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GEOPHYSICS
Modeling of the Dissipation Rate 
of Turbulent Kinetic Energy
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Abstract—We consider a relaxation equation for turbulence wavenumber in semi-empirical turbulence clo-
sures. It is shown that the well-known phenomenological equation for the dissipation rate of turbulent kinetic
energy can be related to this relaxation equation as a close approximation of the latter for stably stratified
quasi-stationary f lows. The proposed approach makes possible clarification of turbulent closures in the
boundary layers of the atmosphere and ocean by specifying the equilibrium states and relaxation relations
consistent with the direct and large eddy simulation data.
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(1) In large-scale models of the atmosphere and
ocean, turbulence in the boundary layers is described
using semi-empirical closures. The most common
approach considers the equations for the second-order
moments of hydrodynamic fields. Under the assump-
tions of Kolmogorov [1], the problem is simplified and
requires determination of the dissipation rate  of tur-
bulence kinetic energy (TKE)  or, equivalently, find-
ing turbulent length  or time scale

. Modern closures still unsatisfactorily repro-
duce stably stratified turbulence [2] and diurnal cycle
dynamics [3], and the parametrization of dissipative
processes remains one of the main challenges.

Let us consider the traditional two-equation clo-
sures [4] for horizontally homogeneous turbulence,
containing, in addition to the equations for the first-
order moments, prognostic equations for  and :
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where  is the shear production of turbulence and  is
the production or consumption of energy by buoyancy
forces. The coefficients of turbulent viscosity  and
diffusivity  are related to  and  by the following
expressions: , where  are dimen-
sionless stability functions. We restrict ourselves to the
so-called “standard”  model, for which

 and  are constants, and the turbu-
lent Prandtl number  =  =  ≈ 0.8 is
fixed as are the Schmidt numbers: , .

Equation (2) is usually considered as completely
empirical. It is written similarly to Eq. (1) by adding
dimensional factors to each of the terms on the right-
hand side. This equation contains four constants: ,

, , and . The simulation results and the math-
ematical properties of the system of equations depend
strongly on the choice of constants (see [5]). The
greatest uncertainty is the choice of constant . For
example, in stably stratified conditions, the values are
considered in the interval . Constants

 and  are determined from labora-
tory experiments [6]. The value  is prescribed
based on the requirement of consistency of equations
with the approximation of the logarithmic layer [4].
There are theoretical considerations [4, 5, 7] regarding
the choice of constants, which, however, do not give
an unambiguous conclusion about their universality.

We note that if the turbulent scale  is known, then
there is no need in additional prognostic equation. For
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stratified turbulent boundary layers in the states close
to statistically stationary, this scale can be determined
using the Monin–Obukhov similarity theory [8] and
the empirical results of its generalization to the cases
where the f luxes are no longer constant with height.
Equation (2) is used to describe the transition regimes
with a rapid change in external parameters specifying
together with Eq. (1) the evolution of a specific
dimensional integral characteristic of the f luctuation
scale at the moments of adjustment of the entire tur-
bulence spectrum to a new equilibrium state.

The turbulent wave number is a convenient integral
characteristic of the spectrum .
For example, for two-dimensional turbulence, the
energy-weighted wave number is fundamental, being
one of the invariants of an ideal two-dimensional
fluid, while for the three-dimensional f lows, the scale

, where  is the wave-weighted average wave-
number over the cospectrum, is a good approximation
of the Prandtl turbulent mixing length (see [9]).

Here, we will show that Eq. (2) can be considered
as the equivalent of a simple equation for the turbulent
wave number  containing only one empirical
constant. We will establish relations between the con-
stants , , , and  and show that if the choice
of these constants is consistent with Monin–Obukhov
similarity theory, the results of modeling of a stably
stratified boundary layer may be improved.

(2) The evolution of the turbulent scale of the wave
number  should describe the adjustment of the
spectrum to the equilibrium state. We restrict our-
selves to the relaxation model of such an adjustment:

(3)

where  and  is the equilibrium turbulent
length scale determined by the geometry of the f low
and stratification. Relaxation time  is
assumed to be proportional to the turbulent time scale

;  is a new empirical constant. A similar equation
under the assumption of spectrum self-similarity was
obtained from the spectral balance equation in [7] for
homogeneous forced turbulence. In case of decaying
homogeneous turbulence, at  and , the
solution of system (1)–(3) has asymptotics ,
where  is the exponent depending on the relax-
ation constant. The exponential growth of the turbu-
lent scale with time agrees with the conclusions by
Kolmogorov (see [1] and references therein). Publica-
tion [1] is a short summary of a presentation by Kolm-
ogorov at the General Meeting of the Department of
Physico-Mathematical Sciences of the USSR Acad-
emy of Sciences (on January 26–28, 1942, in Kazan).
During a discussion about this presentation, L.D. Lan-
dau emphasized that “the existence of the curl of
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velocity in a turbulent f low is limited to a finite region
of space, and the qualitatively correct equations of tur-
bulent motion should lead to such a distribution of
vortices”; that is, in real f lows, the limit of the value of
kT is not equal to zero.

We use Eqs. (1) and (3) to obtain an equation for
the dissipation rate :

(4)

where  is the equilibrium state and opera-
tor  is written as

(5)

Equation (4) is also a relaxation relation, in which
 is related both to the local equilibrium with the total

production of TKE  and to .
Let us define the equilibrium dissipation rate for

horizontally homogeneous turbulence under stable
stratification when dimensionless velocity gradient 
at any  is approximated with a good accuracy by a
universal function [10]:

(6)

Here,  is the momentum flux,  is the
Obukhov length scale, ,  is the Karman

constant, and  is the maximum value of the Rich-
ardson flux number . Then, following
[11], assuming locality of turbulent processes and
neglecting the third-order transport terms, we get the
following expression for the equilibrium dissipation
rate based on the balance of production and consump-
tion of TKE:

(7)

where . Universal relation (7) is
confirmed by the results of direct numerical simula-
tion and the data of measurements (see [11]) in a wide
range of values of  including conditions of strong
stability.

Taking into account relation (7) for ε0, we write
Eq. (4) as
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Fig. 1. Vertical distribution of the potential temperature (left) and the wind speed (right). The relaxation equation for the dissi-
pation rate (4): CR = 0.48, solid line. Standard equation (2): , dashed line; , dashed–dotted line; ,
dashed–double dotted line; , dotted line. LES-model: circles.
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The standard equation for the dissipation rate (2)
can be considered as a particular case of equation (8),
in which the last two terms on the left-hand side can be
approximated by the diffusion operator:

(10)

We limit ourselves to the neutral stratification and
consider only the surface layer with constant f luxes, in
which the TKE value depends only slightly on height;

hence,  and   . Then constant 

can be expressed by means of constant  as follows:

(11)

A similar expression for constant σε can also be
obtained in the standard E – ε model (1)–(2), by tak-
ing into account the asymptotics lT ~ z for the length
scale near the surface [4].

Thus, it can be expected that, under neutral and
weakly stable stratification, the standard equation for
the dissipation rate (2) and Eq. (4) obtained from
relaxation equation (3) will have close stationary solu-
tions if the equilibrium dissipation  is determined
from a relation of type (7) and the set of constants

 ( ) and  satisfy relations (9), (11).
However, in the case of nonstationary regimes, the

dynamics of the systems under consideration may turn
out to be different due to the poor representability of
the residual terms in Eq. (8) in the form of a diffusion
operator.

The best agreement between the equilibrium solu-
tion (7) and the results of direct numerical simulation
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[11, 12] are observed at , . We use
these values and relations (9) at  and
obtain . This selection of constant  is the
most justified for the standard  model.

(3) We used the formulation of numerical experi-
ments [2], proposed in the framework of the Global
Energy and Water Exchanges, Atmospheric Boundary
Layer Study program (GEWEX GABLS), to compare
turbulence models for reproducing a height-increas-
ing, stably-stratified atmospheric boundary layer. The
constants given in Section 1 were used in the standard
model (1)–(2), while the value of  varied. Experi-
ments with relaxation equation (4) were performed at

.
Figures 1 and 2 show the profiles of temperature,

wind speed, kinematic turbulent heat f lux, and the
total momentum flux averaged over the ninth hour of
calculation, in comparison with the large eddy simula-
tion (LES) data [13]. At  the solution of the
standard model is close to the results of the model with
relaxation equation (4) and to the LES data. Devia-
tions are comparable with the discrepancies in the
results of large eddy simulations [14]. When the selec-
tion of constant  is inconsistent, the height of the
boundary layer in the standard model is overestimated
and the error in reproducing turbulent heat and
momentum fluxes increases.

(4) The equation for the turbulence kinetic energy
dissipation rate  was obtained from the equation of
relaxation of the turbulent wave number  to its equi-
librium value. It is shown that the derived equation has
a form close to that of the standard phenomenological
equation for the dissipation rate. A relationship is
established between the four constants in the standard
equation for the dissipation rate and the relaxation
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Fig. 2. Vertical distribution of the heat f lux (left) and total momentum flux (right). The designations of the lines coincide with
those shown in Fig. 1.
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constant  in the equation for . It is shown that
when the equilibrium state of the system is consistent
with local Monin–Obukhov similarity scaling, and
the choice of constants is appropriate, both
approaches considered here lead to close results.
Moreover, the basic characteristics of stably stratified
boundary layers near steady state are reproduced well.
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