [FIS].

To contribute to standard gravitational effects, the fifth interaction must be
as universal as gravity. Its matter source must contain a mass or other parts of
the energy-momentum tensor. This interaction must be described by a massive
classical field, though its mass is unusually small. A deformation field fits these
conditions. For example, the mass (4.17) is expressed by means of constants of the
Lagrangian density £(,) where g and A make the sense of coefficients of " elasticity”
of a space-time.

As it was mentioned above, one can use Lagrangians and equations of this
Section in order to describe the superposable deviation of a gravitational field.

For instance, let & be small free deviations (3.19) described by the Lagrangian
L) on the Minkowski space. Their energy-momentum tensor can be calculated.
Transmutations of o mentioned in Section 3.2 result in the gravitational field given
by expression (3.24). We can describe the gravitational field ¢ as a small gravita-
tional potential

9ehv — (gipu . ﬂuu} - l:,.[.i-ll'], 25“;' = (g:w - qn”} = —0O(uy)

on the background Minkowski space. The energy-momentum tensor of the fields
¢ is defined and differs from that of deviations o. It follows that, transmutations
of the deviations (3.19) into a new gravitational field may violate the usual energy
conservation law.
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