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Abstract
We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single
layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold)
contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact.
We find that at low temperatures (77K) the detector responsivity rises with the increasing
frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a
plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene
nanoribbon devices display a similar pattern, albeit with a lower responsivity.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Introduction

The detection of radiation in the THz region of the spectrum is
an important challenge, which might benefit from the avail-
ability of new nanomaterials, such as graphene [1–14]. We
focus on the direct detection, in which the impinging radiation

leads to an observable change of the current-voltage char-
acteristic. The response in the sub-THz range changes with the
radiation frequency, which turns out to increase with frequency
(at 77 K) in contrast to most microelectronic detection techni-
ques. We will interpret this increase as a signature of a plas-
monic excitation generated by the incoming radiation.

As proposed in the early 1990s, a fast response time of
field-effect transistors (FETs) involves the excitation of
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plasma waves in a two-dimensional electron gas, with a much
faster propagation time than the conventional drift time of the
electron gas [15, 16]. The excitation of the plasma oscillations
leads to the appearance of the rectified components of the
electric field and electron density in the FET channel, asso-
ciated with the nonlinearity of the electron transport (hydro-
dynamic nonlinearity [15, 16]). Different detectors based on
III-V high mobility transistors or Si-based devices using the
plasmonic effects leading to the THz signals rectification have
been realized [17–24]. The strength of the plasmonic reso-
nances depends on the plasma oscillations decay rate. The
latter is determined by the scattering of the electrons (or
holes) on phonons and impurities, the viscosity of the electron
system and radiative damping, etc. [15, 16]. In the majority of
the heterostructures in question, the plasma oscillation
damping (say, the electron collision frequency) is of the same
order as characteristic plasma frequencies. In such situations,
the plasma oscillations are overdamped, so that the resonant
response is not particularly pronounced. However, even the
overdamped plasma resonances can lead to elevated values of
responsivity of the plasmonic detectors, which are also
interesting from the practical point of view.

The combination of the high carrier mobility and rela-
tively low collision rates, leads to weaker plasma oscillation
decay and fairly pronounced plasmonic effects in a single
layer graphene (SLG) [25–29]. The first graphene FET
detectors using this hydrodynamic nonlinearity, leading
to the THz signals rectification, demonstrate broadband
THz detection via the overdamped plasma oscillations
[3, 11, 13, 30].

Here, we focus on the investigation of the frequency
dependence of the detector efficiency, which is the most direct
approach for the investigation of the plasmonic contribution
to the response. We use the detectors of sub-THz radiation
with asymmetric source and drain (vanadium and gold)
contacts to SLG and graphene nanoribbons (GNR). Vana-
dium forms a barrier at the graphene interface and gold forms
an Ohmic contact [6, 31, 32]. We demonstrate that even in the
case of an SLG detector with rather modest electron mobi-
lities, the plasma waves excitations lead to an increase of
device responsivity with the increasing frequency of the
incident radiation (129–450 GHz at T=77 K). We also show
that the unusual properties of the barrier at the graphene–
vanadium interface explain the temperature evolution of the
response, as well as the suppression of the response in the
graphene nanoribbons devices.

2. Experimental results

2.1. Description of devices

Graphene, acting as the conducting channel of an FET, was
put on top of an oxidized silicon wafer (see supplementary
information, available online at stacks.iop.org/NANO/29/
245204/mmedia). This silicon substrate was a 480 μm thick
silicon wafer covered with a 500 nm thick, thermally grown
SiO2 layer. The doped silicon (with the room temperature

resistivity of 10Ω·cm) forms a gate electrode, transparent
for the sub-THz and THz radiation.

The SLG was synthesized in a home-made, cold-wall
chemical vapor deposition (CVD) reactor by CVD on a
copper foil with a thickness of 25 μm [33]. After the trans-
ferring of graphene onto a silicon wafer, the geometry of the
device is further defined by e-beam lithography using a
PMMA mask and oxygen plasma etching. Two different
types of devices were made. The first type of devices were
shaped as Hall bars and were used to determine transport
constants of the synthesized graphene (see the supplementary
information for details). The second type of devices were used
for the detection of THz radiation. They were fabricated as
follows: the electrical contacts to the two sides of the gra-
phene were made with different metals having different work
functions, in order to introduce electrical potential asymmetry
between the two electrical contact boundaries (figures 1(a),
(c)) [6, 31]. At one end of graphene (left in figure 1(a)) the
contact is made of gold (Au) (with a work function of 5.1 eV)
and at the other end (right in figure 1(a)) the contact material
is vanadium (with a work function of 3.9 eV). In short, we
will refer to these contact electrodes as gold and vanadium
source and drain contacts. Since graphene is p-doped by
adsorbed oxygen, vanadium forms a potential barrier at the
graphene interface, whereas gold forms an Ohmic contact as
shown in figure 1(a). The carrier concentration and mobility
are determined from a Hall bar structure.

The source and drain contacts are connected to a spiral
antenna (see figure 1(b)) to ensure a sufficiently broad band
device response. We have chosen the log-spiral antenna
defined in polar coordinates as = j b/R R e0 with the follow-
ing parameters: the inner radius of the spiral R0 equals
5.5 μm, outer radius Rmax=68 μm and the parameter deter-
mining the rate of spiral b=3.2. Further details of the
antenna parameters and its characteristics are presented in
[34]. Importantly, such an antenna is relatively easy to
fabricate.

2.2. Device characterization and experimental set-up

A chip, with dimensions of 4×4 mm2, with a device fabri-
cated on top of it is further fixed on the flat surface of a silicon
lens, in such a way that the sensing element of the device, the
antenna with graphene in the center, is located in the lens
focus. A special lens holder is placed inside an optical
cryostat, equipped with a high-density polyethylene window.
A Zytex-106 cold infrared filter is mounted in the radiation
shield of the cryostat to block the 300 K background radia-
tion. The power incident on the cryostat window is measured
with a Golay cell. BWO 1 was used as a source of sub-THz
radiation with the frequency of f=129 GHz. It has a max-
imum power of radiation at the cryostat window of 1 mW, as
measured by a thermistor, and the power is adjusted by a
wire-grid attenuator. The sum of the losses in the silicon lens
and the cryostat optical window do not exceed 5–6 dB. BWO
2 was used in the frequency range f=265–450 GHz. The
power at each frequency had a maximum value of
about 0.6 mW.
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Prior to the photoresponse measurements, we measured
the DC transport characteristics of the devices. Figure 2(a)
shows the resistance R2p of the graphene devices as a function
of gate voltage, measured at 300 K and 77 K. The resistance
of the device increases when the gate voltage is swept from
−10 to 10 V, indicating p-doping of graphene. Another
common feature is a few percent increase of the resistance,
when the temperature goes down from 300 to 77 K, which is
not typical for metals. We note that a two-probe resistance
R2p includes a temperature-dependent contact resistance.

Our four-probe transport measurements indicate that the
sheet resistance of graphene is almost the same at tempera-
tures of 300 K and 77 K, decreasing by less than 3%, while
the two-probe resistance changes by more than 5%.

Therefore, we associate the increase of R2p with the increase
of contact resistance at the graphene–vanadium interface due
to a barrier at this interface. We used our Hall bar devices (see
SI, figure 1(b)) to determine the concentration and mobility of
the CVD graphene used in our experiments, as shown in
figure 2. Measuring both Hall and four-probe resistance using
a PPMS-9 cryomagnetic system, we find that the carrier
concentration is around 4·1012 /cm2. At the same time, the
carriers’ mobility slightly decreases upon temperature
decrease from 300 to 77 K, while the scattering rate defined as
τ−1=vF/lSC is around 20 THz at both room temperature and
77 K. Here, vF∼106 m s−1 is the Fermi velocity and the
elastic mean free path lSC that is found to be around 50 nm in
our devices (see SI for details). These data mean that the

Figure 1. (a) Schematic representation of the transistor device, illustrating the current path between the gold and vanadium electrodes. (b) A
scanning electron microscopy image of the device coupled to the radiation with a logarithmic spiral antenna made of gold (Au). The red
rectangle marks the transistor channel area. (c) A typical scanning electron microscopy image of the transistor channel formed by graphene.

Figure 2. Two-probe resistance of the graphene detector device as a function of gate voltage (a). Carrier concentration (b) and hole mobility
(c) extracted from the Hall voltage measurements as a function of gate voltage.
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graphene conduction is limited by defect scattering at room
temperature already, with the electron–phonon scattering rate
being much lower than that for defects. This is not surprising
for CVD grown graphene. A decrease of conductance upon
temperature lowering should be ascribed to weak localization,
as further confirmed by our magnetotransport experiments,
which yield a dephasing time of about 4ps at 77 K [35].

2.3. Photoresponse measurements

The response of the graphene-FET to radiation is studied in
the frequency range from 129 GHz–450 GHz.

First, we characterize the room temperature response of
our devices to sub-THz radiation at the frequency of
129 GHz. Figure 3(a) shows the current–voltage character-
istics, measured with the gate grounded, with and without the
impinging radiation. When the device is exposed to 129 GHz
radiation, with a power of P=250 μW, the I–V curve shifts
to the right. As shown, the zero-current crossing was shifted
by a voltage V0 of about 2 mV. This DC voltage V0 induced
by the radiation is the response voltage VRESP. No significant
change in the differential conductance, due to the radiation, is
observed at this temperature, indicating low bolometric effect
contribution to the device response.

Next, we measure the gate dependence of the response
voltage VRESP(VG), both at room temperature and at 77 K. The
results are displayed in figure 3(b), with the responsivity
defined as VRESP/P, where P is a power incident on the device
with allowance for absorption in silicon (see supplementary
information). As seen from the data, the responsivity at 300 K
is practically independent of the gate voltage: the response
decreases only slightly and monotonically with the increasing
gate voltage. Similar results were obtained at the frequencies
of 280 GHz, 330 GHz, 380 GHz and 445 GHz (using BWO
2). These data also show that the response is only weakly
dependent on the gate voltage at room temperature. Given this
lack of response dependence on gate voltage, we compare the
responsivity of the devices for five frequency values in the
range of 129–450 GHz, with the gate grounded.

The results are shown in figure 4(a). As seen from
figure 4(a), at room temperature the responsivity decreases as
the frequency is increased from 14 VW−1 at 129 GHz to
3 VW−1 at 440 GHz. Similar measurements for the same
fixed frequencies were carried out at 77 K. The results are
shown in figure 4(b). At 77 K the responsivity also weakly
depends on the gate voltage (figure 3(b)). However, the fre-
quency dependence of the responsivity at 77 K is strikingly
different from that at 300 K. At 77 K, the responsivity
increases as the frequency increases within the range of
129 GHz–450 GHz.

3. Discussion

In previous discussions on the response of asymmetric gra-
phene or carbon nanotube devices to THz radiation, the focus
was made on the rectification of alternating current (AC) due
to the photothermal or diode effects [6, 8], which in some
cases were combined [36, 37]. In the case of a pure photo-
thermoelectric effect, non-linearity is the result of either non-
uniform doping of the channel or non-uniform heating of the
channel as it is exposed to radiation. In both cases, a DC
voltage signal should be proportional to the increase of the
electron temperature. Alternatively, within the diode response
scenario, the non-linearity occurs due to presence of a barrier
at either electrode.

The most important feature observed in our experiments
is the qualitative change of the frequency dependence of the
device responsivity upon a decrease of the temperature from
300 K to 77 K. (figure 4). As the temperature is lowered, the
character of the dependence of the responsivity on frequency
changes from a decreasing to an increasing one. First of all,
we checked that this effect could not be ascribed to a strong
temperature effect on the impedance matching of the antenna
with the load (the graphene device), whose complex con-
ductivity as a function of frequency may strongly change with
temperature [13, 38, 39]. We have ruled out this possibility,
performing electrodynamic simulations accounting for the

Figure 3. (a) I–V curves of the graphene devices measured with and without THz radiation at 300 K. (b) Responsivity of the graphene devices
as a function of gate voltage measured at 300 K and 77 K.
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antenna geometry. Radiation transmittance through the silicon
substrate and device intrinsic impedance neglect not
accounting for the plasma wave excitation (see SI).

For further analysis it is essential to note that the exci-
tation of plasmons may change the value of the response
voltage, whether it occurs due to the nonlinearity or due to the
photothermal effect [40, 41].

The role of plasma wave excitation in the channel was
considered by Ryzhii and Shur in 2006 [40]. It was shown
that for a plasmonic response, the device responsivity at a
given frequency is determined by the ratio of the fundamental
plasmon resonance frequency Ω to the scattering rate τ−1.
Since our DC transport measurements clearly show that the
scattering rate does not depend on temperature, the model
developed in [40] cannot be applied directly to our case. In
the case of the photothermoelectric scenario, suggested by Cai
et al [6], the model considered in [40] should be applicable.
However, this model cannot explain the observed frequency
dependence. On the other hand, the non-linearity that occurs
due to the presence of a Schottky barrier also involves a
shunting capacitor, which affects the frequency dependence
of the response. Therefore, we consider more closely the
effect of rectification due to presence of a barrier at one
electrode. It is known, for example [42–45], that for p-type
graphene, at the contact with the metal that has a low work
function, there is an n-part, creating a p–n junction in gra-
phene, which dominates the contact resistance. In our case, it
could also be a thin oxide layer at the interface between
graphene and the vanadium metal. We note that at a non-zero
frequency, the barrier is ‘shunted’ by its capacitance, so the
amplitude of the current through the barrier is less than that
through the channel.

First, we have modified the model considered in the [40]
in order to account for the capacitance of the barrier and the
excitation of plasma waves in the 2D graphene channel. We
arrive at the following formulas for the gated detector voltage

(in V/W) responsivity as a function of incident radiation
frequency w:

b
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is the characteristic plasma frequency for the gated channel
[26], n is the electron density in the quasi-neutral section of
the channel with the length close to the net channel length L,
Wg is the gate layer thickness, -v 10 cm sW

8 1 is the
characteristic electron velocity in graphene, k is the effective
dielectric constant (depending on the dielectric constants
above and beneath the graphene (or for the graphene nanor-
ibbon), g t x p l= +- ( )/21 2 [16] is the plasma oscillations
decay rate, τ−1 is the frequency of electron collisions with
impurities, phonons, and edges (in graphene), x is the electron
viscosity, l=4 L is the plasma wavelength and b0 is low
frequency responsivity. The quantity
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characterizes the ratio of the AC channel and the Schottky
junction conductances. Here, τS =CS

*rS and CS are the
Schottky junction recharging time (through the Schottky
junction) and capacitance, respectively, and b=L/σ0rS
=r2DES/rS, rS =(dJS/dV)

−1 is the Schottky junction differ-
ential resistance, where JS(V) is the junction current–voltage
characteristic, and r2DES is the DC resistance of the quasi-
neutral channel section. Deriving aω, we have assumed that
the AC conductivity of the 2DES channel is equal to σω=σ0
τ−1/(τ−1−iω), where σ0 is the DC conductivity.

Figure 4. Responsivity of the graphene devices as a function of the radiation frequency measured at 300 K (a) and 77 K (b).
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Based on the temperature evolution of the DC transport,
we argue that the only temperature-dependent parameter in
the above equations is the Schottky junction recharging time,
which is proportional to the barrier resistance. Figures 5(a)
and (b), show the frequency evolution of the parameter b bw/ 0

for two values of τS. We see that the responsivity is a rising
function of frequency for large enough values of τS and
decreasing otherwise. Other parameters input into the calcu-
lations are provided in the figure caption.

We therefore conclude that the observed temperature
evolution of the responsivity can be explained by a significant
increase in the barrier DC resistance, as the temperature is
lowered. This, in turn, points to the thermally activated
transport or the thermally assisted tunneling through the
barrier. A simple model of transport through the barrier,
accounting for the thermal activation, only predicts a zero
frequency limit of device responsivity to be inversely pro-
portional to temperature, which is not the case in our
experiments. We also do not observe any significant increase
of the two-probe resistance of our devices.

Thus, the observed temperature evolution of the
responsivity can be explained by a significant increase in the
barrier resistance, while the DC transport data contradict this
statement. The only way, in our view, to resolve this con-
tradiction is to associate the barrier not with an oxide layer at
the interface between graphene and the metal (vanadium), but
with a barrier existing for charge carriers that cross the p–n
junction non-normally. The transport of carriers through a p–
n junction in graphene depends on the angle between the
normal to the interface and electron direction. For normally
incident electrons, there is no energy barrier and they shunt
the nonlinear transport. At the same time, the current of non-
normally incident electrons is a non-linear function of the
applied voltage [45, 46].

In order to verify the possible scenario of rectification
due to a p–n junction at the V electrode, we fabricated the

samples of graphene nanoribbons (figure 6(a) inset). In the
case of the nanoribbons, a smaller channel width should lead
to a more collimated motion of the charge carriers, so that the
fraction of normally incident carriers is larger, causing a
smaller response value (figure 6(b)).

The obtained results are in good agreement with this
prediction. The room temperature measurements of the
nanoribbon devices show that the transport characteristics for
nanoribbon and graphene devices are similar. Figure 6(a)
shows the sheet conductance Gsq of typical GNR and SLG
devices as a function of the gate voltage measured at 300 K.
The resistance per square is almost the same for GNR and
SLG devices indicating a small contribution of the contact
resistance in all cases.

At 300 K, the photoresponse measurements indicate that
the responsivity decreases with the radiation frequency
(responsivity at frequency 129 GHz is 1 VW−1) and the
response to the radiation becomes too small to be detectable at
the frequency above 280 GHz. Figure 6(c) shows the fre-
quency dependence of the nanoribbon device responsivity at
77 K. As seen from this figure, the responsivity of the
nanoribbon devices is much smaller than that of the graphene
devices, but it also increases in the frequency range of
129–450 GHz.

To conclude, we have shown that plasma waves can
affect the frequency dependence of the response of a graphene
lateral Schottky diode, even in the graphene devices with
rather modest electron mobilities far from the first plasmon
resonance, which should be observed at 4.9 THz for our
channel geometry and carrier concentration. A strong
enhancement of the response is observed at moderately low
temperatures, when the frequency is increased towards the
plasma resonance frequency. In order to reach the full reso-
nance in the studied frequency range, we should use a better
quality graphene (such as h-BN-encapsulated graphene with a
high mobility) and a longer channel.

Figure 5. (a), (b) Calculated frequency dependence of the rectified current normalized at its value at zero frequency (equation (1)). The
parameters input into the calculations are W = * -30 10 s ,12 1 t = *- -18 10 s ,1 12 1 Cs=4∗10−17F; r2d=2 kOhm.
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