
 1 

Preprint MP-MSU/027/11/13 

Moscow State University 

 

 
 

What is a mathematical structure? 
 

G. Sardanashvily 
Department of Theoretical Physics, Moscow State University 

 
 
 
Abstract. We suggest a modified definition of a mathematical structure which is 
based on the notion of a relation on a set and which generalizes the definition of a 
relational system in set theory. Morphisms and functions are structures in this sense, 
and this fact provides a wide circle of applications of this notion of a structure to 
mathematical physics. 
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Introduction 

 
 
A notion of the mathematical structure was introduced at the beginning of XX century. 
However, for a long time, mathematical objects were believed to be given always 
together with some structure, not necessarily unique, but at least natural (canonical). 
And only a practice, e.g., of functional analysis has led to conclusion that a canonical 
structure need not exist. For instance, there are different “natural” topologies of a set of 
rational numbers, different smooth structures of a four-dimensional topological 
Euclidean space, different measures on a real line, and so on [1]. 
 

In mathematics, different types of structures are considered. These are an algebraic 
structure, a topological structure, cells whose notion generalizes the Boolean algebras 
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and so on. In the first volume of their course, Bourbaki provide a description of a 
mathematical structure which enables them to define “espece de structure” and, thus, 
characterize and compare different structures [2]. However, this is a structure of 
mathematical theories formulated in terms of logic. We aim to suggest a wider definition 
of a structure which absorbs the Bourbaki one and the others, but can not characterize 
different types of structures (see Section 2). This definition is based on a notion of the 
relation on a set (see Section 1), and it generalizes the definition of a relational system 
in set theory [3]. 
 
Morphisms and functions are structures in this sense that provides a wide circle of 
perspective applications of this notion of the structure to mathematical physics [4].  
 
In particular, let us mention the notions of the universal structure on a set (see Section 
2) and the abstract structure on its own elements (see Section 3.3). One can show that 
any structure is a constituent of a universal structure, and that any structure admits an 
exact representation as a constituent of some abstract structure. 
 
Though we follow the von Neumann – Bernays – Gödel set theory, structures on sets 
only are considered unless otherwise stated (see Section 4). This is sufficient in order to 
investigate real, e.g., physical systems. 
 
 
 

1. Relations 

 
 
Let X  be a set. A propositional function R , taking their values 1 (“true”) and 0 (“false”) 

on an n -times direct product XX
n

n
×=  of this set is called the n -ary relation on X . 

Elements nxx ,...,1 X∈  are said to be in a relation R , i.e., Rxx n...1 , if R  is true at an 

element n

n Xxx ∈),...,( 1 , i.e., 1),...,( 1 =nxxR . A subset of nX  where a relation R  is true 

( 1=R ) is said to be the domain of R . A relation is uniquely defined by its domain. 
Therefore, we denote a domain by the same symbol R  as a relation, and call it the 
relation, too. 
 
Let XK ⊂  be a minimal subset of X  such that any element of K  is in a relation R  to 
some elements of X , for instance, to itself. Let us call K  the content of R  and its 
elements the objects of this relation. In general, a content K  does not coincide with a 
set X , named a universe.  
 
Let us note that, in the framework of the von Neumann – Bernays – Gödel set theory, a 
proper class U  of all sets also can be a universe of a relation because its direct product 

UU ×  is well defined. Herewith, there is no additional problem if a content of a relation 

is a set (see Section 4), but one can also consider a domain n
UR ⊂  to be a proper 

class.  
 
Let us list some important examples of relations. 
 
(i) If a domain of a relation R  is empty, i.e. 0=R  on X . It characterizes the absence of 
any n -ary relation between elements of X , and therefore it is called the empty relation. 
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The absence of a relation sometimes is convenient in order to characterize an empty 
relation. Hereafter, a relation is assumed to be non-empty unless otherwise stated. 
 
(ii) A 1-ary relation XR ⊂  is called the selection relation. A content of this relation 
coincides with its domain. In particular, a set XR =  itself can be a selection relation. A 
selection relation also is exemplified by a one point set }{xR =  which contains only an 

element Xx ∈  which thus is both a relation and its object. 
 

A selection relation R  defines a binary relation 22 XRRR ⊂×=  on X  such that a 

condition xR  implies 2
xxR , whereas conditions 2

xxR  and 2'' Rxx  are equivalent to the 

ones 2' Rxx  and 2' xRx . This relation 2R  is called the similarity relation, and its objects 
are said to be the similar ones. 
 
(iii) A binary relation R  on a set X  is called the equivalence relation if: (a) xxR  for all 

Xx ∈ , i.e., X  is a content; (b) if xyR  and yzR , then xzR ; (c) xyR  is equivalent to yxR . 

A subset XF ⊂  is called the equivalence class of R  if its elements are in a relation R  
to each other and to no others. Equivalence classes form a decomposition of a content 
X . A set RX /  of this equivalence classes is called the factor set or the quotient of X  
with respect to R . 
 

For instance, the above mentioned similarity relation 22 XR ⊂  is the equivalence one 
possessing a unique equivalence class R . 
 
(iv) A binary relation R  on X  is called the relation of a particular order if it satisfies the 
following conditions: (a) xxR  for all Xx ∈ ; (b) xyR  and yzR  result in xzR ; (c) xyR  and 

yxR  leads to .yx =  One usually writes zx ≤  if xzR . An element Xx ∈  is called minimal 

(resp. maximal) if a condition xz ≤  (resp. zx ≤ ) leads to an equality xz = . 
 
A relation of a partial order is said to be the relation of an order (or linear order) if any 
two elements of X  are in this relation. 
 
(v) A binary relation R  on a set X  is called the morphism relation if xqR  and xpR  

implies that the equality  pq = . Such a relation defines a map qx →  of a set X  to 

itself. Conversely, any map XX →:ϕ  yields a morphism relation 
ϕ

R  such that 

ϕ
ϕ Rxx )( . 

 
(vi) A 3-ary relation R  on X  is said to be the multiplication relation if xyqR  and xypR  

leads to pq = . This relation provides X  with a multiplication yx o  such that Ryxxy )( o . 

Conversely, any multiplication XX →
2:µ  endows X  with a 3-ary relation 

µ
R  such 

that 
µ

µ Ryxxy ),(  for all Xyx ∈, . For instance, if 
µ

µ Ryxyx ),(  for all Xyx ∈, , then a 

multiplication XX →
2:µ  is commutative.  

 

(vii) In a more general setting, let us consider a map XX n
→:µ . Its image ),...,( 1 nxxµ  

is called the composition of elements Xxx n ∈,...,1 . This map yields an ( 1+n )-ary 

composition relation 
µ

R  such that 
µ

µ Rxxxx nn ),...,(... 11  and that conditions 
µ

qRxx n...1  and 

µ
pRxx n...1  result in an equality pq = .  
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For instance, a morphism relation is the binary composition one, whereas a 
multiplication relation is a 3-ary composition relation. 
 

Obviously, every n -ary relation on a set X  is a selection relation on a set nX , and vice 
versa. Given a pair of sets X  and V , one therefore can define a V -valued n -ary 

relation on X  as a selection relation on VX
n

× . 
 

In particular, let us consider a selection relation R  on VX
n

×  such that 
µ

qRxx n...1  and 

µ
pRxx n...1  imply pq = . By analogy with the case of XV = , let us call it the n -ary V -

valued composition relation on X . For instance, an ( 1+n )-ary composition relation is 
an n -ary X -valued composition relation. Any map of sets VX →  yields a composition 
relation on VX × , and vice versa.  
 

If a composition relation is not required to satisfy that 
µ

qRxx n...1  and 
µ

pRxx n...1  implies 

pq = , can think of it as being a multivalued composition relation, and any relation is so.  

 
Note that, unless otherwise stated, we follow a standard notion of the uniquely valued 
map VX → . If multivalued maps are considered, any selection relation ϕ  on VX ×  

defines both a map VX →  and a map XV →  because there is no difference between 
an image and a domain of a multivalued map ϕ . Therefore, we agree to call a 

multivalued map the correspondence of sets. Let us denote XVXX →×:π  and 

VVXV →×:π , and let us call XXX ⊂= )(ϕπϕ  and VVV ⊂= )(ϕπϕ  the projections of a 

correspondence to X  and V , respectively. 
 
Let a set X  be provided with n -ary relations R  and S . We think of their pair ( SR, ) as 

being a system of relations on X . Herewith, different n -plets of elements of X  which 
are either in a relation R  or a relation S  can obey certain conditions, called the 
constraints. On another hand, if n -plets of elements of X  are regarded both in a 
relation R  and a relation S , we come to the following combinations of relations. 
 
(A) A union SR ∪  of domains R  and S  defines a relation RSSRSR −+=∪  on a set 
X  called the union of relations. Elements of X  are in this relation if they are either in a 
relation R  or a relation S . Therefore a content of SR ∪  is a union of contents of R  and 
S . 
 
(B) An intersection SR ∩  of domains R  and S  defines a relation RSSR =∩  on X  
called the intersection of relations. Elements of X  are in this relation if they are both in 
a relation R  and a relation S . Therefore a content of a relation SR ∩  is an intersection 
of contents of relations R  and S . If this intersection is empty, we have an empty 
relation SR ∩ .  
 
(C) Let SR ≤ , i.e., SR ⊂ . Then a relation R  is called the particular of a relation S . Its 

content belongs to a content of S . There exists an n -ary relation n
XS =  on X  such 

that any n -ary relation on X  is its particular. It is called the universal n -ary relation.  
 
For example, a set of integer numbers Z with operations of a product 'rr o  and a sum 

'rr +  is characterized by a pair of 3-ary relations ( R , S ) such that Rrrrr )'(' o  and 

Srrrr )'(' + , which also obey the distribution condition Srrrrrrr ))"'()(")('( +ooo  as a 
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constraint. A union SR ∪  of these relations is a subset of elements ( ',', rrrr o ) and 

( ',', rrrr + ) of Z 3  which is no multiplication relation. Their intersection SR ∩  is a subset 

of Z 3  which consists of elements ( qrr ,', ) such that '' rrrrq +== o , that is, it contains 

only two elements (0,0,0) and (2,2,4). 
 
The notions of the system and the combination of relations on a universe X  are 

straightforwardly extended to an arbitrary family of n -ary relations ( nj JjR ∈, ) 

characterized by some subset nJ  of a set 
nX2  of all subsets of nX . 

 
Let us now define morphisms of relations. In mathematics, by morphisms are meant the 
maps of sets with structures. Here we consider a more general case of morphisms of 
relations under correspondences of sets. 
 
Let YX ↔  be some correspondence of sets X  and Y  given by a selection relation 

YX ×⊂ϕ  on their product. For the sake of simplicity, a symbol ϕ  also stands for the 

according correspondence of their direct products nn
YX ↔ .  

 
A correspondence YX ↔  is a map YX →  of a set X  to a set Y  if any element of X  
is correspondent to a unique element of Y . Due to this condition, one can define a 
composition ZYX →→  of maps YX →  and ZY →  which is a map ZX → . In 
comparison with maps, a composition of correspondences YX ↔  and ZY ↔  is not 
well defined because different elements y  and 'y  of Y can correspond to an element 

Xx ∈  and it may happen that they, in turn, are correspondent to different subsets of Z . 
As a consequence, x  is correspondent through y  and 'y  to these different subsets. 

 

Let R  be an n -ary relation on a set X  defined by a selection relation on a set nX . 

Given the notation nnn

X XYX →×:π  and nnn

Y YYX →×:π , let us extend R  as XR πo  

on nn YX × , then let us restrict its domain ϕππ
ϕ

∩= )()( XX RR oo  to a correspondence 

nn YX ×⊂ϕ  and, finally, project it as ))((
ϕ

ππ XY R o  to nY . This is a domain of an n -ary 

relation on a set Y which is called the image of a relation R  under a correspondence ϕ . 

A domain of this image 
ϕ

R  obviously belongs to a projection Yϕ  of a correspondence ϕ  

in nY . 
 

In other words, an image 
ϕ

R  on Y  of a relation R  on X  consists only of elements of 

nY  which correspond to some points of a domain of R  in nX .  
 
In particular, let a correspondence ϕ  be a map of sets YX → , and let R  be a relation 

on X . Then a domain of its image 
ϕ

R  on Y  is an image )(Rϕ  of a domain of R  under a 

map ϕ . Now, if S  is a relation on Y , then a domain of its image 
ϕ

S  on X  is an inverse 

image )(1 S−
ϕ  of a domain S . 

 
Given a correspondence YX ↔:ϕ , if a set Y  is provided with some n -ary relation S  

and 
ϕ

R  is its particular, then ϕ  is said to be the morphism of a relation R  to a relation 

S . For instance, if Y  is endowed with an image 
ϕ

R , a morphism of R  to its image takes 
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place. It should be emphasized that, since a composition of correspondences is ill 
defined, a composition of relation morphisms is so.  
 
Let sets Y  and X  admit n -ary relations S  and R , respectively. A correspondence 

YX ↔:ϕ  is called the isomorphism of relations S  and R  if an image 
ϕ

R  of R  

coincides with S  and an image 
ϕ

S  of S  coincides with R , i.e. SR =
ϕ

 and RS =
ϕ

. 

Herewith, a correspondence ϕ  need not be a bijection of sets. 

 
Isomorphic relations on the same set are called equivalent if their isomorphism is a 
bijection of their contents.  
 
 
 

2. Structures 

 
 
Turn now to a notion of the structure on a set. 
 

Let X  be a set and nJ  some subset of a set 
nX2  of all subsets of nX , ,...1=n . In 

particular, nJ  can be an empty set. Let 
nj

R  denote a subset of nX  which is an element 

nb Jj ∈ . We think of it as being a domain of an n -ary relation on a universe X . Then 

these subsets constitute a system (
nn JjR

∈
) of n -ary relations on a set X . A family 

(
11 JjR

∈
,…,

nn JjR
∈

,…) of such systems (
nn JjR

∈
), ,...1=n , of relations is called the structure 

of characteristic ( 1J ,…, nJ ,…) on a universe X . Since such a structure is uniquely 

defined by its characteristic ( 1J ,…, nJ ,…), we usually say that this is a structure 

( 1J ,…, nJ ,…).  

 
This notion of the structure generalizes that of the relational system on a set X  when 

nJ  are non-empty finite sets for a finite set of numbers n  [3].  

 
Let XK ⊂  be a minimal subset of X  such that any element of K  is in some relation 

nj
R  to some elements of X , for instance, to itself. We say that K  is a content of a 

structure and its elements are objects of a structure. Relations 
nj

R  (and, equivalently, 

elements nn Jj ∈ ) are called the elements of a structure. These elements form a set 

J =( 1J ,…, nJ ,…)= n

n

J× . 

It may happen that they obey some constraints, given by a family of propositional 
functions with a help of logical symbols and quantifiers. 
 
Let us list some important examples of a structure. 
 
(i) A set X  without structure can be characterized as a set with an empty structure 

when all nJ  are empty sets. 
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(ii) If all elements of a structure are selection relations, i.e., J =( 1J ), it is called a 

selection structure. For instance, any set X  admits a selection structure }){( 1 XJJ ==  

and a selection structure }){( 1 xJJ
Xx∈

== U . 

 

(iii) Let X  be a topological space characterized by a system of open subsets { jR , 

XJj 21 ⊂∈ }. Then a system of selection relations ( JjR
∈

) provides X  with a structure 

( 1J ) which is a topological structure on X . 

 
(iv) Let R  be an n -ary relation on a set X . It provides X  with a structure 

( R )=( nJ ={ Rj }) where { Rj } is a subset of 
nX2  possessing only one element Rj  

corresponding to R . Given an element Xx ∈ , a relation R  yields an ( 1−n )-ary relation 

xR 1−
⊂

nX  such that xRxxRxx nxn 1111 ......
−−

⇔ . Then a system of relations RJ =( xR , Xx ∈ ) 

is a structure on a set X  which is called a structure modelled over a relation R . 
 

Since there is one-to-one correspondence xRx ↔  between the objects Xx ∈  of this 

structure and its elements xR , one can think of RJ  as being a structure on its own 

elements, i.e., an abstract structure (see below).  
 
(v) Let R  be a binary relation of a particular order on a set X . Then any element Xx ∈  

defines a selection relation xR  which contains all elements Xz ∈  such that xz ≤ . As a 

result, a system of relations ( xR , Xx ∈ ) constitute a structure of a particular order on a 

set X . 
 
(vi) Any map of sets YX →:µ  is a structure on a set YX ×  given by a morphism 

relation 
µ

R . It is called the morphism structure. Accordingly, a structure modelled over a 

morphism relation 
µ

R  is defined by a system of relations )(1
yRy

−
= µ , Yy ∈ , on X . Its 

content is X , and its elements form a set YX ⊂)(µ . It is called the structure of inverse 

images.  
 

(vi) In particular, if Y  in item (v) is a field of real numbers R, then 
µ

R  defines a real 

function on X .  
 
The fact that maps and functions are structures provide a wide circle of applications of 
this notion of a structure. In particular, differential geometric structures (sections of fibre 
bundles, connections and so on) are morphisms structures. 
 
There are the following two examples of algebraic structures defined by composition 
relations. 
  

(i) Let a set X  be endowed with a 3-ary multiplication relation 
µ

R  such that 
µ

µ Rbaab ),(  

for all Xba ∈, . They define a multiplication structure (
µ

R ) on X . Let a relation 
µ

R  obey 

the following conditions: (a) if 
µ

abcR , 
µ

cdgR  and 
µ

bdqR , then 
µ

aqgR  for all Xdba ∈,, ; 

(b) there exists an element Xe ∈ , called the unit, such that 
µ

eaaR  and 
µ

aeaR  for all 

Xa ∈ ; (c) for each element Xa ∈ , there exists an element Xa ∈
−1 , called the inverse 
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of a , such that 
µ

eRaa
1−  and 

µ
aeRa

1− . Then a multiplication structure (
µ

R ) is a group 

structure on a set X . For instance, if 
µ

abcR  implies 
µ

bacR  for all elements Xba ∈, , 

then a group is commutative. 
 
(ii) Let a set X  be provided with a 3-ary relation S , defined a structure of a 
commutative group Sxxxx )'(' + , and a 3-ary multiplication relation Rxxxx )'(' o . Let us 

assume that they satisfy a distribution condition Sxxxxxxx ))"'()(")('( +ooo . Then a 

structure ( SR, ) is a structure of an algebra on X . Such a structure is exemplified by the 

above mentioned algebra of integer numbers Z. 
 

Given a structure ( 1J ,…, nJ ,…) on a set X , let 'nJ  be subsets of nJ  for all ,...1=n . 

Then X  is provided with a structure ( '1J ,…, 'nJ ,…) named the constituent of a structure 

( 1J ,…, nJ ,…). A constituent of a structure is said to be proper if it does not coincide with 

a structure itself. A structure is called elementary if it admits a proper constituent. A 
structure is elementary iff it is characterized by one element.  
 

Let a set X  be endowed with a structure J =( 1J ,…, nJ ,…). Let us consider a map of J  

to a set 'J =( '1J ,…, 'nJ ,…) such that an image of any element j  of a structure J  in 'J  

represents a subset jj RR ⊂'  of a domain jR  of j  Sets 'jR  treated as relations 

constitute a structure 'J  on a set X  called the particular of a structure J . Obviously, a 
constituent of a structure is its particular because its elements are either elements of J  
or empty relations. 
  
For instance, let us consider a set of integer numbers Z endowed with an algebra 
structure ( RS , ). Its constituent is a structure of an additive group ( S ) on Z. Let 'R  be a 

subset of R  which contains elements Rrrrr )'(' o  where r are positive numbers only. 

Then a structure ( ', RS ) is a particular of ( RS , ).  

 

Structures on a set X  constitute a set that we denote X
S . A notion of the particular of a 

structure provides it with a relation of a particular order P  called the particularity 
relation. Its minimal elements is an empty structure, and the maximal one is a structure 

UXJ =( X2 ,…,
nX2 ,…) called the universal structure on a set X . Elements of this 

universal structure are arbitrary relations on a set X , i.e. all subsets of sets nX  for all 

n. Therefore any structure on a set X  is a constituent of the universal structure UXJ . 

Herewith, a set X  can be identified with a subset  

X = X

Xx

x 2}{ ⊂
∈

U  

of a set X2 , i.e., with a constituent )( 1 XJJ ==  of a universal structure UXJ  on X  itself. 

 

A particularity relation as a relation of a particular order provides a set of structures X
S  

on a set X  with a structure of a particular order which is called the particularity 
structure. If there is no danger of confusion, this term further stands for any structure of 
a particular order modelled over a particularity relation. Being a structure of a particular 
order, a particularity structure is an abstract structure (see below). 
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3. Compositions of structures 

 
 
In a general setting, a composition of structures is defined as a composition of elements 

of a set X
S  of structures. Let us consider some examples of such a composition. 

 
 

3.1. Image of a structure 

 
Following the case of relations, we consider images and morphisms (see below) of 
structures under correspondences of sets.  
 
Let YX ↔:ϕ  be a correspondence of sets X  and Y  defined by a selection relation 

YX ×⊂ϕ . It yields a unique correspondence of sets 
nn XY 22 ↔  denoted by the same 

symbol ϕ . Let a set X  be provided with a structure J =( 1J ,…, nJ ,…). Тhen images 

ϕ
)( jR  of relations jR , which are elements of a structure ( 1J ,…, nJ ,…) on a set X  yield 

a structure 
ϕ

J  =(
ϕ

)( 1J ,…,
ϕ

)( nJ ,…) on a set Y  called the image of a structure J  or the 

induced structure under a correspondence ϕ . 

 
For instance, if XY ⊂  is a subset, then an induced structure on it is defined by 

intersections n

j YR ∩  of domains of n -ary relations jR  of a structure on X , i.e., by the 

restrictions of functions jR  to XY ⊂ . It is called the restriction of a structure on X  to 

XY ⊂ . 
 
If YX ⊂ , then an image of a structure J  onto Y  is this structure itself regarded as a 
structure on a universe Y  whose content is YX ⊂ . It is called the extension of a 
structure J . 
 
 

3.2. Equivalent structures 

 

Let X  be provided with two structures ( 1I ,…, nI ,…) and ( 1J ,…, nJ ,…). These structures 

are said to be equivalent if there exists a map ϕ  of a set X  to itself such that it is a 

bijection of contents of these structures and nn JI ↔:ϕ  is a bijection for all n , i.e., ϕ  is 

an equivalence of relations constituting these structures. The identity equivalence when 

a map ϕ  is an identity morphism =)( nIϕ  Id )( nI  of all domains of relations is said to be 

a symmetry of a structure. 
 
For instance, a selection relation R  on a set X  uniquely defines a binary similarity 

relation 2R  on X , and vice versa. However, these relations R  and 2R  yield non-
equivalent structures on X . 
 
Let a set X  admit a group structure ( R ) such that Rbaab )( o  for all Xba ∈, . Any 

element Xa ∈  defines a binary morphism relation Ra  on X  such that Rbab a)( o  for all 
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Xb ∈ . A set of relations Ra , Xa ∈ , defines a structure )( 2 RJJ a
Xa∈

== U  on X  which is 

a structure of a left regular representation of a group X . It is not equivalent to a group 

structure ( R ) on X . At the same time, relations Ra , Xa ∈ , constitute a set which is 

canonically bijective to a set X  and, thus, is provided with a group structure, isomorphic 
to a structure ( R ) (see below), and a structure of a left regular representation. Similarly, 
a structure of a right regular representation is introduced. It is not equivalent to that of a 
left regular representation unless a group is commutative.  
 
A structure is not equivalent to its proper constituent, but it may happen that it is 
equivalent to its particular. 
 
One can show that, for equivalent structures, constraints between their elements are 
maintained [3]. 
 
We agree to say that equivalent structures on a set X  belong to the same type. Since 
an equivalence of structures is an equivalence relation, the types of structures on a set 
X  constitute a set of equivalence classes of structures on X  with respect to their 
equivalence. For instance, a structure and its proper constituent belong to different 
types of structures.  
 
 

3.3. Morphisms of structures 

 

Let X  and Y  be provided with structures J =( 1J ,…, nJ ,…) and I =( 1I ,…, nI ,…), 

respectively. One says that a correspondence of sets YX ↔:ϕ  defines a morphism of 

structures IJ →:ϕ  if an image 
ϕ

J  on Y  of a structure J  on X  is a particular of a 

structure I  on Y . Herewith, an image 
ϕ

I  on X  of a structure I  on Y  need not be a 

particular of a structure J , i.e., a morfism ϕ  of structures IJ →  fails to be a morfism of 

a structure I  to J  in general. 
 
For instance, this definition of morphisms of structures reproduces standard definitions 
both of morphisms of algebraic structures and continuous maps of topological spaces. 
 
Note that, if a set Y  is provided with an image of a structure on X  under a 
correspondence YX ↔:ϕ , we have a morphism of a structure on X  to its image. 

 
It should be emphasized that, since a composition of correspondences of sets is ill 
defined, a composition of morphisms of structures is so.  
 

If YX ↔:ϕ  is a correspondence such that nn IJ =
ϕ

)(  and nn JI =
ϕ

)(  for all n , then ϕ  

is said to be the isomorphism of structures. Obviously, equivalent structures are 
isomorphic. 
 
A morphism of structures IJ →:ϕ  under a correspondence YX ↔:ϕ  is called a 

representation of a structure J  on a universe Y  if its image 
ϕ

J  is a constituent of a 

structure I . In particular, a morphism of a structure to its image is a representation. If 

ϕ
)( nn JJ →  is a bijection for all n , then a representation is said to be exact. 
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If a set Y is provided with a universal structure UYJ , any correspondence  YX ↔:ϕ  

defines a morphism of structures, and an image 
ϕ

J  on Y  of any structure J  on X  is a 

constituent of this universal structure UYJ  on Y , i.e., we have a representation of a 

structure J  in UYJ .  

 

In particular, let a set X  is provided with a structure J =( 1J ,…, nJ ,…). Let 

UXJXX ⊂→:ϕ  be its canonical injection onto a subset }{xX
Xx∈

= U  of a set of elements 

of a universal structure UXJ  on X . Then it yields an isomorphic structure 
ϕ

J  on X  and, 

consequently, an exact representation 
ϕ

J  of a structure J  on elements of UXJ .  

 
Thus, any structure on a set X  admits an exact representation on elements of a 
universal structure on X , and a universal structure on X  is carried out on its own 
elements.  
 
A structure on its own elements is called abstract. It means that relations constituting an 
abstract structure are propositional functions on a set of these functions.  
 

For instance, any n -ary relation R  on a content X  defines an abstract structure RJ  

=( xR , Xx ∈ ) modelled over R  on X .  

 
Structures of a particular order and, in that number, particularity structures are abstract. 
 
A structure of a left regular representation of a group also is abstract.  
 

Moreover, any structure on a set X  possessing a constituent )( 1 XJJ ==  is the 

abstract one. For instance, a discrete topological structure on a set X  is abstract 
because, in this case, any element of X  is its open subset.  
 
Obviously, a universal structure on a set is abstract. It follows that any structure is 
represented as a constituent of an abstract structure. 
 
 

3.4. Combinations of structures 

 

Let ( 1I ,…, nI ,…) and ( 1J ,…, nJ ,…) be two structures on a set X . Then their maximal 

common constituent ( 11 IJ ∩ ,…, nn IJ ∩ ,…) is a structure on X  called the intersection of 

these structures.  
 

One can generalize this notion to structures ( 1J ,…, nJ ,…) and ( 1I ,…, nI ,…) on different 

universes X  and Y , respectively. For this purpose, let us consider their induced 
structures on an overlap YX ∩  whose intersection on YX ∩  is treated as an 

intersection of structures ( 1J ,…, nJ ,…) and ( 1I ,…, nI ,…). It is defined by overlaps  

SXSRYR
nn

∩×=∩=×∩  
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of domains of relations R  and S  which constitute structures ( 1J ,…, nJ ,…) and 

( 1I ,…, nI ,…), respectively.  

 
In particular, it may happen that an intersection of structures is an empty structure on a 
non-empty overlap YX ∩ . 
 
Structures are called compatible if their intersection is non-empty. Obviously, identically 
equivalent structures are compatible. 
 
Structures are called independent if their intersection is empty on a non-empty overlap 
of their universes. For instance, two structures given only by n -ary and )( nk ≠ -ary 

relations, respectively, are independent. Obviously, structures are independent if an 
overlap of their contents is empty. 
  

Let ( 1J ,…, nJ ,…) and ( 1I ,…, nI ,…) be structures on X  and Y , respectively. Let us 

consider their extension onto a union YX ∪ . Then a set YX ∪  is endowed with a 

structure ( 11 IJ ∪ ,…, nn IJ ∪ ,…) named the union of original structures.  

 
A structure on a set is called connected if it is not a union of independent structures.  
 
Clearly, a structure whose elements are non-empty n -ary and )( nk ≠ -ary relations is 

disconnected. Consequently, any structure ( 1I ,…, nI ,…) is a disconnected union of 

structures ( 1I ), …, ( nI ),…  

 
 
 

4. Universal structure 

 
 
As was mentioned above, one can extend a notion of a structure on a set to that on a 
class.  
 

Let U  be a proper class of all sets. Then its products UU
n

n
×= , ,...1=n , also are 

classes. Recall that any class is bijective to a proper class. All subsets of n
U  form a 

proper class UVn ≈ . Therefore let us provide U  with a structure UJ =( 1V ,…, nV ,…) 

generated by all subsets of classes n
U . We call it the universal structure on an absolute 

universe U . Then a structure on a class U  is defined as a constituent 

S =( 11 VS ⊂ ,…, nn VS ⊂ ,…) of a universal structure.  

 
Let X  be a set provided with a structure J . Let UX →:ϕ  be its canonical bijection 

onto a subset UX ⊂  of a class U  which consists of elements Ux ∈}{ , Xx ∈ . Then ϕ  

yields an isomorphic structure )(Jϕ  on UX ⊂  which is a constituent of a universal 

structure on U . 
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Consequently, any structure on a set admits an exact representation on a proper class 
U  and, thus, it is isomorphic to a constituent of a universal structure.  
 
Certainly, structures on sets fail to exhaust all constituents of a universal structure 
because their contents are only subsets of U .  
 
Given the canonical correspondence of elements Ux ∈  to subsets Ux ⊂}{ , any object 

of a universal structure is represented by its element so that an absolute universe can 
be identified to a constituent of a universal structure. Consequently, a universal 
structure is defined on its elements and, thus, is an abstract structure called the abstract 
universal structure.  
 
It follows that any structure is represented by a constituent of an abstract structure 
which the abstract universal one.  
 
In conclusion, let us note that though the fact that a class can be a domain of a relation 
may motivate us to generalize a notion of the structure to the case of such kind 
relations, we can not consider a system of relations if at least one of them is a class.  
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