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LARGE-SCALE VORTICES IN HELICAL 
TURBULENCE OF INCOMPRESSIBLE FLUID 

V. V. GVARAMADZE*, G.  A. KHOMENKO and A. V.  TUR 

Space Research Institute, Academy of Sciences, Profsoyusnaya ul. 84/32, Moscow 
SU-117810, USSR 

(Received 25 November 1987; in final form 22 June 1988) 

The interaction of a mean flow with a random fluctuation field is considered. This interaction is described by 
the averaged Navier-Stokes equation in which terms nonlinear in the fluctuation field are expressed in terms 
of the mean flow and the statistical properties of the fluctuation field, which is assumed to be homogeneous, 
isotropic, and helical. Averaged equations are derived using a functional technique. These equations are 
solved for a mean background flow that depends linearly on the position vector. The solutions show 
that large-scale vortices may arise in this system. 

1. INTRODUCTION 

The problem of the development of large-scale, long-lived vortices in turbulence, that 
are usually called coherent structures, has recently attracted much attention. Here we 
consider those coherent structures that are generated by the turbulence rather than 
those that are produced by the decay of regular flows or are due to instability of a 
background flow (e.g., the Karman vortices). In statistical theories, the turbulent 
medium is usually considered to be homogeneous and isotropic. The questions arise: is 
self-organization possible in turbulent media, and under what conditions do coherent 
structures arise? On the one hand, common sense suggests that it is very difficult to 
extract energy from a chaotic system, and only some specific additional properties of 
such systems can make it possible. On the other hand, we frequently see evidence of 
self-organization in nature. For instance, it is widely believed that tropical cyclones 
(typhoons) extract their energy from small-scale convection; there are no regular flows 
in tropics that can feed a typhoon through their decay. It is clear from 
thermodynamical reasoning that homogeneous, isotropic turbulence, which does not 
possess any distinguished scales or preferred directions, is too symmetric to give birth 
to large-scale vortices. Self-organization seems to be improbable in this case. Thus, we 
expect the breaking of some symmetry to be a necessary condition for self- 
organization. 

In this paper we consider turbulence with broken mirror symmetry. A simple 
example of such a turbulence is a helical one. In helical turbulence, the correlation 
( V . V  x V )  is nonzero, where V is the random fluctuation velocity; the numbers of 
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54 V. V. GVARAMADZE ET AL. 

right-handed and left-handed vortices are not equal to each other. The integral j(V’. 
x V ) d 3 r  is a topological invariant of the motion that characterises the number of 
linkages of streamlines in the fluid volume. 

The hypothesis that a helical turbulence can amplify large-scale vortices was 
proposed rather long ago on the basis of the similarity between the equations 
governing vorticity in hydrodynamics and magnetic fields in magnetohydrodynamics 
(see Moffatt, 1981 and references therein). It was shown by Steenbeck, Krause and 
Radler (1966) (see also Krause and Radler, 1980) that helical turbulence can amplify 
large-scale magnetic fields in MHD even when it is homogeneous and isotropic. This 
phenomenon is usually called the alpha-effect. It is a common point of view that the 
magnetic fields of spiral galaxies and of the Sun can be explained on the basis of the 
alpha-effect (see, e.g., Parker, 1979; Zeldovich, Ruzmaikin, and Sokoloff, 1983). 
Therefore, an attempt to establish an analoge for the alpha-effect in hydrodynamics 
seems to be quite natural. 

Krause and Rudiger (1974) have shown that in an incompressible fluid the effect 
analogous to the alpha-effect is precluded by the symmetry of the mean-field Reynolds 
stresses in the averaged Navier-Stokes equation. Their result seems to forbid 
completely a hydrodynamical counterpart of the alpha-effect. The analogy between the 
vorticity and induction equations thus seems to be a purely formal one, because the 
nonlinearity of the vorticity equation finds no parallel in the linearity of the induction 
equation. 

Nevertheless, the generation of large-scale vortices by helical turbulence is a real 
effect. This statement does not contradict the conclusions of Krause and Rudiger 
(1974). As a matter of fact, the presence of helicity alone is insufficient in 
hydrodynamical turbulence for energy transfer from small scales to large ones; some 
additional symmetry violation is necessary. 

As shown by Moiseev, et al. (1983a) (see also Tur et a / .  1984; Sagdeev et a/ .  1984), a 
hydrodynamical alpha-effect exists in compressible fluids, where the role of the 
additional symmetry-breaking factor is played by compressibility. Hydrodynamic 
alpha-effect equations have been derived there under the assumption that the 
turbulence is a random process &correlated in time. The form of the final 
equations for the mean vorticity coincides exactly with the MHD u-effect 
equations. The pseudoscalar coefficient a in the generation term V x (uV x V) 
proved to be proportional to the helicity of the turbulence and independent of the 
compressibility parameter, M = Acor/(czcor), where A,,, are spatial and temporal 
characteristic scales of the turbulence, and c is the sound speed. We would like to 
clarify this point. If one abandons a &correlated approximation the factor u 
becomes dependent on M .  When zcor<<(Acor/c) i.e. M>>l,  the leading term in the 
asymptotic expansion of u(M) in powers of M-’ ,  is independent of M .  The limit 
M+co as z,,,+O, that corresponds to the &correlated approximation, is con- 
sidered by Moiseev et a/ .  (1983a). In the oppostie limit zcor>>(AcOr/c), i.e. M<<l,  the 
factor u is proportional to M 2 .  

We show below (see also Tur et af., 1987) that the hydrodynamic alpha-effect is 
present also in incompressible fluids when the helical turbulence is supplemented by a 
large-scale flow, which breaks the symmetry. Sagdeev et al. (1985) have given another 
example of the alpha-effect in an incompressible liquid in which a temperature gradient 
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VORTICES IN HELICAL TURBULENCE 55 

in the gravity field serves as a symmetry breaking factor. These authors and Moiseev et 
al. (1986, 1987, 1988) have shown that the alpha-effect is present in helical turbulent 
convection. 

The connection between helicity and inverse energy cascades in hydrodynamical 
turbulence has been noted by Brissaud et al. (1973) and Kraichnan (1973). Indeed, the 
nonlinear term in the vorticity equation can be expressed as V x [(V x V) x V]. When 
the directions of V x  V and V are correlated, the inertia term vanishes and 
Kolmogorov's energy cascade toward small scales is suppressed. The connection 
between helicity fluctuations and inverse energy cascade is discussed also by Levich 
and Tzvetkov (1985). Recently Frisch et al. (1987) have given a new and important 
example of large-scale vortex generation in an incompressible fluid. Their approach is 
based on averaging over the spatial periodicity of a three-dimensional regular 
anisotropic flow lacking panty invariance : this leads to the growth of large-scale 
modes, an anisotropic alpha-effect. 

In this paper we derive and analyse an averaged equation that describes the 
generation of large-scale vortices by helical turbulence. In our approach we apply a 
closure procedure to the averaged equations, which is based on a functional technique; 
we do not use any model closure hypothesis. The paper is organized as follows. In 
Section 2 the basic equations are derived, and qualitative aspects are considered. In 
Section 3 we derive the averaged equation that describes the evolution of large-scale 
perturbations under the influence of helical turbulence and steady nonuniform large- 
scale flow. In Section 4 we solve that equation in the particular case a large-scale 
potential flow having components linear in the coordinates. Concluding remarks are 
presented in Section 5 .  It is shown that the averaged equation describes the 
development of large-scale vortices in helical turbulence. 

2. BASIC EQUATIONS AND QUALITATIVE CONSIDERATIONS 

We start from the equations of motion of an incompressible fluid 

where Vi is the velocity field, P is the pressure (the density p is uniform), vo is the 
kinematic viscosity. Using the incompressibility condition, we eliminate the pressure 
to obtain 

where lIij=6,-A-' aiai is the projection operator, and A - l  is the inverse Laplace 
operator. Represent the velocity field as a sum of regular and random components: 

v= (V) + v ,  (V') =o, (2.4) 
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56 V. V. GVARAMADZE ET AL. 

where angular brackets denote the ensemble average. The averaged Navier-Stokes 
equation has the form 

(2.5) 

The incompressibility condition di( V i )  = 0 is always implied. The averaged equation 
(2.5) includes an unknown term ( ViVi )  which represents the Reynolds stresses, and 
closure is required. Our aim is to express the Reynolds stresses in terms of the mean 
field (V) and given statistical parameters of the turbulence. Thus, we consider the 
influence of the turbulence on mean fields and do not take into account the back 
reaction of the latter on the turbulence. From the formal point of view, this means 
that our aim is to derive a mean-field differential equation that involves statistical 
parameters of the turbulence as coefficients. We are especially interested in the 
generation and evolution of large-scaIe vortices, i.e. vortices whose spatial and 
temporal scales, L and T, are large compared with the energy-range scales of the 
turbulent fluctuations, 1 and z. Thus, the statement of the problem implies the 
presence of two small parameters. These are the ratios of spatial and temporal 
scales, 1/L<< 1 and z/T<< 1. The two-scale approximation seems to be justified since 
we are concerned with the influence of small-scale motions on the large-scale ones, 
rather than with inverse energy cascades or other statistical turbulent properties. 

Thus, consider a given homogeneous isotropic turbulence with non-zero mean 
helicity. The correlation tensor of this turbulent flow has the form: 

where r = rl  - r2, S ,  is the unit tensor, E~~~ is the unit, completely antisymmetric tensor, 
C(r)  and B(r) are scalar functions and, g ( r )  is a pseudoscalar function. Expression (2.6) 
is the most general form of the two-point correlation function for a homogeneous, 
isotropic, helical vector field (see Batchelor, 1953; Monin and Yaglom, 1965). Indeed, 
since the vector field is homogeneous, the correlation function can depend only on the 
difference between rl and r2. Due to isotropy, the scalar functions C and B and 
pseudoscalar function g can depend only on the modulus of the vector r; in 
constructing the correlation tensor we can use only one vector r and two constant 
tensors, 6, and qjk. Thus, we arrive at expression (2.6). Note that Eyk is a pseudotensor 
but the correlation ( ViVi) is a real tensor, so that g(r)  should be a pseudoscalar. The 
function g has a simple physical meaning: (V(r) - V x V'(r)) = 6g(O). Indeed, the 
quantity (V - V x V) is a pseudoscalar just like g. The scalar product V . V x V is usually 
called the helicity. The helicity integral over a liquid volume, j ( V  - V x V)d3r is a 
topological invariant (an integral of motion in ideal fluids) that characterizes the 
topology of the vector field V lines (see Moffatt, 198 1 and references therein). Helical 
turbulence is an example of turbulence lacking mirror symmetry. This implies that the 
right-hand and left-hand systems of coordinates can be distinguished through 
measurements of certain parameters ((V V x V) in a helical turbulence). 

Let us assume now that we have a large-scale velocity fluctuation, (V), 
superimposed on a homogeneous, isotropic, helical turbulence. This fluctuation 
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VORTICES IN HELICAL TURBULENCE 51 

interacts with the turbulence, and the latter acquires an inhomogeneous perturbation. 
The random velocity field thus can be decomposed into two parts, homogeneous and 
inhomogeneous fields: V = V' + 0. Now expression (2.6) describes the correlation 
function of the homogeneous field. (V'V'), while an inhomogeneous perturbation to 
the correlation function has the form (VF), where we have neglected the nonlinear 
perturbation (tt) (such an omission is justified when the Reynolds number is small). 
In other words, we consider a weakly nonlinear regime. This yeidls the following 
equation : 

where the term IIij a,( vjvk) vanishes due to homogeneity of the random field V'. 
Now the question is: what forms of the nonlinear term in (2.7) are admissible? Recall 

that (V' t )  is inhomogeneous. But there is only one inhomogeneous quantity in our 
problem, viz. (V(r)). Therefore, theunknown tensor (V' t )  must be a function of (V), 
which can be expanded in a series in power of (V) and its derivatives, 

where the tensors T(") are constants: 

The tensors T(") can be constructed from the tensors Bik ,  ci jk,  the scalar C and the 
pseudoscalar g. Since (2.5) involves the spatial derivatives of the Reynolds stresses, the 
constant tensor T'O'makes no contribution to (2.5). The third rank tensor T( ' )  can only 
be & i k l .  (Obviously, a third rank tensor cannot be constructed from 6 ,  and scalar 
constants.) But (2.5) involves a combination of tensors that is symmetric in its indices, 
namely ( V: 5 )  + (Vie). Therefore, the term proportional to T(') also vanishes in 
(2.5). Thus, the alpha-term (that has the form V x (cIV), with CI proportional to the 
mean helicity) is precluded in the averaged Navier-Stokes equation (Krause and 
Rudiger, 1974). This brings us to Reynolds hypothesis, which presumes that 

where v,  is the turbulent viscosity. It can be easily shown that the incompressibility 
condition ai Vi = 0 leads to 

T$i, 8, a,( r/;.) =const A( v). 
The constant coefficient v, has been evaluated by Krause and Rudiger (1974). 

It is now clear that the alpha-effect in hydrodynamics is possible either when the 
nonlinear term in equation (2.5) does not possess the above mentioned symmetry (e.g., 
in compressible fluids; see Moiseev et al., 1983a) or when the tensor T(')  includes some 
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58 V. V. GVARAMADZE ET AL. 

additional terms apart from the tensor & i k [ .  The latter case is possible if, for example, a 
three-dimensional steady flow, V(')(r)? is present. We do not discuss here the possible 
forms of the tensors T("' in this case, since we evaluate them explicitly below. We note 
only that as a result the nonlinear term in (2.5) not only affects the viscosity, but also 
gives new terms proportional to the first derivatives of {V) with respect to the 
coordinates, 

where the tensor G depends on both the steady flow V'O' and the correlation tensor of 
the turbulence. It seems that by invoking a regular flow we make the problem less 
interesting, since it is clear that large-scale vortices can originate in such systems 
through the decay of this regular flow. However, we show below that, in our case, 
large-scale vortices arise even when V'O) is a potential flow. This fact allows us to 
understand the symmetry-breaking role of the regular flow as a trigger mechanism that 
removes obstacles to the generation of large-scale structures by helical turbulence. 

Let us now redefine the background state. Represent the basic flow V = V'O) + V' as a 
combination of a regular steady flow (V) = V(O) and a statistically-steady (station- 
ary) turbulence V' that are described by 

nij Jk(  Vio'Vy) + { Vk q)) = v0A Via' + FiO', (2.11) 

where F is the external force, F =F")+ F' (with F(O)= (F)) that drives both the steady 
flow V'O) and the turbulence V'. The turbulence V' is supposed to be homogeneous, 
isotropic and helical; the correlation function { V V j )  is given by (2.6). Since the 
turbulence is produced by an external force, we may write ({V'Vt)112)/V(0)-~, where 
~4 1. In addition, we assume that the turbulent Reynolds number is small. 

Now we disturb the basic flow, 

V=(V'O)+V') +(V("+V), (2.12) 

where V(')is the perturbation ofthe regular component and 't is the perturbation of the 
random component of the velocity field. Suppose that, because of a presumed low 
value of the Reynolds number, these perturbations are small. Thus, we may envisage 
the following scenario. In the basic flow, that is described by (2.10) and (2.11), a large- 
scale fluctuation V") arises. This fluctuation interacts with the turbulence and evolves 
in time so that we may consider 0 as a response of the turbulence to the disturbance 
V'". Thus, our problem can be understood as a stability problem for the basic flow. 

On neglecting the nonlinear perturbation (88),  the equation for the large-scale 
fluctuation V") takes the form: 
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VORTICES IN HELICAL- TURBULENCE 59 

The equation for the small-scale perturbation of the turbulent velocity, t, is 

d,Vi+IIij dk(Vio)vj+ Vy)Vk+ Vil)Vt,+ VY'q)=VoAVi, (2.14) 

where small terms 99, VV', V " ) t  are neglected. 
Equations (2.13) and (2.14) are the basic equations of the problem. Equation (2.13) 

involves an unknown quantity (V' t ) .  Closure is achieved after we have evaluated this 
correlation in the next section using (2.14), which determines the random function t as 
a functional of the given random process V'. 

3 .  CLOSURE OF THE BASIC EQUATION 

To calculate one-point correlations ( c ( r ,  t)vj(r, t)) and ( vk(r, t)Vt,(r, t ) )  we use a 
functional technique (see Tatarsky, 1974; Klyatskyn, 1975). These correlations are the 
mean values of the products of the functional t, of the random process V', and the 
process V' itself. Using the Furutsu-Novikov formula, we can express these mean 
values in terms of integrals of the random process correlation function and the average 
of the functional derivative of this functional in the random process: 

where F[4] is a functional of the random process &t). In our case the quantity 9 
is a functional of the random process V'. To obtain the required mean value we 
should evaluate the functional derivative dt/dV'. First, we solve (2.14) and obtain 
an explicit expression for 0. Then the functional derivative can be evaluated. 
Recast (2.14) as 

8, q(r,  t )  + A & )  iQr, t )  = T(r, t) ,  ( 3 4  

where the operator fi has the form 

(3.3) 

(3.4) 

fiik(r)= -VoA dik+fiik(r), 

fiik(r) = amnij[ VE)(r)djk + ~fo)(r)~,,],  

and the right-hand side of (3.2) is given by 

Ti(r,t)= -d,,,n,,(Vg)Vt,+ VY)Vm), 

The operator &f in (3.2) does not depend on time. Thus, the solution (see Bellman, 
1960) has the form 
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60 V. V. GVARAMADZE ET AL. 

where the vector C is determined by initial conditions and is independent of time. The 
initial condition t ( r ,  0) =O gives C =O.  Note that the operator fi in the exponent in 
expression (3 .5)  involves two noncommutative parts [see ( 3 . 3 ) ] .  Indeed, V(')(r) 
depends on the position, and fi does not commute with the Laplace operator. 
However, we consider a weakly nonlinear regime (the turbulent Reynolds number 
is small) in which, in dimensionless variables, the second term in (3.3) is 
proportional to a small parameter. To expand the operator exponent in powers of 
a small parameter, we use the Feynman formula (see Feynman, 1951; Bellman, 
1960) 

where a 6 1, I^ is the unit matrix and the operators 2 and B do not commute. Using this 
formula we can represent the solution (3 .5)  of (3 .2)  as 

where terms of second and higher order are omitted. In this approximation, the 
dependence of the linear functional 5 on the random process V' is given by (3 .7)  and the 
evaluation of the functional derivative becomes trivial. The result is 

(Note, that the higher functional derivatives vanish due to linearity of 3 in V'.) 
The Furutsu-Novikov formula for the correlator (OV') gives 

where the correlation function of the random field P is given by (2 .6)  and the averaged 
functional derivative (St//sVt) is determined by (3 .6) .  Now we are ready to evaluate 
the integral in (3 .9) .  To do this, expand the operators in (3.9) in powers of l/Lwhere A is 
a small scale characteristic energy-containing range of the turbulence and L is the large 
scale of the mean flow. Details of calculations are given in the Appendix. The result is 
the following averaged equation: 
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VORTICES IN HELICAL TURBULENCE 61 

P ( l )  is the mean pressure, v =  vo + v,, with 

1 mco 

(3.12) 

[Expression (3.12) for vt coincides with result of Krause and Rudiger, 1974.1 The 
constants G and B are given by 

1 2 1 P  m m 

B=1--(-) 1 dq dz q45 e-vo4zr C(q,z) ,  
1 5 7 1  0 0  

(3.14) 

where g ( q , T )  and C(q,z)  are coefficients in the Fourier transformation of the 
correlation tensor (2.6) (see the Appendix). Note, that the constant G is proportional to 
the mean helicity of the basic turbulent velocity field, while v, is proportional to mean 
energy of the turbulence. The constant B is proportional to the mean vorticity. 

Equation (3.10) is the main equation of this work. It has been derived from the 
closure of (2.13). The closure procedure depends on the smallness of three parameters, 
A/L, z/T,  and the turbulent Reynolds number. Equation (3.10) describes the evolution 
of a large-scale perturbation V") in a stationary, homogeneous, isotropic and helical 
turbulence. The coefficients Gijk, B and v in (3.10) are expressed in terms of statistical 
parameters of the turbulence and the components of the nonuniform basic flow V'O). 
The term involving the first derivative of V(') with respect to the coordinates is quite 
similar to the alpha-term in mean-field MHD. As we show below, it is this term that is 
associated with generation of large-scale vortices. Its presence is due to the helicity of 
the turbulence. It vanishes when: (i) the mean helicity of the turbulence is zero; (ii) the 
basic flow is uniform; (iii) the random process V' is d-correlated in time. 

The derived equation is a nonlinear vector equation with coefficients that depend on 
the coordinates. The detailed investigation of this equation is a complicated problem. 
Here we restrict ourselves to an analysis of a linearised form of (3.10) with a specially 
chosen V@): a potential flow depending linearly on the coordinates. It turns out that 
exact solutions can be found in this case. 

4. VORTEX GENERATION IN A POTENTIAL FLOW 

Consider a basic flow V'O) of the form. 

V'O) = Vlp)(x)ex + vY)( y)e, + Vlo)(z)e,, (4.1) 

where ex, e,, and e, are the unit coordinate vectors. This is a potential flow, V x V(O)=O. 
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62 V. V. GVARAMADZE ETAL. 

The incompressibility condition gives 

a, Vjp)(x) = - ay V:”’( y )  - a, v:”(z). (4.2) 

The right-hand side of (4.2) is independent of x; therefore aVL0)(x)/ax is uniform and 
Vio)(x) is a linear function of x. In a similar way we conclude that V y ) ( y )  and Vio)(z) are 
also linear functions of their arguments; expression (4.1) takes the form 

V‘O’ = ulxe, + u2 ye, + ugze,, (4.3) 

where u l ,  u2 and uj are constants. Note that expression (4.3) can be considered as the 
Taylor expansion of an arbitrary velocity field near a saddle point. Due to 
incompressibility, u1 + u2 + u3 = 0 and one or two of these constants are negative. The 
flow V(O) given by (4.3) is an exact solution of the stationary Navier-Stokes equation 

for the pressure field 

p(0)  = - tplV‘O)I2 = - 1 2 p ( u ~ x 2 + u ; y ~ + u ~ z 2 ) .  

The tensor Gijk (3.11) takes a simple form for the linear flow V(O): 

Gijk = 4G UirnErnjk, 

where the matrix U is diagonal, 
0 0  

(4.7) 
0 0 u3 

its trace vanishes due to the incompressibility condition. The averaged equation (3.10) 
also simplifies and when linearized in V(l) becomes 

Applying the curl-operator, we obtain the vorticity equation : 

d,Q = BV x (V‘O’ x Q) -4GV x (UQ)  + vAQ, !2 = V x V“). (4.9) 

The form of this equation coincides with the well-known dynamo-equation governing 
a large-scale magnetic field when an alpha-effect is present. 
’ We follow Zeldovich et a / .  (1984) and seek a solution of (4.9) in the form of a plane 
wave in which both the amplitude and the wave vector depend on time: 

n(t, r) = w(t, k,) exp (ik(t)  . r), (4.10) 
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where k,=k(O) is the initial wavevector. Substitution of (4.10) into (4.9) gives, after 
equating terms of like power in r, 

arki= - B U . . k .  JI J '  (4.11) 

(4.12) atwi = BUijwj -4iGsijmkjUmnwn- vk2wi. 

Let u , , u 2 = + u > 0  and u3= -u<O. It follows from (4.12) that the x- and y- 
components of the wave vector, k, and k,,  decrease exponentially, while k,  increases in 
time as 

k,( t )= k,, eBur, (4.13) 

This behavior is due to peculiar properties of the linear flow (4.3) under the 
incompressibility condition. In a linear flow any vector field should either be stretched 
along one axis and simultaneously compressed along the other axes to form a rope, or 
else be stretched along two axes and compressed along the remaining one to form a 
pancake (see Zeldovich et al., 1984). The signature of the matrix U chosen here 
corresponds to the latter possibility. Thus, we set k 2  zz k t  in (4.12); the expression for 
the z-component of the vorticity follows as 

w , ( t ) = w , , e x p [ - B u t - ~ v B u ( k ~ ( t ) - k ~ , ) ] ,  (4.14) 

where woz = w,(O). We see that w Z ( t )  decreases first exponentially (when k,  is small) and 
then superexponentially (i.e. as an exponential function with an exponentially growing 
power). The x- and y-components of the solution are 

w , = w  , = w,, exp[$But - i v B u ( k t ( t )  - k&)]cosh 

for initial conditions w,(O)= w,,(O)= wo. It follows from this expression that the 
vorticity amplitude increases up until the moment 

1 { G u [  ( Bv >'/'3) 
tgr=-In ~ 1+  l+- Bu vkOz 2G2u 7 (4.16) 

the smaller the u,  the longer the period of growth. 
We recall that (3.10) has been derived under the condition that the scale k - '  of the 

mean velocity fluctuation, V"), is much larger than the scale 4 - l  of the turbulence, 
k q q ,  where y = i / L  < 1. But we see from (4.13) that k,  (and k )  grows exponentially in 
time and finally this condition for self-consistency fails to be fulfilled. Equating k and 
aq, we obtain an estimate for the time up to which the (3.10) is applicable for the flow 
considered : 

t<t  =-In - . 
ap ;u (::,) (4.17) 
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When the But 6 1 ,  the exponential function in k , ( t )  may be expanded in Taylor 
series: 

k , ( t )  z koz( 1 +But +. . .), (4.18) 

and the vorticity amplitude in the x, y-plane takes the form 

- vk8, + 2Gukoz)t w = w o  e (4.19) 

Perturbations with k = k,,,, where k,,, = Gu/v grow most rapidly. Their growth rate is 
r,,,= ( G u ) ~ / v .  As we have agreed above, k,,, should be small, k , , , z y q ,  or G u l v z y q .  
Substitute this result into (4.16) and compare with (4.17) to obtain t g r z t a p ,  which 
means that, during all the period of applicability of equation (3. lo), the vorticity does 
indeed grow. 

The restriction k,,, < q  (which means that the structure has a large scale) imposes 
the restriction Gu/(vq)  6 1 on the input parameters of the problem. 

We have mentioned above the analogy between (4.9) and the dynamo equation for 
magnetic fields. Solutions (4.14) and (4.15) are also quite similar to solutions known in 
MHD. As shown by Gvaramadze et al. (1987, 1988), an analogous solution 
describes the evolution of magnetic field in a similar basic flow in MHD. 

For the basic flow (4.3), equation (3.10) has been reduced to (4.9). We have derived 
an exact solution of (4.10) with the amplitude w described by (4.14) and (4.15). It 
follows from (4.15) that two trends occur simultaneously: the vorticity amplitude in the 
x,y-plane grows while the scale of the motion decreases in the z-direction. Equation 
(3.10), whose solution we now analyse, is valid only while the scales of the solution 
exceed the turbulent scale. Since one of them quickly decreases, our approximation 
soon becomes inapplicable. However, the amplitude of the solution grows faster than 
its scale decreases: the former increases exponentially with an exponent that itself 
grows exponentially, while the latter decreases exponentially. Hence, it becomes clear 
why the amplitude of the solution grows throughout the period of applicability of our 
theory. In other words, we can say that a large-scale vortex arises, one of whose scales 
decreases further and further, until it reaches the turbulent scale where our theory 
becomes inapplicable. This decrease in scale is associated with the form of (4.11), and 
its rate is determined by the form of the basic flow V(O). Solution (4.19) is quite 
similar to the solution of the cr2-dynamo equation. 

5. CONCLUSIONS 

We have derived equation (3.10) that describes evolution of a large-scale velocity field 
in an incompressible fluid under the influence of a small-scale, homogeneous and 
isotropic helical turbulence. In this case, as for the compressible fluids considered by 
Moiseev et al. (1983a), the averaging procedure for the Navier-Stokes equation has led 
to the appearance of a new term that is proportional to the first derivatives of the 
velocity with respect to the coordinates. This term, which is similar to the alpha-effect 
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VORTICES IN HELICAL TURBULENCE 65 

term appearing in the dynamo equation of MHD, appears in the averaged equation 
because of the helicity of the turbulent velocity field, just as for the alpha-effect term in 
MHD. 

Helicity is one of the most important characteristics of any vector field. First, the 
integral over the liquid volume SV - V x V d3r  is an integral of motion for an ideal fluid 
i.e. it is an invariant. Second, this invariant characterizes the topology of a vector field 
and determines the number of linked streamlines. Third, a system with nonvanishing 
helicity lacks parity, i.e. it is not invariant under inversion of the coordinates, since the 
numbers of right-handed and left-handed vortices are not equal to each other. 

The importance of helicity makes it interesting to carry out experimental research on 
large-scale vortex generation in helical turbulence. Unfortunately, we are not aware of 
any such experiments. For this reason, natural atmospheric turbulence proves to be a 
unique source of information about such turbulence. It is well known that the helicity 
of atmospheric turbulence is produced by the Coriolis force. The main candidate for 
the role of a large-scale structure associated with the helicity of atmospheric turbulence 
is the tropical cyclone (typhoon). This hypothesis was proposed by Moiseev et a/ .  
(1983b) on the basis of the following arguments. First, the characteristic spatial and 
temporal scales of a typhoon are much greater than the relevant scales of the 
atmospheric turbulence, which is believed to be causally connected with cyclogenesis. 
Second, the large-scale velocity field in a typhoon is helical. (The intense toroidal 
circulation in a tropical cyclone is linked to a weak poloidal one.) Third, the birth of 
tropical cyclones is often associated with the presence of a weak large-scale motion (e.g. 
an Eastern wave-see Riehl, 1976) which works as a trigger mechanism. Such motions 
may be interpreted as a regular basic flow which breaks the symmetry of the 
background state in the sense just described. As shown by Moiseev et a/.  (1983b), a 
mechanism based on the mean helicity of atmospheric turbulence furnishes an 
explanation of the energy transfer from small-scale convective motions to large-scale 
flows. Their estimates of the growth rate and characteristic scale of a growing 
atmospheric vortex are in qualitative agreement with the observed properties of 
typhoons. This approach offers an explanation of the different directions of air 
circulation in typhoons in the northern and southern hemispheres, gives a reasonable 
threshhold latitude for effective cyclogenesis, and even describes qualitatively the 
formation of the eye of a tropical cyclone. 

Levich and Tzvetkov (1984, 1985) have proposed a mechanism of energy transfer 
from small-scale motions in the atmosphere to large scale motions typical of cyclones 
which is also based on the helical properties of turbulence. However, in contrast to our 
approach based on the non-vanishing mean helicity of the turbulence, the concept 
proposed by Levich and Tzvetkov depends on helicity fluctuations about states of 
vanishing mean helicity. 

In our approach, because of the symmetry of the Reynolds stresses helicity alone is 
insufficient for the generation of large-scale vortices, but it turns out that the addition 
to the helical turbulence of even a steady potential flow is enough to engender large- 
scale vortices. The averaged equation is derived under the presumption that the 
turbulent Reynolds number is small, which is equivalent to a weak nonlinearity of the 
basic equations. However, in our opinion this restriction is not obligatory; it merely 

G.A.F.D.-C 
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simplifies our calculations. As a matter of fact, the problem of the interaction of large- 
scale and small-scale processes inevitably involves small parameters, namely the ratios 
of the characteristic scales. It seems that the presence of these small parameters would 
permit the restriction to small Reynolds numbers to be lifted. We therefore believe that 
the closure of the basic equations can be performed for arbitrary Reynolds numbers, 
using the ratios of scales as perturbation parameters in the diagram technique; the 
arguments given by Tur et al. (1984) imply that the form of the averaged equation 
remains the same as in the case of small Reynolds numbers. 

The averaged equation (3.10) has been analysed for a special regular basic flow, 
namely a potential flow, linear in the coordinates. Even this preliminary analysis has 
confirmed that the averaged equation has solutions that grow in time. These solutions 
describe large-scale vortex generation. The linear velocity field selected is very special, 
but can be understood as a local approximation to a smooth generic velocity field. 
Analysis of equation (3.10) for a more realistic regular basic flow will be thoroughly 
discussed elsewhere (see also Tur et a/ . ,  1987). 

Equation (3.10) describes the generation of large-scale vortices by helical turbulence, 
and has a form similar to the dynamo equation. This allows us to understand our 
results as a hydrodynamical analogue of the MHD alpha-effect or as a vortex dynamo. 
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APPENDIX 

The following term should be evaluated in (2.13) 

Calculations are conveniently performed in k-space. Let us Fourier transform the 
spatial dependence : 

In k-space, (A.l) takes the form 
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where 

V. V. GVARAMADZE ET AL. 

The correlation qij(k) can be easily calculated by using the Furutsu-Novikov formula 
(3.9). In k-space, the correlation function of the random field V‘ has the form 

where t E t - t’ is the correlation time of the turbulence. Insert this expression, together 
with the variational derivative (3.8) expressed in k-space, into (A.3) to obtain the 
following form for qlj(k): 

where the integration over 5 has been performed. 
The first term in (A.4) does not include the stationary flow velocity V‘O’. After 

corresponding manipulations, this term produces the turbulent viscosity in (3.10). This 
turbulent viscosity is isotropic, i.e. it does not affect the scalar nature of the kinematic 
viscosity. Our expression for the isotropic turbulent viscosity coincides with the 
expression derived by Krause and Rudiger (1974). The second term in (A.4) that 
contains V‘O) leads to appearance in (3.10) of completely new terms. 

The following expressions appear in (A.4): 

Consider these terms more closely. The wave vector k refers to disturbances while the 
wave vector q refers to the turbulent pulsations. Since we are interested in large-scale 
disturbances of the velocity field we may set Ikl6 191 :the scale of the disturbance greatly 
exceeds that of the turbulent pulsations. This allows us to expand the exponent and the 
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denominator in Tp,,(k -9). In the following we consider only terms that include the 
first- and second-order derivatives of the large-scale disturbance. Therefore, we keep 
only the terms quadratic in k in the expansions of the exponent and denominator. 
These expansions have the form 

After these expansions are substituted into (A.4), the result can be integrated over the 
directions of the wave vector q. Due to symmetry, the integrals which contain an odd 
number of q vectors vanish, while those which contain an even number of q factors are 
given by 

etc. Here dR is the solid angle element. After this angle integration, the construction of 
a symmetric combination q f j ( k ) + q f j ( k ) ,  the formation of the direct product with 
Z l i j ( k ) ,  and the transformation back to x-space, we obtain (3.10). Note that in (3.10) 
we omit terms which include anisotropic corrections to the turbulent viscosity 
associated with the stationary flow V0). These corrections are similar to the expression 
for the anisotropic viscosity derived by Shimomura and Yoshizawa (1986). 
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